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In the present work, we use the formalism of quantum general relativity in order to quantize a Friedmann-
Robertson-Walker model in the presence of a negative cosmological constant and radiation. The model has
spatial sections with positive constant curvature. The wave-function of the model satisfies a Wheeler-DeWitt
equation, for the scale factor, which has the form of the Sdinger's equation for the quartic anharmonic
oscillator. We find the eigenvalues and eigenfunctions by using a method first developed by Chhajlany and Mal-
nev. After that, we use the eigenfunctions in order to construct wave-packets for evaluating the time-dependent,
expected value of the scale factor. We find that, the expected value of the scale factor oscillates between maxi-
mum and minimum values. Since the scale factor never vanishes, we conclude that the model does not have a
singularity.

One of the motivations for the quantization of cosmolog-ational formalism developed by Schutz [13]. The model has
ical models was that of avoiding the initiBig Bangsingu-  spatial sections with positive constant curvature. The wave-
larity. Since the pioneering work in quantum cosmology duefunction of the model satisfies a Wheeler-DeWitt equation,
to DeWitt [1], workers in this field have been attempting to for the scale factor, which has the form of the Sidinger’s
prove that quantum cosmological models entail only regulaequation for the quartic anharmonic oscillator. We find the
space-times. Animportant contribution to this issue was givereigenvalues and eigenfunctions by using a method first devel-
by Hartle and Hawking [2], who proposed the-boundary oped by Chhajlany and Malnev. After that, we use the eigen-
boundary condition, which selects only regular space-time$unctions in order to construct wave-packets for evaluating the
to contribute to the wave-function of the Universe, derivedtime-dependent, expected value of the scale factor. We find
in the path integral formalism. Therefore, by construction,that the expectation value of the scale factor shows bounded
the no-boundarywave-functions are everywhere regular andoscillations and since it never vanishes, we conclude that the
predict a non-singular initial state for the Universe. Usingmodel does not have a singularity.
that boundary condition, in certain particular cases ribe Friedmann-Robertson-Walker cosmological models are
boundarywave-function can be explicitly computed [2—-4]. characterized by the scale fact(t) and have the following
Another way by which one may compute the wave-function ofline element,
the Universe is by directly solving the Wheeler-DeWitt equa-
tion [1]. The wave-function of the Universe for some impor- 12
tant models have been computed using this approach [5-10]. ds? = —N(t)2dt® +a(t)? <

. . - . 1—kr?

Several important theoretical results and predictions in
quantum cosmology have been obtained with a negative coggheredQ? is the line element of the two-dimensional sphere
mological constant [11], [12] and [3]. Besides that, we think ityith unitary radiusN(t) is the lapse function anki= 1. It
is important to understand more about such models which refineans that the constant curvature of the spatial sections is
resent bound Universes (analogous to uni-dimensional atomgositive. The spatial sections may be thoughtS¥s. We
in the present situation). are using the natural unit system, whére- c= G = 1. The

In the present paper, we use the formalism of quantum cosnatter content of the model is represented by a perfect fluid
mology in order to quantize a Friedmann-Robertson-Walkewith four-velocity U* = 68 in the comoving coordinate sys-
model in the presence of a negative cosmological constatém used, plus a negative cosmological constant. The total
and radiation. The radiation is treated by means of the varienergy-momentum tensor is given by,

+ erQZ) . @
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The method of Chhajlany and Malnev [15] starts with the
addition of an extra term to the original anharmonic oscillator
Tuv = (P+PUUv — PGuv — Ay, (2)  potential, so that the modified Hamiltonian admits a subset of

wherep andp are the energy density and pressure of the ﬂuiol,manlfestly normalizable solutions. In the case we are consid-

respectively. Here, we assume that p/3, which is the ering, the extra term to be added to the effective potential (8)

. . 6 .
equation of state for radiation. This choice may be consid:> proportional toa”. In terms of that new enlarged potential,

ered as a first approximation to treat the initial content of thethe eigenvalue equation (7) may be re-written as

Universe and it was made as a matter of simplicity. It is clear

that a more complete treatment should describe the radiation, N (@) + (e— aa2 —bat — ca6)r](a) -0 9)
present in the primordial Universe, in terms of the electro-

magnetic field. Einstein’s equations for the metric (1) and thevheree = 12E, a = 36, b= —12A, c is a parameter to be
energy momentum tensor (2) are equivalent to the Hamiltorletermined by the method. Thasatzor the solution of Eq.
equations generated by the super-hamiltonian constraint  (9) takes the form

) n(@) = Nexp(—za— Yo%) v(a), (10)
}[:—&—Saer/\a“erT, ©) 42
12 and has finite norm foc > 0. Here,v(a) is a polynomial of
wherep, and pr are the momenta canonically conjugated toa certain degree, yet to be chosen; the parameigrto be
aandT the latter being the canonical variable associated t@hosen according to our convenience, as we shallNég;a
the fluid [10]. normalization factor. The method is based on the fact, shown
In the case of the model studied here, the scale factor pein Ref. [15], that the larger the degree of the polynonaial),
forms bounded oscillations. When the scale factor vanishethe smallerc is. Therefore, if one increases the order(),
we have the formation of a singularity which may be either athe energy eigenvalues predicted by the present method tend
Big Bangor aBig Crunch monotonically, from above, to the energy eigenvalues of the
Using the Dirac formalism for quantizing constrained sys-original problem. One important property of the method is
tems [14], we obtain fron¥/ Eq. (3) the following Wheeler- that the convergence is very fast. This means that one does
DeWitt equation, not need to use a polynomial of very large order to obtain a
good agreement with the energies of anharmonic oscillators
1 o2 3 already computed in the literature by other methods.
<2 _ 3az+/\a4> Yt =—i—%art), (@) The next step is the substitution of tA@satz(10) into the
120a ot differential equation (9), which gives rise to an equation for
the polynomial(a). Then, writingv(a) = 3, Bna" and insert-
ing it in that equation for the polynomia(a), along with the
condition2cy = b [15], we manage to find:

whereW(a, 1) is the wave-function of the model and the new
variablet = —T has been introduced.
The operator is self-adjoint [8] with respect to the inter-

nal product,
7 (e—y)Bo+2B2=0, (e—3y)P1+6P3=0, (11)
(W, @)= o da¥(a,1)"®(a1), (5)  and the general recurrence relation for the polynomial coeffi-
cientsp,

if the wave functions are restricted to the set of those satisfying
either¥(0,1) =0o0r ¥ (0,1) = 0, where the primemeans the

partial derivative with respect t@ (N+4)(N+3)Bn+a + [—V(2n+5)|Bns2

The Wheeler-DeWitt equation (4) is the Sétinger equa- +[y2 —a—c(2n+3)|By = 0 (12)
tion for the quartic anharmonic oscillator and may be solved
by writing W(a, 1) as for n > 0. The degree of the polynomia(a) is fixed to be,

sayK, by imposing the following conditions in (12),
W(a,1)=e " M(a) (6)

wheren (a) depends solely oa Thenn(a) satisfies the eigen- P70, P2 = Brra = 0. (13)
value equation Due to the nature of the recurrence relation (12), it is clear that
by fixing K to be even (odd) the resulting polynomigla)
will be even (odd). Then, the coefficierg, n = 2,4,...,K

2
_d n(a) +Ve(@)n(a) = 12En(a), (7 (n=3,5,...,K), will be determined in terms ¥ (1) by the

de? normalization condition. In the present situation, we restrict

where the effective potentigk(a) is given by our attention to the case of an odd polynomial. It means that,

K=2m-+1form=0,1,2,.... This condition is imposed in
Ve(a) = 36a2 — 127a*. (8)  order that our wave-function vanishesaat 0.
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Egs. (12) and (13) require that the coeffici@rtmust van-
ish; then

After that, we substitute the energies in the set of Egs. (12)
and compute the coefficiens. With thesef3,,, we write the

followin a, 1), according to Eq. (10),
V> = a + (2K +3). (14) gn@o gto Ea. (10)

Combining this with2cy = b, we obtain a cubic algebraic
equation in the parametey ni(a) =Nvi(a) x

o 0.02251724016740399074-3.3307811899866029985
(15) :

(20)

4c3(2K 4-3) + 4ac? — b? = 0.

The solutions of this equation depend on the known parame-
tersb andK. We must find the real, positive root to this equa-
tion so that theAnsatzEq. (10) be normalizable. That real
positive root, as proved in Ref. [15], is a monotonically de-
creasing function oK. Therefore, the greater the polynomial
degree, the better the agreement between the energy eigenval-
ues obtained by this method and the actual energy eigenvalues.
Now, by setting the conditiofx_» = 0 in Eq. (12) we The coefficientsN, are normalization coefficients arid=
may determine the corresponditipm+ 1) energy eigenval- 0,1,....m. The complete list of values for th’s and the
uese and polynomial coefficient®,. With those coefficients A 2i11's as well as the study of the cases whére 0 and
Bn, we obtain the appropriate polynomiai(a); the index k= —1are given in reference [18].
I =1,2,...,m+1represents the energy level, for each of which  Next, we construct the wave-pack®ta, 1) with the aid of
we shall have an eigenfunctian (a) and a wave-function then;(a), according to Egs. (16), (20) and the energy levels
WY (a, 1) = exp—iE )N (a), according to Egs. (6) and (10). in Table I. Finally, using the wave-pack®ta, 1) we compute
We construct a general solution to the Wheeler-DeWittthe expected value for the scale facéiEq. (17). The result
equation (4) by taking linear combinations of #g(a, 1)’s, is shown in Fig. 1; it can be seen th@) does not vanish,
therefore we may say that the quantization of this model re-
(16) moved the singularities it had at the classical level. It is clear
from Fig. 1, also, thata) performs bounded oscillations. That
means that the spatial sectioB%s oscillate between finite
maximum and minimum radius.

where

22 ,
vi(a) = 'ZjAl,ZiJrl a? 1. (21)

e et —iET
CRIES I; A(E)ni(a)e ™",

as a matter of simplicity we shall set the coefficietéE) to
one, in what follows.

With those combinations we compute the expected value Level k=1

for the scale factoa, following the many worlds interpreta- E._|15103016760578712444
tion of quantum mechanics [16]. In the present situation, we S atE
I quantu ics [16]. p L situation, w E; |5.6230931685080087038
may write the expected value for the scale fact® Es |7.7256531719671366439
Es |9.8577817762723638293

R Es |12.018664367453930157

o 2 E; |14.207548216681935132

(@) (1) = wa\@(a,t)| da. 17) Es |16.423735430300010131

0 |©(a,1)|2da Ey; |1866657/4187417793427

Eip [20.935469528987599984

In order to obtain the results, we shall use the value of e

. 12 . =

N = —_0.1, therefore one has=1.2in Eq. (9). Also, we E,, | 27.892697492531834013
shall fix the polynomial degree to b€ = 45. It means that, Ei4 |30.260978882469751228
; . Eis |32.651319599290796010
we shall have23 energy levels and 23 e|genfunct|onrs(a). Eo135.065840708164574204
Using the values oK andb, we solved Eq. (15) to find Ei; |37.502643477205645295
¢ = 0.09006896066961596297Mow, we obtain the energy Els igiiggﬂ%%g;ggggij
levels; they are listed in Table I. The first few lowest energy E,. [44946892054208187340
levels are in agreement with the ones computed, perturba- E1 |47.470929938318337116
i i i i /- Ez,; | 50.01608754545613080
tively, by Landau for the quartic anharmonic potential, equiv e S SR TASITEO0T07 T

alent to the present case [17]. For the present case, we may
also compare the original potential Eq. (8) with the auxiliary
potential,

U(a) = 36a%+1.2a* +0.008112417676°. (18)

Then, we obtain a relative erremf less tharl% in the inter-
vala € [0,2.728021504 Wheree is given by,

_|[V@-u@
E_‘V(a> '
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FIG. 1: Behavior of the expectation value of the scalar factor.

[1] B. S. DeWitt, Phys. Rev. 160, 1113 (1967). [10] F. G. Alvarenga, J. C. Fabris, N. A. Lemos, G. A. Monerat, Gen.
[2] J. B. Hartle and S. W. Hawking, Phys. R®28, 2960 (1983). Rel. Grav.34, 651 (2002).
[3] G. Oliveira-Neto, Phys. Rev. B8, 10750 (1998); [11] S. Carlip, Phys. Rev. Letf94071 (1997).

[4] Y. Fujiwara et al., Class. Quantum Grak.163 (1992); Phys. [12] M. Anderson, S. Carlip, J.G. Ratcliffe, S. Surya and S.T.
Rev. D 44, 1756 (1991); J. Louko and P. J. Ruback, Class. Tschantz, Class. Quant. Gr&d 729, (2004).
Quantum Gravg, 91 (1991); J. J. Halliwell and J. Louko, Phys. [13] Schutz, B. F., Phys. Rev. B} 2762, (1970); Schutz, B. F., Phys.
Rev. D £, 3997 (1990); Rev. D4, 3359, (1971).

[5] Mariam Bouhmadi-Lopez and Paulo Vargas Moniz, Phys. Rev[14] P. A. M. Dirac, Can. J. Math2, 129 (1950); Proc. Roy. Soc.
D 71, 063521 (2005); I. G. Moss and W. A. Wright, Phys. Rev. London A bf 249, 326 and 333 (1958); Phys. R&t4, 924
D 29, 1067 (1984); M. J. Gotay and J. Demaret, Phys. Rev. D (1959).

28, 2402 (1983); [15] S. C. Chhajlany and V. N. Malnev, Phys. Rev. A, vol 42, No. 5,
[6] O. Bertolami and J. M. Mouo, Class. Quantum Gra®, 1271 3111 p., (1990); S. C. Chhajlany, D. A. Letov and V. N. Malnev,

(1991). J. Phys. A: Math. Gerg4, 2731 (1991).
[7] M. Cavaglia, V. Alfaro and A. T. Filippov, Int. J. Mod. Phys. A [16] H. Everett, Ill, Rev. Mod. Phy9, 454 (1957).

10, 611 (1995). [17] E. M. Lifshitz, L. D. Landau,Quantum Mechanics: Non-
[8] N. A. Lemos, J. Math. Phy87, 1449 (1996); Relativistic Theory, Volume 3, Third Edition (Quantum Me-
[9] N. A. Lemos, G. A. Monerat, Gen. Rel. Graib, 423 (2003); chanics) (Butterworth-Heinemann, Oxford, 2003).

J. Acacio de Barros and N. Pinto-Neto, Int. J. Mod. Phys. D[18] G. A. Monerat, E. V. Coi&a Silva, G. Oliveira-Neto, L. G. Fer-
7, 201 (1998); J. Acacio de Barros, N. Pinto-Neto and M. A. reira Filho and N. A. Lemos, gr-qc/0508086.
Sagioro-Leal, Phys. Lett. 241, 229 (1998).



