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Study of Co2+ in Different Crystal Field Environments
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We consider the ESR ofCo2+ in different environments: in an regular octahedron (Co2+ in a MgO crystal),
in a deformed octahedron (Co2+ in single crystals and powder samples of NH4NiPO4.6H2O) or in a trigonal
bipyramid (Co2+ in powders of Co2(OH)PO4 and Co2(OH)AsO4). We study the effect of the non-cubic crystal
fields in the ESR ofCo2+ in the deformed octahedron, by employing the normal modes of this structure to
simplify the systematic study of the effect of these fields. A similar study was done for the deformed trigonal
bipiramid, and it was necessary to derive the normal modes of this complex that are relevant to our problem.
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I. INTRODUCTION

In the study of solid state systems, it is sometimes interest-
ing to focus on the local states of the ions placed at the differ-
ent sites of the crystal, either because they can be considered
as the building blocks of the system, like in the tight binding
method, or else because one is interested in the properties of
a particular ion immersed in the solid, like in the study of the
Electron Spin Resonance (ESR), or of the Raman scattering
of impurities. We shall consider in particular the case of a
ion Co2+ in different environments: in an regular octahedron
(Co2+ in a MgO crystal[1]), in a deformed octahedron (Co2+

in single crystal and powder samples of NH4NiPO4.6H2O[2])
or in a trigonal bipyramid (Co2+ in powders of Co2(OH)PO4
and Co2(OH)AsO4[3]).

The Co2+ in octahedral symmetry would be naively ex-
pected to suffer a static Jahn-Teller deformation, because the
ground term4F has a rather large orbital degeneracy, but in-
stead it retains its cubic symmetry [1]. We shall briefly dis-
cuss the origin of this effect, and point out how the Jahn-Teller
crystal fields affect the properties of the system. In a different
symmetry, we shall use the normal modes of the octahedron
formed by the nearest neighbors ofCo2+ in NH4NiPO4.6H2O
to study how the crystal fields affect the ESR of a single crys-
tal of this compound. TheCo2+ in a trigonal bipyramid sur-
roundings appear in Co2(OH)PO4 and Co2(OH)AsO4, and we
have developed a study of the effect of crystal fields on its ESR
that is similar to the one we employed for the deformation of
the octahedron in NH4NiPO4.6H2O.

II. THE Co2+ IN A PERFECT OCTAHEDRAL SYMMETRY

In this section we shall consider aCo2+ ion in a perfect
octahedral symmetry, as found when it is a substitutional im-
purity in crystallineMgO. This crystal has the NaCl struc-
ture, and theCo impurity is coordinated by sixO ions in a
regular octahedra. From any displacement of the sixO with
respect to the vertices of this regular octahedron we can find
[4, 5] the corresponding normal coordinatesQ j of the seven
ion complex, formed by theCo and the six nearestO, that are
invariant against inversion. These are separated in the three

4
F

T
1g

T
2g

A
2g

Γ
8

Γ
8

Γ
7

Γ
6

FIG. 1: Energy levels of the ground4F term of aCo2+ split by a
cubic field and by the spin orbit interaction. The levels are labelled
by their symmetry properties.

sets{Q1},{Q2,Q3} and{Q4,Q5,Q6}, and the corresponding
Q j transform respectively like the basis of the irreducible rep-
resentationsA1, E andT2 of the cubic group, as given in Table
II of reference 6.

The4F ground state of isolatedCo2+ (3d7) in a purely oc-
tahedral crystal field splits into two orbital triplets4T1,4T2 and
one orbital singlet4A2, and from Jahn-Teller’s theorem [7, 8]
one would expect that the normal coordinatesQ j would take
non-zero values to minimize the octahedron energy. This de-
formation does not occur, because the spin-orbit interaction
stabilizes the average octahedral symmetry, by partially lift-
ing the degeneracy of the4T1 triplet into oneΓ6, two Γ8 and
oneΓ7 subspaces, as shown in figure 1.

We are mainly interested in the ESR ofCo2+, and the reso-
nance for the lowest doublet (Γ6) is isotropic with g=4.33 (cf.
Sec. 7.14, p.447 in reference [9]). The addition of lower sym-
metry crystal fields produce further splittings of the4T1 triplet,
giving six Kramer’s doublets, and in most cases it is found that
the trace of the g tensor is close to the cubic isotropic value
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[10].
In the lowest order one obtains g from the matrix elements

of the Zeeman term in theΓ6 subspace of the4T1 ground
triplet. The matrix elements of the orbital angular momentum
L within a T1 subspace are proportional to those of aP term,
but one should note that the excited term4P is also of the4T1
symmetry, and is mixed by the cubic field with the4T1 of the
ground4F term. If we indicate two states of4F and4P with
φi and φ′i respectively, such that they transform in the same
way under the cubic group, the states of the ground4T1 will
be of the formaφi + bφ′i . The values of the constantsa and
b can be obtained [1, 11] from the Racah parameterB and the
crystal field parameterDq, that take the values815cm−1 and
905 cm−1 respectively forCo : MgO. With these values one
obtainsa = 0.9811andb =−0.1933, and the proportionality
constant of the angular momentum is

α =−1.5 a2 +b2 =−1.4063 . (1)

Two further effects should be considered in the calculation
of the isotropic g tensor. One is the second order contribution
of the4T2 states, that are separated by∆′ from the ground4T1
states, and the other is the covalency between theCo and the
neighboringO, described by several factors [1, 10], that re-
duce the matrix elements of the orbital angular momentum
and of the spin orbit interaction. Using a singlek0 for all these
factors one obtains the expression for the g factor in a cubic
field:

g =
5
3

ge− 2
3

α k0 +2

(√
15
2

a+b

)2

(k0)2 |λ|
∆′

(2)

whereλ =−180cm−1 is theCo2+ spin-orbit interaction.
The expression given in reference [2] for∆′ is not correct,

and should be calculated as the difference between the level
E(4T2) and the ground levelE(4T1). The groundE(4T1) level
is the lowest eigenvalue of the matrix

∣∣∣∣
−15B−6Dq 4Dq

4Dq 0

∣∣∣∣ (3)

and the coefficients of the corresponding eigenvector give the
a andb employed above to calculate the coefficientα of the
angular momentum.

The level4T2 is given by

E(4T2) =−15B+2Dq, (4)

and in the present case, the choice ofDq = 905 cm−1 and
B = 815cm−1 givesE(4T2)−E(4T1) = ∆′ = 7953cm−1. To
adjust Eq. 2 to the experimental value it is then necessary
to usek0 = 0.86. In summary, the values forCo : MgO are
a= 0.9811, b=−0.1933, α =−1.4063, ∆′ = 7953cm−1 and
k0 = 0.86. This last value seems too small, and one has to
consider the dynamic Jahn-Teller effect [12, 13] to obtain a
more reasonable value closer to1.

To simplify the study we present a model that describes all
the crystal fields acting on theCoas originating in the crystal
field of the six nearestO located at the vertices of a deformed

octahedron, obtained by displacement of the vertices of the
regular octahedron introduced at the beginning of this sec-
tion. If one neglects the mixing of other configurations into
the ground configuration(3d)7, it is sufficient to keep only
the part of the crystal fieldV that is even against inversion.
We could then writeV = ∑7

i=1V(r i) , whereV(r) would be
the sum of products of only two or four components of the
electronic coordinatesr . Within our model, one could then
write [4]

V(r) = ∑
j

Q j Vj(r) (5)

where theQ j andVj(r) transform like the same partners of
irreducible representations of the octahedral group [6]. As
theVj(r) must be even against inversion, theQ j must have the
same property, an only the sixQ j with j = 1,6 discussed at
the beginning of this section would appear in Eq. (5). In the
following we shall not consider the identical representationA1
because it does not modify the g tensor. The usefulVj(r) are
then:

V2(r) = A
(
x2−y2)+B

(
x4−y4)

√
3V3(r) = A

(
3 z2− r2)+B

(
2 z4−x4−y4) (6)

and

V4(r) = C z y+E
(
z3 y−y3 z

)

V5(r) = C x z+E
(
x3 z−z3 x

)

V6(r) = C x y+E
(
x3 y−y3 x

)
. (7)

For a point charge model [4], the constants are given by

A =
1
4

e ee f f

(
18R−4−75R−6r2

)
, B = 175e ee f f/8 R6

C = e ee f f

(
−6 R−4 +15R−6r2

)
, E =−35e ee f f/2 R6

(8)

whereee f f is an effective charge associated to theO.
The total Hamiltonian of theCo : MgOsystem can be writ-

ten as

HS = H0 +HJT = HS0 +Hv +HJT (9)

whereHv describes the vibrational states ofMgO and HJT
the Jahn-Teller (JT) interaction, that we shall describe with
Eq. (5). The eigenfunctions of the zeroth-order Hamiltonian
H0 are products of the electronic functionsΓ6, Γ7, Γ8, and
Γ′8, times the vibrational functions ofHv. The normal coor-
dinates of the seven ion complex in Eq. (5) are expressed
in terms of the normal modes of theMgO or phonon vari-
ables [1], and this JT interaction mixes all these eigenstates
of H0: these linear combinations are the vibronic states of
HS which describe the states of the coupled system. The ma-
trix elements related to the system properties are affected both
by the structure of the vibronic states and by covalency, and
the strength of the JT interaction can be related to measure-
ments of the effect of applied stresses [11] on single crys-
tals ofMgO with Co2+ impurities. If one neglects the effect
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FIG. 2: Three Co+2 ESR spectra selected for directions of the mag-
netic field that show their properties as described in the text.

of covalency one obtains for the interaction constantsVj in
Eq. (5) the valuesVE ≡V2 = V3 = 2.04 10−11 cm−1/cmand
VT ≡ V4 = V5 = V6 = 0.34 10−11 cm−1/cm. Without enter-
ing into the details of the calculation [1] we can say that the
experimental g factorg = 4.278[14] is explained by a JT co-
efficientVE = 2.40 10−11 cm−1/cm within the experimental
error of 20% and a covalency factork0 = 0.96, much closer
to one than thek0 = 0.86 derived in the absence of JT in-
teraction. Employing an approximate phonon distribution [1],
closer to the experimental one [15] than the single frequencies
employed before [12, 13] to treat the JT interaction, it was also
possible to describe the experimentally observed [16] Raman
spectra ofCo : MgOas the electronic Raman spectra ofCo2+.

We conclude that the JT effect is essential to understand the
Co2+ ion in a perfect octahedral symmetry.

III. THE Co2+ IN A DEFORMED OCTAHEDRAL
SYMMETRY

Figure 2 shows the ESR spectra of the single crystal sam-
ple measured at 4.2 K, for three selected directions of the
magnetic field. The local symmetry of the nickel (II) ions
is near cubic, and the Electron Spin Resonance (ESR) of im-
purity ions substituting Ni in the lattice is a powerful tech-
nique to analyze the environment of this ion. The ESR exper-
iments make evident the difference between the two magnet-
ically non-equivalent Ni sites that are present in the structure
of NH4NiPO4.6H2O.
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FIG. 3: Angular variation of spectra of Co+2 in NH4NiPO4.6H2O,
in the three experimental planes. The principal directions in these
planes are indicated in the figure. The solid lines are the best fit to
the Eq. [10], and the fitting parameters are given in Table [I].

The spectra consist of two octets of resonance lines; those
octets are due to the allowed transitions for∆Sz =±1, ∆Iz = 0
corresponding to the hyperfine interaction between the effec-
tive spin~S= 1/2 of the cobalt and the real nuclear spin (I =
7/2) of 59Co (100% abundant).

Figure 3 shows the angular variation of the resonance field
of the ESR lines in the (100), (010) and (001) planes. Both the
angular variation and its symmetry clearly show two magnet-
ically nonequivalent sites related by a C2 operation about the
c crystal axis, which is the point operation that relates the two
centers. The actual spectra show eight well resolved hyperfine
lines along some directions for each site; but the reduction of
the hyperfine interaction causes the collapse of them in other
directions (see Figure 2). The point group symmetry for the
Ni2+ ion (and the Co2+ substituting them) is Cs, and the ap-
propriate spin-Hamiltonian for~S= 1/2 and~I = 7/2 is therefore
[9]:

Ĥ = µBH ·g1 ·S1 + µBH ·g2·S2 +S1·A1·I1 +S2·A2·I2, (10)

whereg1andg2 are the gyromagnetic tensors andA1 andA2
the hyperfine tensors for each site.H is the applied magnetic
field, andµB is the Bohr magneton.

As a first approximation, the ESR data were used to cal-
culate theg andA tensors by Schonland’s method [17], and
the obtained parameters were used as preliminary informa-
tion for the subsequent calculation.The resonant field for each
transition was obtained exactly, within the machine error, by
diagonalizing numerically the 16×16 matrix corresponding to
each of the sites in Eq. (10), and obtaining the field self con-
sistently. These fields were the input to a least squares fitting
program, treating theg′s andA′s values as adjusting parame-
ters. All the experimental data of the three planes were fed
in the program, and the solid lines in Figure 3 are the best
fitting of the data using Eq. (10), and Table I gives the spin-
Hamiltonian parameters obtained by this procedure.

In this compound theCo2+ ions are coordinated by sixO
in fairly regular octahedra [18]. Assuming that the position of
the six oxygen nearest to theCo2+ are the same as those of
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cos(θ1) cos(θ2) cos(θ3)
g1 4.9091 -0.26072 -0.55762 0.78809
g2 5.1389 0.96461 -0.11704 0.23630
g3 2.6680 -0.03953 0.82180 0.56840

x 10−4 cm−1 cos(θ1) cos(θ2) cos(θ3)

A1 160.17 -0.20229 -0.58951 0.78202
A2 178.76 0.97741 -0.07163 0.19884
A3 44.37 -0.06120 0.80458 0.59068

TABLE I: Spin-Hamiltonian parameters for Co2+ in
NH4NiPO4.6H2O at 4.2 K. The direction cosines are referred
to the orthorhombic axesa,b,cof the crystal

Axes a b c

j=x 0.7328 - 0.3099 - 0.6058
j=y -0.00048 0.8900 - 0.4559
j=z 0.6804 0.3344 0.6521

TABLE II: The cosines between the orthorhombic axesa,b,cof the
crystal and the new axes j=x,y,z fixed to the octahedron, as discussed
in the text.

the Nickel compound [18], and taking the average of their po-
sitions as the center of the octahedron, we choose two of the
O and use them to determine an orthogonal system of axis. In
the new system thex axis goes through the position of one of
those twoO, and thez axis is perpendicular to the plane de-
termined by the twoO and the center of the octahedron. The
direction cosines of these axes with respect to the orthorhom-
bic axis of the crystal are given in Table II. The average dis-
tance of the sixO with respect to the origin of the new axes is
R= 2.0531Ā, and we can define a regular octahedron with the
six vertices placed along the axes at a distance±R from the
origin.

To analyze further the experimental g tensor, one could
try and find crystal field values that would reproduce the
measured results, and a study of this type was presented by
Abragam and Pryce for the Cobalt Tutton salts [19]. To sim-
plify the study we present a model that describes all the crystal
fields acting on theCoas originating in the crystal field of the
six nearestO located at the vertices of a deformed octahedron,
obtained by displacement of the vertices of the regular octahe-
dron introduced at the beginning of this section. To organize
the study, we employ Eq. (5) to express the crystal field as a
function of the normal coordinatesQ j of the octahedron.

We shall use second order perturbation theory, using both
V(r) and the Zeeman termHZ = (ge S+L).H as perturbation.
The change in the g tensor is then obtained from

S.δg.H =
2
3

(ge+α)
µB

∆
−CE

[√
3Q2 (SxHx−SyHy)+

Q3 (3SzHz−S•H)]+CT [Q4 (SzHy +SyHz)+
Q5 (SxHz+SzHx)+Q6 (SxHy +SyHx)] , (11)

whereµB is the Bohr magneton and∆ is the splitting between
theΓ6 doublet and the lowestΓ8 quadruplet in the octahedral

symmetry, given by[20]

∆ = 1.5
(−1.5 a2 +b2)k0 λ− 33

20

(√
15
2

a+b

)2

k2
0

λ2

∆′
.

(12)
The constantsCE andCT can be obtained by calculating a
single matrix element in each case:

CE =−1
2

〈
T1z

∣∣∣∣∣∑j
V3(r j)

∣∣∣∣∣T1z

〉
(13)

and

CT =

〈
T1x

∣∣∣∣∣∑j
V3(r j)

∣∣∣∣∣T1y

〉
, (14)

where the{|T1x〉 , |T1y〉 , |T1z〉} are a basis of the ground4T1
that transforms like the coordinates{x,y,z} under the octahe-
dral group.

The expression in Eq. (11) corresponds to deformations
from a cubic environment, and one should then compare this
formula with the experimental g tensor in the axis of the regu-
lar octahedron defined in Table II, which is given in Table IV,
but it is first necessary to determineCE andCT . One obtains
with Eqs. (5-8)

CE =
e ee f f

R
2

(
1.4846−1.7815a2 +1.7815a b

−0.4454b2) < r2 >

R
2 +

(−0.1718+0.6873a2−
(
0.6873 a b+0.1718b2) < r4 >

R
4

}
(15)

and

CT =
e ee f f

R
2

{(
0.0857a2−1.3714 a b+1.2 b2) < r2 >

R
2 +

(−0.7143a2−0.2381 a b
) < r4 >

R
4

}
. (16)

The averages< r2 >= 1.251 and < r4 >= 3.655 (atomic
units) have been calculated with Hartree Fock functions [11],
but we can obtainee f f < r4 > from the cubic field parameter
Dq employing the relation

Dq =−1
6

e ee f f

R

< r4 >

R
4 (17)

valid for the point charge model. To findee f f < r2 > we
shall assume that< r2 > /

√
< r4 > = 0.6544, i.e. equal

to the corresponding ratio obtained from the calculated val-
ues. Taking theB and Dq of the Ni compound and using
for the remaining parameters those discussed in the text, one
finds CE = 6508 cm−1/Å and CT = −3414 cm−1/Å while
for the Co : MgO values one findsCE = 6821 cm−1/Å and
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Q2 Q3 Q4 Q5 Q6

1 −0.03840 0.02497 0.01417 0.06542 −0.01275
2 0.01092 0.00305 0.16028−0.22616−0.14710
3 1.60 845. 2.04 1.77 1.99

TABLE III: The symmetrical normal coordinates of the complex
formed by the Co and the six O with respect to the regular octahe-
dron defined in the text. Row 1 gives the values calculated from the
O positions determined crystallographically. Row 2 gives the values
that would reproduce the experimental g tensor for the point charge
model. Row 3 gives a number proportional to the ratio of the normal
coordinates obtained from the g tensor divided into those obtained
from the A tensor.

Axes g j,x g j,y g j,z

j=x -0.1306 0.6354 0.9769
j=y 0.6354 0.1809 -0.6923
j=z 0.9769 -0.6923 -0.0503

TABLE IV: The components of the experimental g tensor, referred to
the octahedron axes j=x,y,z, after substraction of the isotropic tensor
g=4.2387.

CT = −3932cm−1/Å. The difference is not critical, and we
shall use theNi values in the remaining of the discussion.

It is now possible to compare Eq. (11) with Table IV, and
one immediately obtains values of the normal coordinates that
would reproduce the experimental g tensor when substituted
in that equation. These values are given in the second line of
Table III, and it is clear that they are rather different from the
values calculated from the crystallographic position of theO
in the Ni compound. There are two alternative explanations
for this result: either theO around theCo impurity are in dif-
ferent positions than in theNi compound, or the model is not
adequate. In the absence of experimental evidence to check
the first alternative, we shall discuss possible modification to
the model employed above. Instead of the point charge model
we could use a model with dipoles, all “directed away from the
central ion”[4]. This model gives the same potential of Eqs.
(5-7) but with different expression for the constantsA,B,C,E.
Within each irreducible representationsE andT2, the normal
coordinates necessary to reproduce the g tensor would then be
proportional to those obtained with the point charge model, as
only the values ofCE andCT would change in this model, so
that both the charge and dipole models would give essentially
the same results. A more complicated model, either involving
the change in the direction of the dipoles, or even consider-
ing the extended charges of the ligands, would increase very
much the difficulty of the calculation. We should then remain
with the point charge model, but only as a means to obtain a
fairly simple crystal field that would be sufficient to explain
the experimental g tensor. This crystal field is theV(r) of
Eq. (5) given in the axes of the regular octahedron defined
in Table II with theQ j given in the second row of Table III.
The agreement is perfect because there are as many free nor-
mal coordinates asδg components, but the point charge model
employed should not be taken too seriously.

Although we have not analyzed the hyperfine tensor in de-
tail, we can extract some information from its experimental

Axes A j,x A j,y A j,z

j=x - 970. 3200. 5510.
j=y 3200. 970. - 3390.
j=z 5510. - 3390. 0.

TABLE V: The components of the experimental A tensor (given in
cm−1), referred to the octahedron axes j=x,y,z, after substraction of
the isotropic tensorA = 12780cm−1.

value. As seen from Table I, the principal axes of the two
tensors g and A do not exactly coincide, but are fairly close
together. As with the g tensor, we have expressed theδA ten-
sor in the axes of the regular octahedron discussed above, and
the corresponding values are given in Table V. One can show
[21] that theδA is described by an expression similar to that of
theδg (cf. Eq. (11)) with the component ofI taking the place
of the components ofH, but we have not explicitly calculated
the coefficients equivalent to theCE andCT . Nevertheless,
by the same method employed with the g tensor one can ob-
tain quantitiesQ′

j proportional theQ j , and then calculate the
ratio of theQ j given in the second row of Table III to the cor-
respondingQ′

j obtained from the A tensor. These ratios are
given in the third row of Table III, and those corresponding to
Q j of the same irreducible representation should be equal if
the theory were strictly true. The enormous value of the ratio
corresponding toQ3 is not significant, because the value de-
rived from the A tensor is zero within the experimental error,
and one can therefore not draw any conclusions from the pair
{Q2,Q3}. On the other hand, the three ratios corresponding to
{Q4,Q5,Q6} are fairly close to the same value, and they show
that the crystal fields that result from the present treatment are
fairly consistent with the available experimental results.

In the present calculation we have neglected the effect of
the 4T2 triplet, that contributes toδg in third order perturba-
tion (our calculation would be of the second order).This effect
was calculated by Tucker[11] who obtained contributions that
are about 6% of the second order contribution for theT2 de-
formation and about 13% for theE deformation, and would
therefore not alter substantially our conclusions.

A similar treatment of theCo2+ in sites with deformed
octahedral symmetry of Co2(OH)PO4 or Co2(OH)AsO4 has
been considered in [3], but it is less interesting because only
the powder samples of these compounds have been measured.
The treatment of this problem shall not be further discussed in
the present work.

We conclude that employing the normal modes of the seven
ion complex to adjust the values of the g-factor tensor, it is
possible to estimate the crystal fields of the whole crystal act-
ing on the Co2+ impurity ion.

IV. THE Co2+ IN A DEFORMED TRIGONAL BIPYRAMID

In this section we shall study two members of the adamite
family, which takes its name from the natural compound
[22, 23] Zn2(OH)AsO4. The cations can occupy two sites with
rather different environments in this compound, one being oc-
tahedral and the other penta-coordinated, so that rather dif-
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ferent magnetic properties could be expected when magnetic
cations are employed. The recently synthesized compounds
Zn2(OH)PO4 [24], Co2(OH)PO4 [24], Mg2(OH)AsO4 [25,
26], as well as the natural Co2(OH)AsO4 [27], present these
two type of sites. We have then found interesting to study
the properties of the Co2+ ions as impurities in the two non-
magnetic compounds, as a first step in the understanding of
the properties of the concentrated compounds.

To analyze the ESR measurements it is necessary to have
information about the splitting of the energy levels with both
the crystal field and the electronic Coulomb repulsion, and
we obtained this information from optical diffuse reflectance
measurements [28].

The experimental ESR powder spectra of Co2+ impurities
in both Zn2(OH)PO4 and Mg2(OH)AsO4 present two differ-
ent sets of lines, one very intense, and the other just observ-
able. The average of the g factors of the intense spectra is 4.15
in the two compounds, a value close to the 4.33 expected for
Co2+ in moderately distorted octahedral symmetry [29], and
it seems reasonable to assign these spectra to that environment
and apply the same approach employed in the previous section
in the study of the ESR of Co2+ in NH4NiPO4.6H2O (see also
[2]). The remaining lines are very weak and we assign them to
the penta-coordinated symmetry (the possible reason for their
small intensity has been discussed in [3]).

Here we shall only briefly consider the deformed octahe-
dral symmetry, and give more details of the theory describing
the ESR of Co2+ in the penta-coordinated environment, that
was partially discussed in [3]. This last complex is a distorted
trigonal bipyramid, and we first calculated the crystal fields
of the perfect trigonal bipyramid following the existing liter-
ature [30, 31]. To analyze the distorted complex we derived
the normal modes of the trigonal bipyramid with respect to
the reference complex, and then obtained the Jahn-Teller con-
tributions [7, 8] to the crystal field acting on the Co2+, that is
generated by these modes.

In this calculation we have introduced a procedure that
uniquely defines the orientation and size of the two reference
complexes, so that the normal modes that describe their defor-
mation are free from irrelevant rotations and expansions.

These results were then employed to analise the theoreti-
cal ESR spectra. We found that for the system parameters
obtained from the optical spectra we should expect that the
ground doublet beMJ = ±1/2, corresponding to an allowed
spectrum. The rather small intensity, of this type of spectra
seems to indicate a preference of Co2+ for the octahedral sites
in the crystal structure, a conjecture that was advanced in a
preliminary report [32] on the ESR of impurities of this ion
in Mg2(OH)AsO4, and was confirmed in [3]. Employing a
molecular calculation we have verified in the last reference
that the formation energies of the two type of complexes, with
both Co and Zn as the central ions, are compatible with this
hypothesis.

4T1g → 4T2g
4A2g

4T1g(P) B Dq

PO4
a) 8450 15450 18350
b) 7819 16013 18324 767.6 819.4

AsO4
a) 7700 15500 18020
b) 7616 15585 18011 758.9 796.9

TABLE VI: a) The transitions between the ground4T1g level and
the levels shown at the top of each column, in cm−1 and as-
signed from the experimental spectra of the octahedral complexes
of Co2(OH)PO4 and Co2(OH)AsO4; the level4T1g(P) corresponds
to the highest of the same symmetry. b) The best fit, obtained with
theB andDq shown in the last two columns.

4A′2 → 4A′′1, 4A′′2
4E′′ 4E′ 4A′2(P) 4E′′(P)

PO4
a) 6400 7000 11100 15800 19600
b) 3233 4835 12868 17386 17947
c) 1511 3603 11106 15801 19604

AsO4
a) 5000 6250 10870 16000 19800
b) 2707 4440 12210 17188 18595
c) 1437 3535 10876 15999 19805

TABLE VII: a) The transitions between the ground level4A′′1 and the
levels shown at the top of each column, given in cm−1 and assigned
from the experimental spectra of the penta-coordinated complexes
of Co2(OH)PO4 and Co2(OH)AsO4. b) The best possible fit to the
five transitions. c) The best fit obtained by adjusting only the three
transitions of higher energy. The corresponding values ofB, Ds, Dt
are given in rows b) and c) of table XV.

A. Optical studies.

The necessary optical data was obtained from diffuse re-
flectance experiments in the 5000 – 50000 cm−1 wavenumber
region [3, 28, 33]. The whole of the optical data used in this
work was recorded at room temperatures, and all the relevant
data that was necessary in the present work is in the tables VI
and VII. The system parameters of the octahedral complexes
are slightly different from those already published [28, 33],
because they were obtained from the optical spectra after in-
cluding a spin orbit correction in the ground orbital level [34].

B. Electron Spin Resonance (ESR).

The measurement of the ESR of Co2+ impurities in both
Zn2(OH)PO4 and Mg2(OH)AsO4 has been discussed in [3],
and some of the measured ESR spectra for the two samples
are reproduced in Figs. 4 and 5. Only powder spectra could
be measured for the two systems because it was not possible to
obtain single crystals, and small concentrations of Co (1% in
the arsenate and 0.1% in the phosphate) substitute the metals
in the two lattices. The curves denoted with (a) in Figs. 4 and
5 show the measured spectra for the two samples, recorded at
4.2 K, and they both clearly show three sets of lines with a well
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FIG. 4: ESR spectra of Co2+ in Zn2(OH)PO4. a) Experimental
spectrum. b) Sum of the simulated spectrum for both the hexa-
coordinated and penta-coordinated complexes. c) Simulated spec-
trum for the hexa-coordinated complex. The g-values of both the
octahedral and of the penta-coordinated complexes are given in ta-
ble VIII. The arrows in c) show the g-values and their positions for
the octahedral complex, while those in a) correspond to the penta-
coordinated complex. The insert gives the detail of the experimental
hyperfine structure and of the simulated one (aroundg2), attributed
to the Co2+ in the triangular bipyramid.

defined hyperfine structure that identifies the Co2+ ion. There
are also some extra lines, rather weak in the phosphate but
more intense in the arsenate, that preclude an automatic fitting
of the spectra, and the powder spectra of the hexa-coordinated
Co2+ were simulated with a more flexible program. The best
results, plotted in the curves (c) of Figs. 4 and 5, correspond
to the g-values shown in rows a) of table VIII Their values and
positions are also shown by arrows below the simulated curves
(c). The extra lines near 200 mT in the phosphate show an
hyperfine structure typical of the Co2+, and are given in more
detail in the inset of Fig. 4. The remaining lines in the two
compounds are rather broad and show a collapsed hyperfine
structure. The curves (b) in the Figs. 4 and 5 show the sum
of the simulated spectra of the hexa-coordinated Co2+ in (c),
plus a simulation of the penta-coordinated Co2+that employs
theg- values given in rows b) of table VIII and is adequately
renormalized to account for the smaller relative concentration
of the last compound. Theseg values have rather large errors,
and their positions are shown by arrows above the measured
spectra (a) of Figs. 4 and 5. In the inset of Fig. 4 it is also
shown the detail of the hyperfine structure near 200 mT both
in the experimental and in the simulated spectrum.
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FIG. 5: ESR spectra of Co2+ inMg2(OH)AsO4. Curves a), b), and
c), and the meaning of the arrows and values in curves a) and c) are
the same as in figure 4.

g1 g2 g3 A1 A2 A3

PO4
a 5.89±0.02 4.55±0.05 2.02±0.02 240±5 155±8 85±3
b 8.±0.5 3.2±0.3 2.0±0.2

AsO4
a 6.22±0.02 4.21±0.05 2.05±0.02 140±5 120±7 55±5
b 9.±1.5 3.±0.5 2.0±0.2

TABLE VIII: Values of the principal g and A parameters, obtained
from the spectra in Figs. 4 and 5. The values of the A parameters are
in 10−4 cm−1 units. a) Octahedral complex: theg andA values were
obtained from a program simulating powder spectra, as described
in the text. b) The parameters for the penta-coordinated Co2+, also
estimated by simulation.

C. Hexa-coordinated Co

We shall briefly discuss the hexa-coordinatedCo2+ ions in
Zn2(OH)PO4 and Mg2(OH)AsO4 following the same treat-
ment employed in Section III. TheCo2+ is surrounded by six
oxygens in a fairly regular octahedron with positions given
in table IX, and only powder spectra were available. The
three principal valuesgi of the g tensor could be measured,
but without all the details obtained for the NH4NiPO4.6H2O
compound (see table VIII).

As before we shall consider the effect that the crystal field
generated by the normal modes of the octahedron has on the
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n a (Å) b (Å) c (Å) a (Å) b (Å) c (Å)

PO4 AsO4
1 4.7150−1.2420 0.0000 0.9197−1.0794 0.0000
2 4.9627−1.0327 2.9700 0.6438−1.2633 3.0255
3 2.1592−1.2713 1.7274−1.9091−1.1662 1.3476
4 3.0793 1.0327 2.9700−0.6438 1.2633 3.0255
5 3.3270 1.2420 0.0000−0.9197 1.0794 0.0000
6 5.8827 1.2713 1.7274 1.9091 1.1662 1.3476
7 4.0210 0.0000 1.5135 0.0000 0.0000 1.4910

TABLE IX: The columnsa,b,cgive the position of the six oxygens
(n=1,...,6) and Cobalt (n=7) in the hexa-coordinated complexes of
Co2(OH)PO4 and Co2(OH)AsO4 with respect to the three unit cell
axes.The X,Y,Z axes roughly correspond to n=1,2,3 respectively, tak-
ing n=7 as the origin.

Q2/R Q3/R Q4/R Q5/R Q6/R

PO4
a) 0 −0.04407 0.03478 0.03478 0.11425
b) 0 −0.11683−0.01717−0.01717−0.05641

AsO4
a) 0 −0.0441 0.04032 0.04032 0.09989
b) 0 −0.09328−0.02818−0.02818−0.06982

TABLE X: Normal modes of the octahedral Co divided by the Co-O
distanceR in Co:Zn2(OH)PO4 and Co:Mg2(OH)AsO4. a) Values
that adjust the experimental values of the g tensor. b) Values ob-
tained from the crystallographic positions corresponding to the pure
compounds.

gyromagnetic tensorg. This method systematizes the proce-
dure, and in table X we give the normal modes that reproduce
the experimental values of the threegi . We shall then choose
a reference perfect octahedron centered in theCo2+, calcu-
late the normal modes corresponding to the crystallographic
positions of the O, and compare them in table X with those
obtained from the experimental spectra.

The average values of g are 4.1537 for Co:Zn2(OH)PO4
and 4.153 for Co:Mg2(OH)AsO4, and to analise these results
it is sufficient to consider theCo2+ in pure octahedral sym-
metry, because the crystal fields of lower symmetry do not
change this value in our approximation. The calculation fol-
lows the same lines given in reference[2] and shall not be re-
peated here.

The values of the constantsa andb that give the mixture
of the ground4F with the lowest4P can be obtained as be-
fore from the Racah parameterB and the crystal field para-
meterDq, that were estimated [34] from the spectroscopic

X Y Z X Y Z

PO4 AsO4
a 0.4054−0.5794−0.7071 0.3800−0.5963−0.7071
b 0.4054−0.5794 0.7071 0.3800−0.5963 0.7071
c −0.8194−0.5733 0.0000−0.8434−0.5373 0.0000

TABLE XI: Direction cosines of the three axisX,Y,Z of the reference
perfect octahedron of Co2(OH)PO4 and Co2(OH)AsO4 with respect
to the three crystallographic axisa, b, c

data and are given in table VI. With these values one ob-
tainsa =−0.9820andb = 0.1886for the phosphate, and the
proportionality constant of the angular momentum is then

α =−1.5 a2 +b2 =−1.4110. (18)

As discussed in Section III we use Eq. (11) to relate
the changeδg in the g tensor with the normal modesQ j of
the complex ofCo2+ with the six neighboring O, employing
∆ = 283 cm−1 as the splitting between theΓ6 doublet and
the lowestΓ8 quadruplet in the octahedral symmetry in the P
compound.

The values ofCE andCT are obtained by the same pro-
cedure employed in Section III. For the Co-O distance
R we usedR = 2.11176Å, corresponding to the reference
octahedron defined below, and we found the valuesCE =
6436 cm−1/Å andCT = −3666 cm−1/Å. We can now cal-
culate the crystal fields that would describe the experimen-
tal values ofg or, what is equivalent, the corresponding nor-
mal modes within the approximations just discussed. As
there are more normal modes than data, we fix the relations
Q4 = Q3 = 0.3044Q6, which correspond to the normal modes
calculated below from the crystallographic positions, and we
obtain a perfect fit to the experimental values employing the
normal modes given table X.

From table VI we obtain the coefficientsa = −0.9824,
b = 0.1867, andα = −1.4128for Co2(OH)AsO4. The ESR
data was then adjusted with the normal modes coordinates
given in table X, where we usedR = 2.1224 Å, Q4 = Q3 =
0.4037Q6, CE = 6287 cm−1/ Å, CT = −3558 cm−1/ Å and
∆ = 282 cm−1, for this compound.

To calculate the crystallographic normal modes of the octa-
hedron it is necessary to chose a reference perfect octahedron
centered in theCo2+. To this purpose we consider the three
normal modes of pure rotation, [4]Q19, Q20, andQ21, and
we chose the axes of the reference octahedron so that these
three normal coordinates are zero, because they should not
have any effect on the properties of the complex. The value
R= 2.11176Å of the Co-O distance in the reference octahe-
dron was chosen so thatQ1 = 0, and by this whole procedure
we obtain a unique reference octahedron and minimize the ef-
fect of irrelevant rotations and expansions on the values of the
normal modes. The direction cosines of the three Co-O di-
rections in the reference octahedron are given in table XI, and
the normal modes derived from the crystallographic ionic po-
sitions given in table IX are shown in the third line of table
X. The normal modes calculated from the crystallographic
position of theO in the octahedral complex are different than
those obtained from the experimentalg tensor, given in the
first line of the same table. This result indicates that although
the nearestO to theCo are the main source of the cubic field
[4], the remaining non-cubic perturbations have strong con-
tributions due to the rest of the crystal. We conclude that the
experimentalg tensor could be explained by the crystal field
V(r) of Eq. (11) given in the axes of the reference octahe-
dron defined in table XI with theQ j given in the row a) of
table X. The agreement is perfect because there are more free
normal coordinates than availableδg components, but the the-
ory presented can only be considered a first approximation. In
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particular, although the crystal field theory of point charges
gives the right symmetry properties, it is only a very rough
description of the physics of the problem, but the crystal field
V(r) obtained give a much better description of the system
than the model employed.

Although we have not analyzed the hyperfine tensor in de-
tail, we have verified that its components are compatible with
the normal modes necessary to describe theδg tensor.

In the present calculation we have neglected the effect of
the4T2 triplet, that contributes toδg in third order perturbation
(our calculation is of the second order). This effect was calcu-
lated by Tucker[11] who obtained contributions that are about
6% of the second order contribution for theT2 deformation
and about 13% for theE deformation, and would therefore
not alter substantially our conclusions.

D. Penta-coordinated Co

1. The crystal field of the trigonal bipyramid.

The structure of the penta-coordinated complex of Co2+ is
very close to a trigonal bipyramid, and the positions of the Co
and of the five O are given with respect to the crystal axes in
table XII. Following a method similar to that employed in the
octahedral case we chose an orthogonal system of axes X,Y,Z,
such that the normal modes obtained from the crystallographic
positions would not have contributions of irrelevant rotations
and expansions. The direction cosines of the axes of this sys-
tem with respect to the crystal axesa, b andc are given in table
XIII, and the coordinates of the six atoms in the reference per-
fect trigonal bipyramid are given in table XIV. There are two
different Co-O distances in the reference complex:Ra corre-
sponds to the three ligands in the XY plane (equatorial O) and
Rc to the two along the Z axis (axial O); their values for the
phosphate and arsenate are given in the caption of table XIV.
Two crystal field parametersDs andDt are necessary in the
trigonal bipyramid, and are given in the point charge model
[30, 35] by:

Ds =
e
14

[
4qc

R3
c
− 3qa

R3
a

]
〈r2〉,

Dt =
e

168

[
16qc

R5
c

+
9qa

R5
a

]
〈r4〉, (19)

where we shall useqa = qc =−2e. The crystal field potential
Vc f can be expressed by the usual formula

Vc f (r) = ∑
kq

√
4π

2k+1 ∑̀q`
rk
`<

rk+1
`>

Y∗kq(θ`,ϕ`) C(k)
q (θ,ϕ), (20)

whereYkq(θ`,ϕ`) are the spherical harmonics at the position

of the`-th ligand and theC(k)
q (θ,ϕ) =

√
4π/(2k+1)Ykq(θ,ϕ)

are usually called the Racah’s rationalized spherical harmon-
ics. In our actual calculation we have employed the real
combinationsClm(θ,ϕ) and Slm(θ,ϕ) that are proportional

n a (Å) b (Å) c (Å) a (Å) b (Å) c (Å)

PO4 AsO4
1 4.9008 3.2438 2.9700 4.9744 0.9132 3.0180
2 1.8617 2.9132 1.2426 1.9003 1.1604 1.3442
3 1.8617 2.9132 4.6974 1.9003 1.1604 4.6676
4 3.1412 5.1252 2.9700 3.2085 3.2015 3.0180
5 3.0793 1.0327 2.9700 3.2736 -0.9132 3.0180
6 2.9102 3.0621 2.9700 3.0056 1.1561 3.0180

TABLE XII: The columnsa,b,cgive the position of the five oxygens
(n=1,...,5) and Cobalt (n=6) in the penta-coordinated complexes of
Co2(OH)PO4 and Co2(OH)AsO4 with respect to the three unit cell
axes.

X Y Z X Y Z

PO4 AsO4
a 0. 0. 1. -0.00203 0. 0.999998
b 0.99931 0.03720 0. 0.999698−0.02449 0.00203
c −0.03720 0.99931 0. 0.02449 0.9997 0.00005

TABLE XIII: Direction cosines of the three axisX,Y,Z employed to
define the reference perfect trigonal bipyramid of Co2(OH)PO4 and
Co2(OH)AsO4 with respect to the three crystallographic axisa, b, c

to cos(m,ϕ) and sen(m,ϕ) respectively [36]. In the ab-
sence of the spin-orbit interactions one employs the irre-
ducible representationsΓ of the trigonal bipyramid to clas-
sify the eigenstates|α,S,L,Γ,γ,a〉 of the Hamiltonian, which
are simply related to the states|α,S,L,ML〉 (the index α
identifies the particular states with the sameS,L). In ta-
ble I of reference 30 we find that the irreducible representa-
tions A′2, A′′1, A′′2, E′ andE′′ are contained in the two terms
4F and4P, and that the|α,S,L,ML〉 states that generate the
corresponding subspaces are{|3,3/2,3,0〉 , |3,3/2,1,0〉}→
A′2, {|3,3/2,3,±3〉}→ (A′′1, A′′2), {|3,3/2,3,±2〉}→ E′ and
{|3,3/2,3,±1〉 , |3,3/2,1,±1〉}→ E′′. The Hamiltonian
without spin orbit interaction is diagonal in the partnersγ
of each irreducible representationΓ and in the spin com-
ponentMS, so it is not necessary to write them explicitly

here. The onlyC(k)
q (θ,ϕ) that contribute to Eq.(20) in the

perfect trigonal bipyramid havek = 0,2,4 andq = 0. To cal-
culate the matrix elements of the Hamiltonian that contains
VCF = ∑i=1,7Vc f (r i), we have used the standard tensorial op-
erator techniques [37] as well as the unitary operators obtained
form Nielsen and Koster’s tables [37, 38], and we have veri-
fied that our matrix coincides with that given in table II or
reference 30.

Our main objective here is to find the gyromagnetic fac-
tors that one would expect to measure in the penta-coordinated
Co2+, and we shall employ the spectroscopic data measured
by diffuse reflectance to estimate the parametersB, Ds andDt
for both Co:Zn2(OH)PO4 and Co:Mg2(OH)AsO4. In the two
rows labelled a) of table VII we give the corresponding as-
signments of the transitions from the ground4A′2 to the levels
with symmetry4A′′1, 4A′′2, 4E′′, 4E′, 4A′2(P) and4E′′(P), where
we use(P) to indicate the higher levels of the same symmetry.

From the eigenvalues of the Hamiltonian in the absence of
the spin-orbit interaction, we find by trial and error the values
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n X Y Z

1 0 Ra 0

2 −
√

3
2 Ra − 1

2Ra 0

3
√

3
2 Ra

1
2Ra 0

4 0 0 Rc
5 0 0 −Rc
6 0 0 0

TABLE XIV: The columns X,Y,Z give the position of the five oxy-
gens (n=1,...,5) and Cobalt (n=6) in the reference perfect penta-
coordinated complexes of Co2(OH)PO4 [Ra = 2.01622Å andRc =
2.04365Å],and Co2(OH)AsO4 [Ra = 1.98578Å andRc = 2.05596
Å] with respect to the axes defined in table XIII

B Ds Dt B Ds Dt

PO4 AsO4
b 728. 165. 947. 785. 313 919.
c 852. 745. 885. 875. 749. 869.

TABLE XV: The values ofB, Ds, Dt in cm−1 that fit the optical tran-
sitions, given in table VII, of the two penta-coordinated complexes.
The best fit to the five transitions is given in row b), and the best fit
to the three highest transitions in row c). The spin orbit parameter
ζ = 580cm−1 was used in all these fittings

of B, Ds andDt that minimize the mean square deviationχ for
the two systems, and we give them in row b) of table XV. The
transitions calculated with these two sets of values are given
in the two rows of table VII that are labelled b). The fitting is
rather poor, and in particular the transitions to the levels4A′′1,
4A′′2 and4E′′ fall below the range of the measuring equipment.
As an alternative we have fitted only the three highest transi-
tions, obtaining the values given in row c) of table XV, and the
corresponding values calculated with these two sets of para-
meters are given in the two rows of table VII that are labelled
c). In the following section we shall consider these two sets
of values to estimate the gyromagnetic factors for each of the
two compounds.

2. The spin-orbit interaction in the trigonal bipyramid.

It is now essential to include the spin orbit interaction
into the calculation. The basis of the irreducible represen-
tationsΓ7, Γ8 andΓ9, of the double groupD∗

3h have a sim-
ple expression in our system (cf. reference [31]): they are
given by

∣∣d7αSLJMJ
〉
, and in particular we haveΓ7(a) ≡{∣∣d7αSLJ±1/2

〉}
, Γ7(b) ≡ {∣∣d7αSLJ±11/2

〉}
, Γ8(a) ≡{∣∣d7αSLJ±5/2

〉}
, Γ8(b) ≡ {∣∣d7αSLJ±7/2

〉}
, Γ9(a) ≡{∣∣d7αSLJ±3/2

〉}
and Γ9(b) ≡ {∣∣d7αSLJ±9/2

〉}
. These

states are easily obtained from the
∣∣d7,α,S,MS,L,ML

〉
cal-

culated above by employing the 3-j or the Clebsch Gordan
coefficients. In the absence of magnetic fields the two states
of each Kramer’s doublet have the same energy, and to cal-
culate the energies of the system it is enough to consider
only the states with positiveMJ. As only the mixture of the
4F and 4P states is important in our problem we shall con-

sider only that subspace, and the corresponding matrix of the
total Hamiltonian splits into five boxes of the following di-
mensions:(MJ = 1/2) → Γ7(a) → (7×7), (MJ = 3/2) →
Γ9(a) → (6×6), (MJ = 5/2) → Γ8(a) → (4×4), (MJ =
7/2)→Γ8(b)→ (2×2), (MJ = 9/2)→Γ9(b)→ (1×1), and
there are no matrix elements ofMJ = 11/2, i.e. Γ7(b), within
the subspace{4F,4P} of d7 that corresponds toS= 3/2. The
matrices we have obtained coincide with those given in table
II of reference 31, and their eigenvalues have been calculated
for the different sets ofB, Ds and Dt values that were ob-
tained above, employing the one-electron spin-orbit parame-
ter ζ = 580 cm−1. For all the set of parameters in table XV
the lowest doublet is aΓ7(a) (MJ = ±1/2), separated by at
least75 cm−1 from the followingΓ9(a) (MJ = 3/2) doublet,
and by more than2377 cm−1 from the remaining doublets.
This situation is not altered by making fairly large changes
in the three basic parametersB, Ds and Dt , and shows that
even for moderate increases in the temperature only the low-
est doublet (MJ = ±1/2) would be occupied. This doublet
has allowed ESR transitions, and should be observed within
the approximation employed. If the position of the two low-
est doublets were exchanged, the ESR transitions of the lowest
doublet would be forbidden and the spectra should not be then
observed.

The fact that the two lowest doublets haveMJ =±1/2 and
MJ = ±3/2 and are separated by a large energy from the re-
maining doublets is easily understood when we notice that the
lowest level in the absence of spin-orbit interaction is4A′2. The
orbital partA′2 is a singlet with no orbital angular momentum,
and the totalJ would then correspond to theS= 3/2. These
four states would be rather far apart from the remaining ones,
and would split in the way calculated above through the higher
order spin orbit mixing with those excited states.

The present calculation was for a perfect trigonal bipyra-
mid with D3h symmetry, and one wonders whether the defor-
mations with respect to this structure could alter the relative
position of the two lowest doublets, thus changing from an
allowed to a forbidden ESR transition. We shall then study
the effect of these deformations, both on the relative position
of the two lowest doublets and on the value of the gyromag-
netic tensor. In this study we shall follow a treatment similar
to that employed in the octahedral case, by considering the
effect of the normal modes of the trigonal bipyramid on the
Hamiltonian of the penta-coordinated Co2+.

3. The normal modes of the trigonal bipyramid

As in the octahedral case we are interested in a contribution
to the Hamiltonian of the same type of Eq. (5), but here the
normal modesQ j andVj(r) transform like the same partners
of irreducible representations of the trigonal bipyramid. As
the undistorted complex does not have a center of symmetry,
both the even an odd modes against reflection in the equatorial
plane may have non-zero matrix elements inside the configu-
ration d7 of Co2+, and therefore we shall need to consider
both types of normal modes in our discussion.

The departures of the six atoms of the complex span a re-
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Q j x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 x5 y5 z5

2
√

3Q1 -2 0 0 1
√

3 0 1 -
√

3 0 0 0 0 0 0 0
2
√

3Q2 0 2 0
√

3 -1 0 -
√

3 -1 0 0 0 0 0 0 0√
2Q3 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0√
2Q4 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0√
3Q5 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0√
3Q6 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0√
3Q7 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0√
2Q8 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1√
2Q9 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0√
2Q10 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0

TABLE XVI: The six even (1-6) and four odd (7-10) normal modes
E′ that are relevant to our problem. The numbers are the coefficients
of the departuresu j = {x j ,y j ,zj} of the j=th ion from their equilib-
rium position.

ducible representationΓ of theD3h group, that can be reduced
as follows:Γ = 2A′1 +A′2 +4E′+3A′′2 +2E′′ (see e.g. the Eq.
(9.19) in reference [39]). Of these irreducible representations,
theA′2 corresponds to an axial rotation, oneE′′ to two equato-
rial rotations, oneA′′2 to an axial translation and oneE′ to two
equatorial translations. After eliminating these three trans-
lations and rotations we are left with three even irreducible
representationsE′, as well as twoA′′2 and oneE′′ odd repre-
sentations. The six even normal modes (Q1, ...,Q6) transform
in pairs like the partners ofE′; they have been obtained em-
ploying standard techniques[39, 40] and are defined in table
XVI. In the same way the two modesA′′2 (Q7,Q8) and the two
partners ofE′′ ((Q9,Q10) have been obtained, and are defined
in the same table.

The modesQ3,Q4, andQ8 are translations of only the two
axial oxygens, and theQ5,Q6, andQ7 are translations of only
the three equatorial oxygens whileQ9 andQ10 are rotations
along thex and y axis of the two axial oxygens. As these
modes are only partial rotations or translations they are capa-
ble of changing the crystal field. Thex andy rotations of the
three equatorial oxygens can be combined withQ9 andQ10
to give full rotations of the trigonal bipyramid, and thez rota-
tion of the three equatorial oxygens is already a full rotation,
so these three sets of displacements would not appear in our
calculation.

From tables XII, XIII, and XIV we can calculate the dis-
placementsu j of the five O with respect to their positions in
the reference trigonal bipyramid (cf. section IV D 1) and cal-
culate the corresponding normal modesQ j defined in table
XVI. Employing theseQ j we calculate in the next two sec-
tions the g values of the distorted complex.

4. The effect of the normal modes on the crystal field

We can now try and find an expression similar to Eq. (5)
for the trigonal bipyramid. To this purpose we have employed
a relation equivalent to Eq. (20) to calculate, for each of the
ten normal modesQ j given in table XVI, the change in the
crystal fieldVc f(r) when all the ligands are displaced from
their equilibrium position in the reference complex by a small

ML M′
L 〈4F,MS,ML|V ′CF|4F,MS,M′

L >〉
−3 −2 −(3 c2+10c4) Q∗e/

(
7
√

3
)

−3 −1 (6 c2 Qa−15c4 Qb)/(56
√

5)
-3 0

√
15c4 Qd/4

-3 1 -
√

5 c4 Q∗c/16

-2 −1 -(9 c2−40c4) Q∗e/
(

21
√

5
)

-2 0 (12c2 Qa +5 c4 Qb)/(56
√

10)
-2 1

√
5 c4 Qd/

(
2
√

6
)

-2 2 -5 c4 Q∗c/(16
√

3)
-1 0 -

√
2(3 c2−25c4) Q∗e/

(
35
√

3
)

-1 1 (18c2 Qa +25c4 Qb)/(140
√

3)
-1 2 -

√
5 c4 Qd/

(
2
√

6
)

-1 3 -
√

5 c4 Q∗c/16
0 1

√
2(3 c2−25c4) Q∗e/

(
35
√

3
)

0 2 (12c2 Qa +5 c4 Qb)/(56
√

10)
0 3 -

√
15c4 Qd/4

1 2 (9 c2−40c4) Q∗e/
(

21
√

5
)

1 3 (6 c2 Qa−15c4 Qb)/(56
√

5)
2 3 (3 c2+10c4) Q∗e/

(
7
√

3
)

TABLE XVII: The non-zero matrix elements of the crystal field
V ′CF = ∑ j Q j Vj (r) generated by the normal modesQ1, ...,Q10 be-
tween states|α,S,MS,L,ML〉=

∣∣4FMSML
〉

in the subspace4F x 4F .
Only the elements corresponding to the upper triangle of the matrix
are given, and the remaining ones are obtained by Hermitian con-
jugation. The matrix is independent of, and diagonal in, the spin
componentsMS. To compress the table we have used the follow-
ing abbreviations:Qa = (Q2 + iQ1) + 5(Q6 + iQ5), Qb = 3(Q2 +
iQ1)+ 7(Q6 + iQ5), Qc = 9(Q2 + iQ1)+ (Q6 + iQ5), (even modes)
andQd = iQ7, Qe = (iQ9 +Q10) (odd modes), as well as their com-
plex conjugatesQ∗a, Q∗b, Q∗c, Q∗d andQ∗e

ML M′
L 〈4P,MS,ML|V ′CF|4P,MS,M′

L >〉
-1 0 3c2 Q∗e/5
-1 1 -3

√
3 c2 Qa/20

0 1 -3 c2 Q∗e/5

TABLE XVIII: Same as in table XVII but for the sub-matrix4P x
4P. The same abbreviations are used here.

fractionε of that particular normal modeQ j . Expanding this
change ofVc f (r) in a power series of the coefficientε and tak-
ing the linear terms inε gives the correspondingVj(r) from
Eq. (5). As we are only interested in the subspace{4F,4P}
with S= 3/2 of the configurationd7, and theVj(r) are inde-
pendent of the spin componentMS, we need a10x10 matrix
〈4L,MS,ML|V ′

CF|4L′,MS,M′
L〉 for eachQ j , with fixed MS and

L,L′ = 3,1. There are regularities between the matrix ele-
ments associated to differentQ j , and we shall employ the fol-
lowing abbreviations:Qa = (Q2 + iQ1)+5(Q6 + iQ5), Qb =
3(Q2 + iQ1)+ 7(Q6 + iQ5), Qc = 9(Q2 + iQ1)+ (Q6 + iQ5),
Qd = iQ7, andQe = 9(Q10 + iQ9), as well as their complex
conjugatesQ∗

a, Q∗
b Q∗

c, Q∗
d andQ∗

e. In tables XVII and XVIII
we give the non-zero matrix elements in the upper triangle of
the submatrices4F x 4F and4P x 4P respectively, and in table
XIX we give all those associated with4P x 4F ; the remaining
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ML M′
L 〈4P,MS,ML|V ′CF|4F,MS,M′

L〉
-1 -3

(
72c2 Q∗a−5 c4 Q∗b

)
/
(
56
√

30
)

-1 -2
√

2(12c2 + 5 c4) Qe/
(

7
√

15
)

-1 0 −2(18c2+25c4) Q∗e/105

-1 1 (24c2 Qa−25c4 Qb)/
(

280
√

2
)

-1 2
√

5 c4 Qd/4

-1 3 -
√

5 c4 Q∗c/
(

8
√

6
)

0 -3 −√5 c4 Qd/
(
4
√

3
)

0 -2
(
12c2 Q∗a +5 c4 Q∗b

)
/
(
28
√

10
)

0 -1
√

2(24c2−25c4) Qe/
(
35
√

3
)

0 1 -
√

2(24c2−25c4) Qe/
(
35
√

3
)

0 2 (12c2 Qa +5 c4 Qb)/
(
28
√

10
)

0 3 −√5 c4 Qd/
(
4
√

3
)

1 -3 -
√

5 c4 Qc/
(

8
√

6
)

1 -2
√

5 c4 Qd/4

1 -1
(
24c2 Q∗a−25c4 Q∗b

)
/
(

280
√

2
)

1 0 2(18c2+25c4) Q∗e/105

1 2 -
√

2(12c2 + 5 c4) Qe/
(

7
√

15
)

1 3 (72c2 Qa−5 c4 Qb)/
(
56
√

30
)

TABLE XIX: Same as in table XVII but for the sub-matrix4P x 4F .
All the non zero matrix elements are given here, and those corre-
sponding to the sub-matrix4F x 4P are obtained by Hermitian con-
jugation. The same abbreviations are used here.

non-zero elements are obtained by Hermitian conjugation. It
is interesting to note that the matrix elements associated to
Q3, Q4, andQ8 are all zero: these modes involve only the two
axial ions, and the corresponding two atom partial complex
is not only invariant against the operations ofD3h, but also
against a twofold axis along thez direction. This extra sym-
metry forces all the one-electron matrix elements betweend
states of the crystal field associated toQ3, Q4, andQ8 to be
zero.

As in the crystal field of the reference complex, theV ′
CF

has coefficients containing the Co-O distancesRa andRc, as
well as the atomic averages〈r2〉 and 〈r4〉, and they appear
asc2 andc4 in the tables XVII, XVIII and XIX. As theRa
andRc are nearly the same, it is possible from Eq. (19) to
relate the crystal field parametersDs andDt to these two co-
efficients. Assuming thatRa = Rc we obtainc2 = 14 Ds and
c4 = (168/25)Dt , but we have derived slightly better relations
considering the difference betweenRa andRc:

c2 =
7

−(3/2)+2 (Ra/Rc)3 Ds,

c4 =
21

(9/8)+2 (Ra/Rc)5 Dt . (21)

As with the reference complex, we employ the 3-j coeffi-
cients to calculate the matrix elements of the crystal fieldV ′

CF
in the representation that diagonalizes the totalJ andJz, be-
cause the doublets

∣∣d7αSLJMJ
〉

are basis for the irreducible
representations of the reference trigonal bipyramid, and the
eigenstates of the reference complex would then belong to
subspaces with fixedMJ. In section IV D 2 we have shown

g1 g2 g3 gav
PO4

b0 4.8027 4.8027 1.9904 3.8653
b1 5.0477 4.5577 2.2998 3.9684
b2 5.0477 4.5577 1.9904 3.8653
c0 5.0435 5.0435 1.9829 4.0233
c1 5.7379 4.3492 2.1171 4.0680
c2 5.7379 4.3492 1.9829 4.0233

AsO4
b0 4.8723 4.8723 1.9885 3.9110
b1 5.7637 4.2279 2.2364 4.0760
b2 5.7637 4.2279 1.9885 3.9934
b3 5.6402 4.1044 1.9885 3.9110
c0 5.0667 5.0667 1.9818 4.0384
c1 7.1232 3.5385 1.9854 4.2157
c2 7.1232 3.5385 1.9818 4.2145
c3 6.8591 3.2744 1.9818 4.0384

TABLE XX: The principal components of the calculatedg ten-
sor for the penta-coordinatedCo2+ and their averagegav in
Co:Zn2(OH)PO4 and Co:Mg2(OH)AsO4. The rowsb0 andc0 are
for the reference trigonal bipyramid, whileb1, b2, b3, c1, c2, andc3
include the effect of deformations produced by the crystallographi-
cally calculated normal modes. Rowsb1 andc1 include all the nor-
mal modes, whileb2 andc2 only include the even modes, and in rows
b3 andce we have also putQ1 = Q2 = 0. The values ofB, Ds, Dt
andζ employed here for rowsb j ( j = 0−3) are given in row b of
table XV, and those corresponding to rowsc j are given in row c of
that table.

that, with the two sets of parametersB, Ds andDt obtained in
that section, the two lowest doublets belong to theMJ = 1/2
andMJ = 3/2 subspaces and that they are separated by more
than 75 cm−1, while the remaining doublets are more than
2300 cm−1 above them. A good approximation to calculate
the effect ofV ′

CF on these levels is then to consider the total
Hamiltonian inside the two subspacesMJ = 1/2,3/2, and one
has then to consider a matrix of 26 x 26 elements, correspond-
ing to values ofJ equal to9/2, ...,1/2. The eigenstates of this
matrix show that there is no change in the relative position
of the two lowest doublets, so that the ground state remains
MJ = 1/2.

5. The g-factors of the penta-coordinated Co2+.

To calculate the spin Hamiltonian we employ the traditional
method [41]. In the present case we consider the four states
of the two lowest doublets of the reference trigonal bipyramid
calculated in section IV D 2 as the eigenstates of the unper-
turbed Hamiltonian, withMJ = 1/2 as the ground doublet and
MJ = 3/2 as the excited one. Both the Zeeman term and the
crystal fieldV ′

CF produced by the deformation of the normal
modes are the perturbations, and in the usual way we find the
gyromagnetic tensorg in second order. We have calculated the
three components ofg for the penta-coordinated Co2+ for all
the sets ofB, Ds andDt given in table XV, and the results are
given in table XX. The values corresponding to the reference
trigonal bipyramid are given in the rowsb0 andc0, while those
given in the rowsb j andc j (with j = 1,2 for the phosphate



52 Brazilian Journal of Physics, vol. 36, no. 1A, March, 2006

and j = 1,2,3 for the arsenate) have been calculated employ-
ing the normal modesQ j derived from the crystallographic
positions (cf. table XII) as discussed in section IV D 3. One
verifies in table XX that the average of the principal values of
g is not very different from 4.33, but that it changes withB and
the crystal field parameters more than in the octahedral case.
The rowsb1 andc1 include the effect of all normal modes,
while in b2 andc2 only the even modes are considered. In the
phosphate case, the crystallographicQ1 = Q5 = 0, and for the
arsenate we have also imposed this condition in rowsb3 and
c3. From table XX we conclude that

• With only even modes andQ1 = Q5 = 0 (compare rows
b2 andc2 in phosphate andb3 andc3 in arsenate with
rowsb1 andc1) the averageg is not altered by the lower
symmetry crystal fields generated by the remaining nor-
mal modes, and these fields affect the equatorial compo-
nents ofg, but leave their sum and the axial component
unaffected.

• Only the axialg-factor is altered by the inclusion of the
odd modes, while the two equatorialg-factors are not
altered (compare rowsb1 with b2 andc1 with c2). This
result is true both withQ1 = Q5 = 0 (in the phosphate)
or otherwise (in the arsenate).

• The fields associated to the modesQ1 andQ5 change
the sum of the two equatorialg-factors but leave the
axial value unaffected (compare rowsb2 with b3 andc2
with c3 in the arsenate).

From the calculations in the present section, it follows that
one should observe an allowed ESR line of Co2+ from the
penta-coordinated complex when that site is occupied. We
have seen in Section IV B that besides the lines associated to
the octahedral spectra, there are some weak extra lines that
could be interpreted as belonging to that complex: their esti-
matedg-factors are given in rows b) of table VIII, and should
be compared with the values given in table XX, that were
calculated for different sets of parameters derived from the
optical spectra and with normal modes calculated from the
crystallographic positions. It is clear that the arsenate val-
ues in rowc3 of table XX are fairly close to the estimated
values in rowb from table VIII. It is well known that the
g(i) obtained from the crystallographically calculated normal
modes are generally different from those experimentally ob-
served, as discussed for the octahedral compounds (cf. sec-
tion IV C ), and we could expect that a good fitting could
be obtained by making small changes in the crystallographic
normal modes. To verify this assumption it is sufficient to
change onlyQ2 and Q6, keeping all the remaining modes
at their crystallographic values. EmployingQ2/Ra = −0.03
andQ6/Ra = −0.07 for the phosphate we findg(1) = 7.05,
g(2) = 3.03, andg(3) = 2.12, while for the arsenate we obtain
g(1) = 7.62, g(2) = 3.04, andg(3) = 1.99with Q2/Ra = 0.01
andQ6/Ra =−0.07. These fittings are fairly good, and show
that the ESR spectra of Co2+ in the two compounds can be de-
scribed perfectly well within our theory, but the crystal fields
obtained can not be taken too seriously because of the very
large errors in the experimentalg tensor.

We notice that the relative intensities of the extra lines in
Fig. 4 are rather smaller than those in Fig. 5. This can be
understood because the concentration of Co2+ in the arsenate
is ten times larger than in the phosphate, and this should also
alter their relative occupations.

The rather small intensity of the lines that could be at-
tributed to the penta-coordinated complex indicates a very
small occupation of Co2+ in the penta-coordinated sites. This
conjecture has been verified [3], from the heat of formation of
these compounds, estimated by a molecular orbital calculation
of the heats of formation of the clusters [M(OP(OH)3)n]2+, n
= 5,6 and M = Co and Zn.

V. CONCLUSIONS

We have discussed the ESR of the ionCo2+ in different sys-
tems:Co2+ in a MgO crystal [1],Co2+ in single crystal and
powder samples of NH4NiPO4.6H2O [2] andCo2+ in pow-
ders of Co2(OH)PO4 and Co2(OH)AsO4 [3].

The Co2+ in a MgO crystal is in an octahedral symmetry,
and we discuss why it retains its cubic symmetry although it
would be naively expected to suffer a static Jahn-Teller defor-
mation, because the ground term4F has a rather large orbital
degeneracy. We then briefly discuss the origin of this effect,
and point out how the Jahn-Teller crystal fields affect the prop-
erties of the system, like the ESR and the electronic Raman
scattering fromCo2+.

When Co2+ substitutes Ni2+ in single crystals of
NH4NiPO4.6H2O its nearest O form a deformed octahedron,
and we study the effect of the non-cubic crystal fields em-
ploying the normal modes of the octahedron to simplify the
systematic study of the effect of these fields.

There are two type of sites ofCo2+ in the compounds
Co2(OH)PO4 and Co2(OH)AsO4 of the adamite type: a de-
formed octahedron and a deformed trigonal bipyramid, and
we have analyzed the ESR of impurities of Co2+ in synthetic
crystals of Zn2(OH)PO4, Mg2(OH)AsO4 in powder form.
Crystal field theory has been employed to try and understand
the experimental ESR results for the two Co2+ complexes
with coordination five and six that are present in the adamite
structure. The Racah parameterB as well as the crystal fields
Dq for the octahedral complex and bothDs and Dt for the
trigonal bipyramid one have been estimated from the assign-
ments that were made of the diffuse reflectance spectrum of
these two complexes. Two alternative sets of parameters were
proposed for the penta-coordinated complex.

From the crystallographic structure, a reference octahedron
centered in the Co2+ was defined, such that the normal modes
of the complex corresponding to rotations and expansions
would be zero and the remaining normal modes would not
have any contribution of these irrelevant deformations, and
following the same method employed to study the ESR of
Co2+ in NH4NiPO4.6H2O, the crystal fields that would repro-
duce the experimentalg tensor of the octahedral complex in
both Zn2(OH)PO4 and Mg2(OH)AsO4 have been obtained..

As the penta-coordinated complex seems to have at most
minor contributions to the ESR spectra, we have analyzed the
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possible motives for this behavior. We argue that two dou-
blets with MJ = ±1/2 and MJ = ±3/2 would be lowest in
energy, separated by a rather large excitation energy from the
remaining excited states. TheMJ =±3/2 has forbidden ESR
transitions, and this would explain the experimental results if
that were the ground doublet, but when the crystal field of
the trigonal bipyramid is considered together with the spin-
orbit interaction, it was found that theMJ = ±1/2 doublet,
with allowed ESR transitions, is the lowest. To verify whether
this result would be altered by the deformations of the trig-
onal bipyramid, we considered their effects in a way similar
to that employed in the octahedral case to calculate theg ten-
sor. First it was necessary to derive the normal modes of the
trigonal bipyramid that are relevant to our problem, and they
are given in table XVI. The corresponding Jahn-Teller con-
tributionsV ′

CF to the crystal field, whose non-zero matrix ele-
ments〈4L,MS,ML|V ′

CF|4L′,MS,M′
L〉,for L,L′ = 3,1, are given

in tables XVII, XIX and XVIII. Defining a reference perfect
trigonal bipyramid by the same method employed in the octa-
hedral case, the values of the relevant normal modes were ob-
tained by employing the crystallographic positions, and sub-
sequently used to calculate their effect on the relative position
of the two lowest doublets. No appreciable change was found,
and as an alternative explanation we assumed that the penta-
coordinated complex is scarcely occupied in the dilute sys-
tem. This conclusion is compatible with the calculation of the
heat of formation of the octahedral and the trigonal bipyramid
complexes with both Co and Zn as the central ions, calculated
in reference [3].

Employing the Jahn-Teller crystal fields together with the
normal modes calculated from the crystallographic distor-
tions, it was possible to calculate theg tensor, shown in ta-

ble XX for both the perfect and deformed trigonal bipyramid,
this last subjected to different deformations. The trace of the
g tensor in the perfect trigonal bipyramid changes more with
the parametersB,Ds andDt than in the octahedral case, where
it is always fairly close to 13.

The trigonal bipyramid has no center of symmetry, and it
was necessary to consider all the normal modes, even those
that are odd against reflection in the horizontal symmetry
plane. We have shown that these last modes affect the ax-
ial component ofg but that they have little or no effect on
the two equatorial components. The experimentalg-tensor of
the penta-coordinated complex could be measured but with
rather large errors. As in the octahedral case, the crystallo-
graphically determined normal modes could not explain the
observed values, but for the two type of complexes it was pos-
sible to find values of the normal modes that would generate
crystal fields that describe the experimental ESR spectra for
both the phosphate and arsenate compounds.

We conclude that both our theoretical analysis of the ESR
of the systems studied, as well as the molecular orbital calcu-
lation of the formation energies, coincide in assigning a rather
small relative occupation of the penta-coordinated sites with
respect to the octahedral ones in those systems. The exper-
imental spectra of both the octahedral and penta-coordinated
complexes can be understood by considering the effect of the
crystal fields generated by the corresponding normal modes
on theg tensor.
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