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Notes on the Quantization of FRW Model in the Presence of a Cosmological
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In the present work, we use the formalism of quantum general relativity in order to quantize a Friedmann-
Robertson-Walker model in the presence of a negative cosmological constant and radiation. The model has
spatial sections with positive constant curvature. The wave-function of the model satisfies a Wheeler-DeWitt
equation, for the scale factor, which has the form of the Schrödinger’s equation for the quartic anharmonic
oscillator. We find the eigenvalues and eigenfunctions by using a method first developed by Chhajlany and Mal-
nev. After that, we use the eigenfunctions in order to construct wave-packets for evaluating the time-dependent,
expected value of the scale factor. We find that, the expected value of the scale factor oscillates between maxi-
mum and minimum values. Since the scale factor never vanishes, we conclude that the model does not have a
singularity.

One of the motivations for the quantization of cosmolog-
ical models was that of avoiding the initialBig Bangsingu-
larity. Since the pioneering work in quantum cosmology due
to DeWitt [1], workers in this field have been attempting to
prove that quantum cosmological models entail only regular
space-times. An important contribution to this issue was given
by Hartle and Hawking [2], who proposed theno-boundary
boundary condition, which selects only regular space-times
to contribute to the wave-function of the Universe, derived
in the path integral formalism. Therefore, by construction,
the no-boundarywave-functions are everywhere regular and
predict a non-singular initial state for the Universe. Using
that boundary condition, in certain particular cases theno-
boundarywave-function can be explicitly computed [2–4].
Another way by which one may compute the wave-function of
the Universe is by directly solving the Wheeler-DeWitt equa-
tion [1]. The wave-function of the Universe for some impor-
tant models have been computed using this approach [5–10].

Several important theoretical results and predictions in
quantum cosmology have been obtained with a negative cos-
mological constant [11], [12] and [3]. Besides that, we think it
is important to understand more about such models which rep-
resent bound Universes (analogous to uni-dimensional atoms,
in the present situation).

In the present paper, we use the formalism of quantum cos-
mology in order to quantize a Friedmann-Robertson-Walker
model in the presence of a negative cosmological constant
and radiation. The radiation is treated by means of the vari-

ational formalism developed by Schutz [13]. The model has
spatial sections with positive constant curvature. The wave-
function of the model satisfies a Wheeler-DeWitt equation,
for the scale factor, which has the form of the Schrödinger’s
equation for the quartic anharmonic oscillator. We find the
eigenvalues and eigenfunctions by using a method first devel-
oped by Chhajlany and Malnev. After that, we use the eigen-
functions in order to construct wave-packets for evaluating the
time-dependent, expected value of the scale factor. We find
that the expectation value of the scale factor shows bounded
oscillations and since it never vanishes, we conclude that the
model does not have a singularity.

Friedmann-Robertson-Walker cosmological models are
characterized by the scale factora(t) and have the following
line element,

ds2 =−N(t)2dt2 +a(t)2
(

dr2

1−kr2 + r2dΩ2
)

, (1)

wheredΩ2 is the line element of the two-dimensional sphere
with unitary radius,N(t) is the lapse function andk = 1. It
means that the constant curvature of the spatial sections is
positive. The spatial sections may be thought asS3’s. We
are using the natural unit system, where~ = c = G = 1. The
matter content of the model is represented by a perfect fluid
with four-velocityUµ = δµ

0 in the comoving coordinate sys-
tem used, plus a negative cosmological constant. The total
energy-momentum tensor is given by,
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Tµ,ν = (ρ+ p)UµUν− pgµ,ν−Λgµ,ν , (2)

whereρ andp are the energy density and pressure of the fluid,
respectively. Here, we assume thatp = ρ/3, which is the
equation of state for radiation. This choice may be consid-
ered as a first approximation to treat the initial content of the
Universe and it was made as a matter of simplicity. It is clear
that a more complete treatment should describe the radiation,
present in the primordial Universe, in terms of the electro-
magnetic field. Einstein’s equations for the metric (1) and the
energy momentum tensor (2) are equivalent to the Hamilton
equations generated by the super-hamiltonian constraint

H =− p2
a

12
−3a2 +Λa4 + pT , (3)

wherepa and pT are the momenta canonically conjugated to
a andT the latter being the canonical variable associated to
the fluid [10].

In the case of the model studied here, the scale factor per-
forms bounded oscillations. When the scale factor vanishes
we have the formation of a singularity which may be either a
Big Bangor aBig Crunch.

Using the Dirac formalism for quantizing constrained sys-
tems [14], we obtain fromH Eq. (3) the following Wheeler-
DeWitt equation,

(
1
12

∂2

∂a2 −3a2 +Λa4
)

Ψ(a,τ) =−i
∂
∂τ

Ψ(a,τ), (4)

whereΨ(a,τ) is the wave-function of the model and the new
variableτ =−T has been introduced.

The operatorĤ is self-adjoint [8] with respect to the inter-
nal product,

(Ψ,Φ) =
Z ∞

0
daΨ(a,τ)∗Φ(a,τ) , (5)

if the wave functions are restricted to the set of those satisfying
eitherΨ(0,τ) = 0 or Ψ′(0,τ) = 0, where the prime′means the
partial derivative with respect toa.

The Wheeler-DeWitt equation (4) is the Schrödinger equa-
tion for the quartic anharmonic oscillator and may be solved
by writing Ψ(a,τ) as

Ψ(a,τ) = e−iEτη(a) (6)

whereη(a) depends solely ona. Thenη(a) satisfies the eigen-
value equation

−d2η(a)
da2 +Ve(a)η(a) = 12Eη(a) , (7)

where the effective potentialVe(a) is given by

Ve(a) = 36a2−12Λa4 . (8)

The method of Chhajlany and Malnev [15] starts with the
addition of an extra term to the original anharmonic oscillator
potential, so that the modified Hamiltonian admits a subset of
manifestly normalizable solutions. In the case we are consid-
ering, the extra term to be added to the effective potential (8)
is proportional toa6. In terms of that new enlarged potential,
the eigenvalue equation (7) may be re-written as

η′′(a) + (ε−αa2−ba4−ca6)η(a) = 0 (9)

whereε = 12E, α = 36, b = −12Λ, c is a parameter to be
determined by the method. TheAnsatzfor the solution of Eq.
(9) takes the form

η(a) = N exp
(
−c

4
a4− γ

2
a2

)
v(a) , (10)

and has finite norm forc > 0. Here,v(a) is a polynomial of
a certain degree, yet to be chosen; the parameterγ is to be
chosen according to our convenience, as we shall see;N is a
normalization factor. The method is based on the fact, shown
in Ref. [15], that the larger the degree of the polynomialv(a),
the smallerc is. Therefore, if one increases the order ofv(a),
the energy eigenvalues predicted by the present method tend
monotonically, from above, to the energy eigenvalues of the
original problem. One important property of the method is
that the convergence is very fast. This means that one does
not need to use a polynomial of very large order to obtain a
good agreement with the energies of anharmonic oscillators
already computed in the literature by other methods.

The next step is the substitution of theAnsatz(10) into the
differential equation (9), which gives rise to an equation for
the polynomialv(a). Then, writingv(a) = ∑n βnan and insert-
ing it in that equation for the polynomialv(a), along with the
condition2cγ = b [15], we manage to find:

(ε− γ)β0 +2β2 = 0, (ε−3γ)β1 +6β3 = 0, (11)

and the general recurrence relation for the polynomial coeffi-
cientsβn,

(n+4)(n+3)βn+4 + [ε− γ(2n+5)]βn+2

+[γ2−α−c(2n+3)]βn = 0 (12)

for n≥ 0. The degree of the polynomialv(a) is fixed to be,
sayK, by imposing the following conditions in (12),

βK 6= 0, βK+2 = βK+4 = 0. (13)

Due to the nature of the recurrence relation (12), it is clear that
by fixing K to be even (odd) the resulting polynomialv(a)
will be even (odd). Then, the coefficientsβn, n = 2,4, ...,K
(n = 3,5, ...,K), will be determined in terms ofβ0 (β1) by the
normalization condition. In the present situation, we restrict
our attention to the case of an odd polynomial. It means that,
K = 2m+ 1 for m= 0,1,2, .... This condition is imposed in
order that our wave-function vanishes ata = 0.
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Eqs. (12) and (13) require that the coefficientβK must van-
ish; then

γ2 = α + c(2K +3) . (14)

Combining this with2cγ = b, we obtain a cubic algebraic
equation in the parameterc,

4c3(2K +3) + 4αc2 − b2 = 0. (15)

The solutions of this equation depend on the known parame-
tersb andK. We must find the real, positive root to this equa-
tion so that theAnsatzEq. (10) be normalizable. That real
positive root, as proved in Ref. [15], is a monotonically de-
creasing function ofK. Therefore, the greater the polynomial
degree, the better the agreement between the energy eigenval-
ues obtained by this method and the actual energy eigenvalues.

Now, by setting the conditionβK+2 = 0 in Eq. (12) we
may determine the corresponding(m+ 1) energy eigenval-
uesε and polynomial coefficientsβn. With those coefficients
βn, we obtain the appropriate polynomialvl (a); the index
l = 1,2, ...,m+1 represents the energy level, for each of which
we shall have an eigenfunctionηl (a) and a wave-function
Ψl (a,τ) = exp(−iEl τ)ηl (a), according to Eqs. (6) and (10).

We construct a general solution to the Wheeler-DeWitt
equation (4) by taking linear combinations of theΨl (a,τ)’s,

Θ(a,τ) =
m+1

∑
l=1

Al (E)ηl (a)e−iEl τ, (16)

as a matter of simplicity we shall set the coefficientsAl (E) to
one, in what follows.

With those combinations we compute the expected value
for the scale factora, following themany worlds interpreta-
tion of quantum mechanics [16]. In the present situation, we
may write the expected value for the scale factora is

〈a〉(τ) =
R ∞

0 a|Θ(a,τ)|2daR ∞
0 |Θ(a,τ)|2da

. (17)

In order to obtain the results, we shall use the value of
Λ = −0.1, therefore one hasb = 1.2 in Eq. (9). Also, we
shall fix the polynomial degree to beK = 45. It means that,
we shall have23 energy levels and 23 eigenfunctionsηl (a).
Using the values ofK and b, we solved Eq. (15) to find
c = 0.090068960669615962974. Now, we obtain the energy
levels; they are listed in Table I. The first few lowest energy
levels are in agreement with the ones computed, perturba-
tively, by Landau for the quartic anharmonic potential, equiv-
alent to the present case [17]. For the present case, we may
also compare the original potential Eq. (8) with the auxiliary
potential,

U(a) = 36a2 +1.2 a4 +0.008112417676a6 . (18)

Then, we obtain a relative errorε of less than1% in the inter-
val a∈ [0,2.728021504]. Whereε is given by,

ε =
∣∣∣∣
V(a)−U(a)

V(a)

∣∣∣∣ . (19)

After that, we substitute the energies in the set of Eqs. (12)
and compute the coefficientsβn. With theseβn, we write the
following η(a,τ), according to Eq. (10),

ηl (a) = Nl vl (a)×
e−0.022517240167403990744a4−3.3307811899866029985a2

,

(20)

where

vl (a) =
22

∑
i=0

Al ,2i+1 a2i+1. (21)

The coefficientsNl are normalization coefficients andi =
0,1, ...,m. The complete list of values for theNl ’s and the
Al ,2i+1’s as well as the study of the cases wherek = 0 and
k =−1 are given in reference [18].

Next, we construct the wave-packetΘ(a,τ) with the aid of
the ηl (a), according to Eqs. (16), (20) and the energy levels
in Table I. Finally, using the wave-packetΘ(a,τ) we compute
the expected value for the scale factora, Eq. (17). The result
is shown in Fig. 1; it can be seen that〈a〉 does not vanish,
therefore we may say that the quantization of this model re-
moved the singularities it had at the classical level. It is clear
from Fig. 1, also, that〈a〉 performs bounded oscillations. That
means that the spatial sectionsS3’s oscillate between finite
maximum and minimum radius.

Level k = 1
E1 1.5103016760578712464
E2 3.5509871014722954423
E3 5.6230931685080087038
E4 7.7256531719671366439
E5 9.8577817762723638293
E6 12.018664367453930157
E7 14.207548216681935132
E8 16.423735430300010131
E9 18.666574187417793427
E10 20.935469528987599984
E11 23.229800589269486517
E12 25.549220854858484858
E13 27.892697492531834013
E14 30.260978882469751228
E15 32.651319599290796010
E16 35.066840708164574204
E17 37.502643477205645295
E18 39.963027226267456788
E19 42.443644402959303694
E20 44.946892054208187300
E21 47.470929938318337116
E22 50.01608754545613080
E23 52.581852999800707709

TABLE I: The lowest calculated energy levels.
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FIG. 1: Behavior of the expectation value of the scalar factor.
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