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Study of C?" in Different Crystal Field Environments
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We consider the ESR @@o?" in different environments: in an regular octahedr@o¥" in aMgO crystal),
in a deformed octahedroi©¢®" in single crystals and powder samples of J;PO,.6H,0) or in a trigonal
bipyramid Co?* in powders of Ce(OH)PQ; and Cg(OH)AsO,). We study the effect of the non-cubic crystal
fields in the ESR ofCo?" in the deformed octahedron, by employing the normal modes of this structure to
simplify the systematic study of the effect of these fields. A similar study was done for the deformed trigonal
bipiramid, and it was necessary to derive the normal modes of this complex that are relevant to our problem.
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. INTRODUCTION —

In the study of solid state systems, it is sometimes interest- 29
ing to focus on the local states of the ions placed at the differ-
ent sites of the crystal, either because they can be considered
as the building blocks of the system, like in the tight binding
method, or else because one is interested in the properties of
a particular ion immersed in the solid, like in the study of the
Electron Spin Resonance (ESR), or of the Raman scattering 29
of impurities. We shall consider in particular the case of a 7 r
ion Co?* in different environments: in an regular octahedron
(Co?t in aMgO crystal[1]), in a deformed octahedroB@* r
in single crystal and powder samples of NP O,.6H,0[2])
or in a trigonal bipyramidCo?* in powders of Ce(OH)PQy 19 r
and Co(OH)AsO,[3)]). 8

The C&?* in octahedral symmetry would be naively ex- F6
pected to suffer a static Jahn-Teller deformation, because the

round ternf*F has a rather large orbital degeneracy, but in-
g 9 9 Y FIG. 1: Energy levels of the grourftF term of aCc?t split by a

ihiidtr;tergﬁﬁﬁsc;ft?h?: 2#ei¥n;?11; tr(})lir%]éu\t/\:\eo\?\,htzlé 32ﬁ2¥Tilﬁécubic field and by the spin orbit interaction. The levels are labelled
9 ’ P '[)y their symmetry properties.

crystal fields affect the properties of the system. In a different
symmetry, we shall use the normal modes of the octahedron

formed by the nearest neighborsﬂ:n‘i2+ in NH4NiPO4..6H20 sets{Q1}, {Qz, Qs} and{Q4, Qs, Qs}, and the corresponding
to study how the crystal fields affect the ESR of a single CIySQ; transform respectively like the basis of the irreducible rep-

tal of this compound. Th€c”" i a trigonal bipyramid sur- resentationd\;, E andT, of the cubic group, as given in Table
roundings appear in GEOH)PQ, and Ce(OH)AsO,, andwe || of reference 6.

have developed a study of the effect of crystal fields on its ESR 11,0 4F ground state of isolate@c?* (3d) in a purely oc-

that is similar to_the one we employed for the deformation of;3edral crystal field splits into two orbital triplet®;,*T, and

the octahedron in NENiPO,.6H0. one orbital singlefA, and from Jahn-Teller’'s theorem [7, 8]
one would expect that the normal coordina@@swould take
non-zero values to minimize the octahedron energy. This de-

IIl. THE Co*" IN A PERFECT OCTAHEDRAL SYMMETRY formation does not occur, because the spin-orbit interaction
stabilizes the average octahedral symmetry, by partially lift-

In this section we shall consider@c?* ion in a perfect ing the degeneracy of tHe; triplet into onelg, two 'g and

octahedral symmetry, as found when it is a substitutional imenerl 7 subspaces, as shown in figure 1.

purity in crystallineMgO. This crystal has the NaCl struc-

ture, and theCo impurity is coordinated by sixO ions in a We are mainly interested in the ESR®6*", and the reso-

regular octahedra. From any displacement of theGsikith ~ nance for the lowest doubldt{) is isotropic with g=4.33 (cf.

respect to the vertices of this regular octahedron we can fin8ec. 7.14, p.447 in reference [9]). The addition of lower sym-

[4, 5] the corresponding normal coordina®@g of the seven  metry crystal fields produce further splittings of the triplet,

ion complex, formed by th€o and the six neare€d, that are  giving six Kramer’s doublets, and in most cases it is found that

invariant against inversion. These are separated in the thrdbe trace of the g tensor is close to the cubic isotropic value
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[10]. octahedron, obtained by displacement of the vertices of the
In the lowest order one obtains g from the matrix elementsegular octahedron introduced at the beginning of this sec-

of the Zeeman term in thEg subspace of théT, ground tion. If one neglects the mixing of other configurations into

triplet. The matrix elements of the orbital angular momentumthe ground configuratioii3d)’, it is sufficient to keep only

L within aT; subspace are proportional to those ¢t term,  the part of the crystal fiel¥ that is even against inversion.

but one should note that the excited tetfnis also of thé!T;  We could then write/ = 7, V(ri) , whereV(r) would be

symmetry, and is mixed by the cubic field with i, of the  the sum of products of only two or four components of the

ground*F term. If we indicate two states F and*P with  electronic coordinates. Within our model, one could then

@ and ¢f respectively, such that they transform in the samewrite [4]

way under the cubic group, the states of the grotiRdwill

be of the formaq + b . The values of the constangsand V(r) =3 QjVj(r) ()

b can be obtained [1, 11] from the Racah paramBtand the J

crystal field parametedq, that take the value815cm! and

905cm ! respectively forCo : MgO. With these values one

obtainsa = 0.9811andb = —0.1933 and the proportionality

constant of the angular momentum is

where theQ; andV;(r) transform like the same partners of
irreducible representations of the octahedral group [6]. As
theV;(r) must be even against inversion, Remust have the
same property, an only the s§; with j = 1,6 discussed at
the beginning of this section would appear in Eq. (5). In the
following we shall not consider the identical representafign

Two further effects should be considered in the calculatior?ecause it does not modify the g tensor. The uséfir) are
of the isotropic g tensor. One is the second order contributiof €

a=-15a’+b’>=-14063 . (1)

of the*T, states, that are separated/yfrom the ground T, A2 _
states, and the other is the covalency betweerCthand the Va(r) = A(X y2) +B (X4 yA)
neighboringO, described by several factors [1, 10], that re- VaV5(r) =A(3Z—r?) +B(2Z —x*—y*) (6)

duce the matrix elements of the orbital angular momentum
and of the spin orbit interaction. Using a singigfor all these and
factors one obtains the expression for the g factor in a cubic
feld: P 9 Va(r)=Czy+E(Zy-y'2)

Vs(r) =C xz+E (x> z— 2 X)

2
gzgge—ga ko+2<\/?a+b> (|<0)2|27,| @ Vo(r) =Cxy+E(Cy-y'x) . )
For a point charge model [4], the constants are given by

whereh = —180cm 1 is theCc?*+ spin-orbit interaction. 1 4 6.2
The expression given in reference [2] #yris not correct, A= — € & (18R* —7T3R™"r ) , B=175e(;/8R°

and should be calculated as the difference between the level 4 6o 5
E(*T,) and the ground levelf (*Ty). The ground=(*Ty) level ~ C= e &t (—6 R4+ 15R™°r ) , E=-35eeri/2R

is the lowest eigenvalue of the matrix 8)
—158-6Dq 4Dq 3) whereeq £ 1 is an effective charge associated to te
4Dq 0 The total Hamiltonian of th€o : MgOsystem can be writ-
ten as
and the coefficients of the corresponding eigenvector give the
a andb employed above to calculate the coefficienof the Hs =Ho+Hsr = Hs+Hy+Hor 9)
angular momentum. ) . )
The level*T, is given by whereH, describes the vibrational states igO and Hjt
the Jahn-Teller (JT) interaction, that we shall describe with
E(4T2) = —15B+2Dq, (4) Eq. (5). The eigenfunctions of the zeroth-order Hamiltonian

Ho are products of the electronic functiofsg, 'z, ', and

and in the present case, the choiceDaf = 905cm™t and g, times the vibrational functions df,. The normal coor-
B=815cm ! givesE(*T,) —E(*T;) = A’ = 7953cm L. To  dinates of the seven ion complex in Eq. (5) are expressed
adjust Eq. 2 to the experimental value it is then necessarin terms of the normal modes of tidgO or phonon vari-
to usekyg = 0.86. In summary, the values fd€o: MgOare  ables [1], and this JT interaction mixes all these eigenstates
a=0.9811b=-0.1933 a0 =—-1.4063 A’ =7953cmmland of Hy: these linear combinations are the vibronic states of
ko = 0.86. This last value seems too small, and one has tdds which describe the states of the coupled system. The ma-
consider the dynamic Jahn-Teller effect [12, 13] to obtain arix elements related to the system properties are affected both
more reasonable value closerlto by the structure of the vibronic states and by covalency, and

To simplify the study we present a model that describes althe strength of the JT interaction can be related to measure-
the crystal fields acting on théoas originating in the crystal ments of the effect of applied stresses [11] on single crys-
field of the six nearesd located at the vertices of a deformed tals of MgO with Co?* impurities. If one neglects the effect
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Resonance field (m T)

(b))

FIG. 3: Angular variation of spectra of @8 in NH4NiPO,.6H,0,

in the three experimental planes. The principal directions in these
planes are indicated in the figure. The solid lines are the best fit to
(e) the Eq. [10], and the fitting parameters are given in Table [I].

A bsorption derivative (a.u.)

The spectra consist of two octets of resonance lines; those
octets are due to the allowed transitionsA& = +1,Al, =0
corresponding to the hyperfine interaction between the effec-
Magnetic field (m T) tive spinS = 1/2 of the cobalt and the real nuclear spin<
7/2) of >°Co (100% abundant).

Figure 3 shows the angular variation of the resonance field
of the ESR lines in the (100), (010) and (001) planes. Both the
angular variation and its symmetry clearly show two magnet-
ically nonequivalent sites related by a Gperation about the
c crystal axis, which is the point operation that relates the two
centers. The actual spectra show eight well resolved hyperfine

_ N lines along some directions for each site; but the reduction of
Eq. (5) the value¥e =V, = V3 =2.04 10" cnr*/cmand the hyperfine interaction causes the collapse of them in other

Vr =V4=V5 =V =0.34 10 cmmt/cm Without enter- .~ 2 . :
ing into the details of the calculation [1] we can say that thedmECtIonS (see Figure 2). The point group symmetry for the

P24 o+ ituti i ;
experimental g factog = 4.278[14] is explained by a JT co- N on (an.d the C.é S.UbStIEUEIng them)ls CS.’ and the ap
efficient Vg — 2.40 10-11 cm*l/cm within the experimental propriate spin-Hamiltonian fd8= 1/2 andl = 7/2 is therefore
error of 20% and a covalency factdg = 0.96, much closer [9]:

to one than the&g = 0.86 derived in the absence of JT in-  _ . o AL AL
teraction. Employing an approximate phonon distribution [1], H=HeH 015+ HeH -GS+ SiAvli+ SAz 2, (10)
closer to the experimental one [15] than the single freq“e”Cie\ﬁlhereglandgz are the gyromagnetic tensors afgd andA,

employed before [12, 13] to treat the JT interaction, it was alsqpe hyperfine tensors for each sitd.is the applied magnetic
possible to describe the experimentally observed [16] Ramagg|q andys is the Bohr magneton.

FIG. 2: Three C42 ESR spectra selected for directions of the mag-
netic field that show their properties as described in the text.

of covalency one obtains for the interaction constaftin

spectra ofCo : MgOas the electronic Raman spectreQf . As a first approximation, the ESR data were used to cal-
We conclude that the JT effect is essential to understand thg|ate theg and A tensors by Schonland’s method [17], and
Co?* ion in a perfect octahedral symmetry. the obtained parameters were used as preliminary informa-

tion for the subsequent calculation.The resonant field for each
transition was obtained exactly, within the machine error, by
lll. THE Co?" IN A DEFORMED OCTAHEDRAL diagonalizing numerically the 2616 matrix corresponding to
SYMMETRY each of the sites in Eq. (10), and obtaining the field self con-
sistently. These fields were the input to a least squares fitting
Figure 2 shows the ESR spectra of the single crystal sanmprogram, treating thg's andA’s values as adjusting parame-
ple measured at 4.2 K, for three selected directions of théers. All the experimental data of the three planes were fed
magnetic field. The local symmetry of the nickel (ll) ions in the program, and the solid lines in Figure 3 are the best
is near cubic, and the Electron Spin Resonance (ESR) of infitting of the data using Eqg. (10), and Table | gives the spin-
purity ions substituting Ni in the lattice is a powerful tech- Hamiltonian parameters obtained by this procedure.
nigue to analyze the environment of this ion. The ESR exper-
iments make evident the difference between the two magnet- In this compound th€c?* ions are coordinated by si®
ically non-equivalent Ni sites that are present in the structurén fairly regular octahedra [18]. Assuming that the position of
of NH4NiPQO4.6H,0. the six oxygen nearest to th@’" are the same as those of
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cog6:1) cog6) cog6s) symmetry, given by[20]
o1 4.9091 -0.26072 -0.55762 0.78809

2

g2 5.1389  0.96461 -0.11704 0.23630 33 (/15 A2
gz 2.6680 -0.03953 0.82180 0.56840 A=15(-15 al+ bZ) ko A — 6 <2a+ b| k3 N
x10%cmT cogB;) cogBy) cogBs) 0 (12)

A1 160.17 -0.20229 -0.58951 0.78202 . )
A, 178.76 097741 -0.07163 0.19884 The constant€g and Cr can be obtained by calculating a

As 4437  -0.06120 0.80458 0.59068 single matrix element in each case:

NH4NiPO4.6H,0O at 4.2 K. The direction cosines are referred Ce :_}

to the orthorhombic axes,b,cof the crystal

> Va(rj)

TABLE I: Spin-Hamiltonian parameters for &b in
<T12
J

T]_Z> (13)

Axes a b c and

j=x 0.7328 -0.3099 - 0.6058
Cr=( Tix

j=y -0.00048 0.8900 - 0.4559
j=z 0.6804 0.3344 0.6521

> Va(rj)

I

le> ) (14)

TABLE II: The cosines between the orthorhombic azgis,cof the  where the{|Tyx),|T1y),|T12)} are a basis of the grourfd;
crystal and the new axes j=x,y,z fixed to the octahedron, as discussgfat transforms like the coordinatés,y,z} under the octahe-
in the text. dral group.
The expression in Eq. (11) corresponds to deformations

from a cubic environment, and one should then compare this
the Nickel compound [18], and taking the average of their poformula with the experimental g tensor in the axis of the regu-
sitions as the center of the octahedron, we choose two of thar octahedron defined in Table II, which is given in Table IV,
O and use them to determine an orthogonal system of axis. Ibut it is first necessary to determig andCr. One obtains
the new system theaxis goes through the position of one of with Egs. (5-8)
those twoO, and thez axis is perpendicular to the plane de-
termined by the tw@® and the center of the octahedron. The Ce = € &ff (1.4846-1.7815 a2+1.7815ab

direction cosines of these axes with respect to the orthorhom- R

bic axis of the crystal are given in Table Il. The average dis- o < rZ> o

tance of the sibO with respect to the origin of the new axes is —0.4454b%) -+t (~0.1718+0.6873a"~
R=2.0531A, and we can define a regular octahedron with the R 4

six vertices placed along the axes at a distanBefrom the (0.6873 ab-+0.1718b?) < r4> } (15)
origin. R

To analyze further the experimental g tensor, one could
try and find crystal field values that would reproduce the
measured results, and a study of this type was presented by eafr ) o < 2>
Abragam and Pryce for the Cobalt Tutton salts [19]. To sim-Ct = = {(008573 —13714ab+12b%) =2 +
plify the study we present a model that describes all the crystal 4
fields acting on th€oas originating in the crystal field of the (~0.71434% — 0.2381 ab) <14 > } . (16)
six nearesO located at the vertices of a deformed octahedron, R
obtained by displacement of the vertices of the regular octahe-
dron introduced at the beginning of this section. To organizd he averages< r? >= 1.251 and < r* >= 3.655 (atomic
the study, we employ Eq. (5) to express the crystal field as &nits) have been calculated with Hartree Fock functions [11],
function of the normal coordinate3; of the octahedron. but we can obtaire s < r* > from the cubic field parameter

We shall use second order perturbation theory, using botRd €mploying the relation
V(r) and the Zeeman teriz; = (ge S+L).H as perturbation.

and

leaf<rt>

The change in the g tensor is then obtained from Dg= o (17)
R
S.0g.H = (ge-i-ﬂ)% —Ce [\/éQZ(S(Hx—%/Hy)-F valid for the point charge model. To finekts < r?2 > we

2
3 .
shall assume that r2 > /v/<r4> = 0.6544 i.e. equal
Q3 (35H; —SeH)] +Cr [Qa(SHy + SH,) + to the corresponding ratié obtained from the calculated val-
Qs (SiHz + SHyx) + Qe (SHy + SHy)] (11)  ues. Taking theB and Dg of the Ni compound and using

for the remaining parameters those discussed in the text, one
wherepg is the Bohr magneton antilis the splitting between  finds Ce = 6508 cm™1/A andCr = —3414cm /A while
the " doublet and the lowestg quadruplet in the octahedral for the Co : MgO values one find€g = 6821 cni!/A and
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Q2 Q3 Q4 Qs Qs Axes Ajx  Ajy Ajz
1 —0.03840 002497 001417 006542 —0.01275 j=x -970. 3200. 5510.
2 0.01092 000305 016028 —0.22616 —0.14710 j=y 3200. 970. -3390.
3 1.60 845 2.04 177 199 j=z 5510. -3390. O.

TABLE lIl: The symmetrical normal coordinates of the complex TABLE V: The components of the experimental A tensor (given in
formed by the Co and the six O with respect to the regular octahecm™ 1), referred to the octahedron axes j=x,y,z, after substraction of
dron defined in the text. Row 1 gives the values calculated from théhe isotropic tensof = 1278@m L.

O positions determined crystallographically. Row 2 gives the values

that would reproduce the experimental g tensor for the point charge

model. Row 3 gives a number proportional to the ratio of the normalalue. As seen from Table |, the principal axes of the two
coordinates obtained from the g tensor divided into those obtainegensors g and A do not exactly coincide, but are fairly close

from the A tensor. together. As with the g tensor, we have expressedthen-
sor in the axes of the regular octahedron discussed above, and
Axes 9jx iy 9j.z the corresponding values are given in Table V. One can show
j=x_-0.1306 0.6354 0.9769 [21] that thedA is described by an expression similar to that of
Jj=y 06354 0.1809 -0.6923 the dg (cf. Eq. (11)) with the component oftaking the place

=z 0.9769 -0.6923 -0.0503 of the components dfl, but we have not explicitly calculated

TABLE IV: The components of the experimental g tensor, referred tothe coefficients equivalent to th@& andCr. Nevertheless,

the octahedron axes j=x.y,z, after substraction of the isotropic tensg?y (€ same m?thOd employed with the g tensor one can ob-
g=4.2387. tain quantitiesQ; proportional theQj;, and then calculate the

ratio of theQ; given in the second row of Table Ill to the cor-
respondingQ; obtained from the A tensor. These ratios are
Cr = —39320m*1/,&. The difference is not critical, and we givenin the third row of Table IIl, and those corresponding to

shall use thei values in the remaining of the discussion. ~ Qj of the same irreducible representation should be equal if
It is now possible to compare Eq. (11) with Table IV, and the theory were strictly true. The enormous value of the ratio
one immediately obtains values of the normal coordinates thtorresponding t®s is not significant, because the value de-
would reproduce the experimental g tensor when substitutefived from the A tensor is zero within the expenmental error,
in that equation. These values are given in the second line ¢ind one can therefore not draw any conclusions from the pair
Table Ill, and it is clear that they are rather different from the{Qz2: Q3}. On the other hand, the three ratios corresponding to
values calculated from the crystallographic position of@he {Q4,Qs, Qs} are fairly close to the same value, and they show
in the Ni compound. There are two alternative explanationghat the crystal fields that result from the present treatment are
for th|s resu't: either th@ around th@o |mpur|ty are in d|f_ falrly consistent W|th the a.Va.|Iab|e eXperImenta| I’eSU|tS.
ferent positions than in thi compound, or the model is not N the present calculation we have neglected the effect of
adequate. In the absence of experimental evidence to che&ké Tz triplet, that contributes tdg in third order perturba-
the first alternative, we shall discuss possible modification tdion (our calculation would be of the second order).This effect
the model emp]oyed above. Instead of the point Charge modd&yas calculated by TUCker[ll] who Obtain-ed (-:Ontributions that
we could use a model with dipoles, all “directed away from the@re about 6% of the second order contribution for Thele-
central ion”[4]. This model gives the same potential of Egs.formation and about 13% for th deformation, and would
(5_7) but with different expression for the ConstaAI§7C7 E. therefore not alter SUbStantia”y our conclusions.
Within each irreducible representatioBsand T, the normal A similar treatment of theCo*" in sites with deformed
coordinates necessary to reproduce the g tensor would then Bgtahedral symmetry of GEOH)PQ, or Co(OH)AsO, has
proportional to those obtained with the point charge model, aBeen considered in [3], but it is less interesting because only
only the values 0o€g andCr would change in this model, so the powder samples of these compounds have been measured.
that both the charge and dipole models would give essentiallyhe treatment of this problem shall not be further discussed in
the same results. A more complicated model, either involvinghe present work.
the change in the direction of the dipoles, or even consider- We conclude that employing the normal modes of the seven
ing the extended charges of the ligands, would increase verin complex to adjust the values of the g-factor tensor, it is
much the difficulty of the calculation. We should then remainPossible to estimate the crystal fields of the whole crystal act-
with the point charge model, but only as a means to obtain &9 on the Cé* impurity ion.
fairly simple crystal field that would be sufficient to explain
the experimental g tensor. This crystal field is ¥@) of
Eq. (5) given in the axes of the regular octahedron definedV: THE Co*" IN A DEFORMED TRIGONAL BIPYRAMID
in Table Il with theQ; given in the second row of Table IlI.
The agreement is perfect because there are as many free nor4n this section we shall study two members of the adamite
mal coordinates a8y components, but the point charge model family, which takes its name from the natural compound
employed should not be taken too seriously. [22, 23] Z(OH)AsOy. The cations can occupy two sites with
Although we have not analyzed the hyperfine tensor in derather different environments in this compound, one being oc-
tail, we can extract some information from its experimentaltahedral and the other penta-coordinated, so that rather dif-
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ferent magnetic properties could be expected when magnetic “Tig— *Tog %Asg *T1g(P) B Dgq
cations are employed. The recently synthesized compounds POy

Zny(OH)PQ, [24], Cox(OH)PQy [24], Mg,(OH)AsO, [25, a) 8450 15450 18350

26], as well as the natural G@H)AsO, [27], present these b) 7819 16013 18324 767.6 819.4
two type of sites. We have then found interesting to study AsOy

the properties of the Go ions as impurities in the two non- a) 7700 15500 18020

magnetic compounds, as a first step in the understanding of b) 7616 155685 18011 758.9 796.9

the properties of the concentrated compounds.

TABLE VI: a) The transitions between the grouﬁﬁflg level and

To analyze the ESR measurements it is necessary to ha(s evels shown at the top of each column, in"¢mand as-
signed from the experimental spectra of the octahedral complexes

information about the splitting of the energy levels with both f Cop(OH)PO, and Co(OH)ASO,; the level*Tyy(P) corresponds

the crystal field and the electronic Coulomb repulsion, and,, ihe highest of the same symmetry. b) The best fit, obtained with
we obtained this information from optical diffuse reflectanceihep andDy shown in the last two columns.

measurements [28].

4A/2 _ 4Ai/,4A/2/ 4E// 4E/ 4A/2(P) AEN(P)
PO
a) 6400 7000 11100 15800 19600

The experimental ESR powder spectra ofPCampurities
in both Zrn(OH)PQ and Mg (OH)AsO, present two differ-

ent sets of lines, one very intense, and the other just observ- b) 3233 4835 12868 17386 17947
able. The average of the g factors of the intense spectrais 4.15 <) 1511 3603 11106 15801 19604
in the two compounds, a value close to the 4.33 expected for o)

Cc?t in moderately distorted octahedral symmetry [29], and ) 5000 6250 105"70 16000 19800
it seems reasonable to assign these spectra to that environment b) 2707 4440 12210 17188 18595
and apply the same approach employed in the previous section c) 1437 3535 10876 15999 19805

in the study of the ESR of G0 in NH4NiPO,.6H,0 (see also
[2]). The remaining lines are very weak and we assign them tqaBLE VII: a) The transitions between the ground lefal! and the
the penta-coordinated symmetry (the possible reason for theigyels shown at the top of each column, given indnand assigned
small intensity has been discussed in [3]). from the experimental spectra of the penta-coordinated complexes
of Cop(OH)PQ, and Ce(OH)AsSQO,. b) The best possible fit to the
Here we shall only briefly consider the deformed octahedive transitions. c) The best fit obtained by adjusting only the three
dral symmetry, and give more details of the theory describingransitions of higher energy. The corresponding values, &@s, Dy
the ESR of C8* in the penta-coordinated environment, that 2" 9iven in rows b) and c) of table XV.
was partially discussed in [3]. This last complex is a distorted
trigonal bipyramid, and we first calculated the crystal fields
of the perfect trigonal bipyramid following the existing liter-
ature [30, 31]. To analyze the distorted complex we derived
the normal modes of the trigonal bipyramid with respect to The necessary optical data was obtained from diffuse re-
the reference complex, and then obtained the Jahn-Teller coffectance experiments in the 5000 — 50000 ¢wavenumber
tributions [7, 8] to the crystal field acting on the €gthatis  region [3, 28, 33]. The whole of the optical data used in this
generated by these modes. work was recorded at room temperatures, and all the relevant
data that was necessary in the present work is in the tables VI

In this calculation we have introduced a procedure tha@ind VIl. The system parameters of the octahedral complexes
uniquely defines the orientation and size of the two referencare slightly different from those already published [28, 33],
complexes, so that the normal modes that describe their defoecause they were obtained from the optical spectra after in-
mation are free from irrelevant rotations and expansions. ~ cluding a spin orbit correction in the ground orbital level [34].

A. Optical studies.

These results were then employed to analise the theoreti-
cal ESR spectra. We found that for the system parameters B. Electron Spin Resonance (ESR).
obtained from the optical spectra we should expect that the
ground doublet b&; = +1/2, corresponding to an allowed  The measurement of the ESR of & aimpurities in both
spectrum. The rather small intensity, of this type of spectréZny(OH)PQy and Mg (OH)AsO, has been discussed in [3],
seems to indicate a preference ofCdor the octahedral sites and some of the measured ESR spectra for the two samples
in the crystal structure, a conjecture that was advanced in are reproduced in Figs. 4 and 5. Only powder spectra could
preliminary report [32] on the ESR of impurities of this ion be measured for the two systems because it was not possible to
in Mg2(OH)AsQ,, and was confirmed in [3]. Employing a obtain single crystals, and small concentrations of Co (1% in
molecular calculation we have verified in the last referencehe arsenate and 0.1% in the phosphate) substitute the metals
that the formation energies of the two type of complexes, withn the two lattices. The curves denoted with (a) in Figs. 4 and
both Co and Zn as the central ions, are compatible with thi$ show the measured spectra for the two samples, recorded at
hypothesis. 4.2 K, and they both clearly show three sets of lines with a well
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Zn,(OH)PO,:Co (0.1%) Mg,(OH)AsO,:Co (1%)
el
0
.E :_'(IT
5 c
o =
© 2
- 8
T
I
= S
x -
T &
4.55 g=2.03
0 100 200 300 400 500
B(mT) 0 100 200 300 400 500

B(mT)
FIG. 4: ESR spectra of Go in Zny(OH)PQ,. a) Experimental

spectrum. b) Sum of the simulated spectrum for both the hexal':_lG. 5: ESR spectra of & inMg,(OH)AsQ,. Curves a), b), and

coordinated and penta-coordinated complexes. c¢) Simulated speg) and the meaning of the arrows and values in curves a) and c) are
trum for the hexa-coordinated complex. The g-values of both th%h’e same as in figure 4

octahedral and of the penta-coordinated complexes are given in ta-
ble VIII. The arrows in ¢) show the g-values and their positions for

the octahedral complex, while those in a) correspond to the penta- 91 92 93 A1 Ay As
coordinated complex. The insert gives the detail of the experimental POy
hyperfine structure and of the simulated one (arogs)d attributed a 5.89:-0.02 4.55-0.05 2.02+-0.02 240+5 15548 8543
to the C&™ in the triangular bipyramid. b 8.405 3.24+0.3 2.0+0.2

AsOy

a 6.22+0.02 4.21+0.05 2.05+0.02 140+£5 120+£7 55+5

b 9.£15 3.+£05 2.0+0.2
defined hyperfine structure that identifies théCmn. There
are also some extra lines, rather weak in the phosphate b&fBLE VIIi: Values of the principal g and A parameters, obtained
more intense in the arsenate, that preclude an automatic fittifgP™ the spectra in Figs. 4 and 5. The values of the A parameters are
of the spectra, and the powder spectra of the hexa-coordinatdg19 " ¢m " units. &) Octahedral complex: tgeandA values were

Co?+ were simulated with a more flexible program. The best® tained from a program simulating powder spectra, as described

results, plotted in the curves (c) of Figs. 4 and 5, correspon@szﬁaﬁg'bm The parameters for the penta-coordinateff Calso
. . y simulation.

to the g-values shown in rows a) of table VIII Their values and

positions are also shown by arrows below the simulated curves

(c). The extra lines near 200 mT in the phosphate show an

hyperfine structure typical of the €b, and are given in more

detail in the inset of Fig. 4. The remaining lines in the two ) ) . L .

compounds are rather broad and show a collapsed hyperfine We shall briefly discuss the hexa-co_ordma@:ﬁ 1ons in

structure. The curves (b) in the Figs. 4 and 5 show the sur§M2(OH)PQ: and Mg(OH)AsQ, following the same treat-

of the simulated spectra of the hexa-coordinateddn (c), ~ ment employed in Section Ill. Th@o”" is surrounded by six

plus a simulation of the penta-coordinatec?Ciiat employs ~ 0Xygens in a fairly regular octahedron with positions given

the g- values given in rows b) of table VIl and is adequately in table 1X, and only powder spectra were available. The

renormalized to account for the smaller relative concentratiofree principal valuesj of the g tensor could be measured,

of the last Compound_ Thewa]ues have rather |arge errors, but without all the details obtained for the MN|P046H20

and their positions are shown by arrows above the measuré®mpound (see table VIII).

spectra (a) of Figs. 4 and 5. In the inset of Fig. 4 it is also

shown the detail of the hyperfine structure near 200 mT both As before we shall consider the effect that the crystal field

in the experimental and in the simulated spectrum. generated by the normal modes of the octahedron has on the

C. Hexa-coordinated Co
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n a(A) b(A) c(A) a(@A) b(A) c@) data and are given in table VI. With these values one ob-
POy AsOy tainsa = —0.9820andb = 0.1886for the phosphate, and the

1 4.7150-1.24200.0000 0.9197-1.0794 0.0000 proportionality constant of the angular momentum is then

2 4.9627—-1.0327 2.9700 0.6438-1.2633 3.0255

3 2.1592-1.27131.7274-1.9091 —1.1662 1.3476 a=-15a%+b%>=-14110 (18)

4 3.0793 1.0327 2.97006-0.6438 1.2633 3.0255

5 3.3270 1.2420 0.0000-0.9197 1.0794 0.0000 As discussed in Section Il we use Eq. (11) to relate

6 5.8827 1.2713 1.7274 1.9091 1.1662 1.3476 the changedg in the g tensor with the normal modé€y of

7 4.0210 0.0000 1.5135 0.0000 0.0000 1.4910 the complex ofCc?* with the six neighboring O, employing
A =283 cm ! as the splitting between thies doublet and

he lowest g quadruplet in the octahedral symmetry in the P

TABLE IX: The columnsa,b,cgive the position of the six oxygens
(n=1,...,6) and Cobalt (n=7) in the hexa-coordinated complexes o

. ) ompound.
Coy(OH)PO, and Ce(OH)AsO, with respect to the three unit cell .
axes.The X,Y,Z axes roughly correspond to n=1,2,3 respectively, tak- The values oCe .and Cr are obtained by the same pro-
ing n=7 as the origin. cedure employed in Section Ill. For the Co-O distance

R we usedR = 2.11176A, corresponding to the reference
octahedron defined below, and we found the valGgs=
Q/R Q3/R Q4/R Qs/R Qg/R 6436 cn/A andCr = —3666 cntl/A. We can now cal-
POy culate the crystal fields that would describe the experimen-
l?) 8 _8'%'23; 8'8%{? 00(.)23;1778 035161:125 tal values ofg or, what is equivalent, the corresponding nor-
) = = = = mal modes within the approximations just discussed. As

AsOy . .
a) 0 —00441 004032 0.04032 009989 there are more normal modes than data, we fix the relations

b) 0 —0.09328 —0.02818 —0.02818 —0.06982 Qa4 = Q3 = 0.3044Q6, which correspond to the normal modes
calculated below from the crystallographic positions, and we
TABLE X: Normal modes of the octahedral Co divided by the Co-O Obtain a perfect fit to the experimental values employing the
distanceR in Co:Znp(OH)PO, and Co:Mg(OH)AsO,. a) Values normal modes given table X.
that adjust the experimental values of the g tensor. b) Values ob- From table VI we obtain the coefficiens= —0.9824
tained from the crystallographic positions corresponding to the puréy = 0.1867 anda = —1.4128for Co,(OH)AsO,. The ESR
compounds. data was then adjusted with the normal modes coordinates
given in table X, where we usdd= 2.1224A, Q4 = Q3 =
0.4037M, Cg = 6287 cmt/ A, Cr = —3558 cmi/ A and
gyromagnetic tensay. This method systematizes the proce-A = 282 cni2, for this compound.
dure, and in table X we give the normal modes that reproduce To calculate the crystallographic normal modes of the octa-
the experimental values of the thrge We shall then choose hedron it is necessary to chose a reference perfect octahedron
a reference perfect octahedron centered in@b&", calcu-  centered in th€o?*. To this purpose we consider the three
late the normal modes corresponding to the crystallographinormal modes of pure rotation, [4)19, Q20, andQ»1, and
positions of the O, and compare them in table X with thosewe chose the axes of the reference octahedron so that these
obtained from the experimental spectra. three normal coordinates are zero, because they should not
The average values of g are 4.1537 for Co@H)PO, have any effect on the properties of the complex. The value
and 4.153 for Co:Mg(OH)AsQ,, and to analise these results R=2.11176A of the Co-O distance in the reference octahe-
it is sufficient to consider th€o?" in pure octahedral sym- dron was chosen so th@ = 0, and by this whole procedure
metry, because the crystal fields of lower symmetry do nowe obtain a unique reference octahedron and minimize the ef-
change this value in our approximation. The calculation fol-fect of irrelevant rotations and expansions on the values of the
lows the same lines given in reference[2] and shall not be rerormal modes. The direction cosines of the three Co-O di-
peated here. rections in the reference octahedron are given in table XI, and
The values of the constangsand b that give the mixture the normal modes derived from the crystallographic ionic po-
fore from the Racah parametBrand the crystal field para- X- The normal modes calculated from the crystallographic

meter Dy, that were estimated [34] from the spectroscopicPOSition of theO in the octahedral complex are different than
those obtained from the experimentatensor, given in the

first line of the same table. This result indicates that although

X Y Z X Y Z the nearesD to theCo are the main source of the cubic field
PO, ASO, [4], the remaining non-cubic perturbations have strong con-
a 04054 _05794 —_0.7071 0.3800 05963 —0.7071 tributions due to the rest of the crystal. We conclude that the
b 0.4054-05794 07071 0.3800-0.5963 Q7071 experimentaly tensor could be explained by the crystal field
¢ —0.8194 —0.5733 0.0000—0.8434 —0.5373 0.0000 V(r) of Eq. (11) given in the axes of the reference octahe-

dron defined in table XI with th€; given in the row a) of
TABLE XI: Direction cosines of the three axi§ Y,Z of the_ reference  table X. The agreement is perfect because there are more free
perfect octahedron of GOOH)PO, and Co(OH)AsO, with respect  normal coordinates than availallig components, but the the-

to the three crystallographic axas b, ¢ ory presented can only be considered a first approximation. In
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particular, although the crystal field theory of point charges n a(A) b(A) c(A) a() b(A) c(A)
gives the right symmetry properties, it is only a very rough POy AsOy
description of the physics of the problem, but the crystal field 1 4.9008 3.2438 2.9700 4.9744 0.9132 3.0180
V(r) obtained give a much better description of the system 2 1.8617 2.9132 1.2426 1.9003 1.1604 1.3442

4 3.1412 5.1252 2.9700 3.2085 3.2015 3.0180
5 3.0793 1.0327 2.9700 3.2736 -0.9132 3.0180
6 2.9102 3.0621 2.9700 3.0056 1.1561 3.0180

Although we have not analyzed the hyperfine tensor in de-
tail, we have verified that its components are compatible with
the normal modes necessary to describedth&nsor.

In the present calculation we have neglected the effect of ABLE XII: The columnsa,b,cgive the position of the five oxygens
theT, triplet, that contributes tdgin third order perturbation  (n=1,...,5) and Cobalt (n=6) in the penta-coordinated complexes of
(our calculation is of the second order). This effect was calcu€o,(OH)PO, and Ce(OH)AsO, with respect to the three unit cell
lated by Tucker[11] who obtained contributions that are abougxes.

6% of the second order contribution for tAge deformation

and about 13% for th& deformation, and would therefore X Y Z X Y Z
not alter substantially our conclusions. PO, ASOs
a 0. 0. 1. -0.00203 O. 0.999998

b 0.99931 0.03720 0. 0.9996980.024490.00203
c —0.037200.99931 0. 0.02449 0.9997 0.00005

D. Penta-coordinated Co

TABLE XllI: Direction cosines of the three axi%,Y,Z employed to
1. The crystal field of the trigonal bipyramid. define the reference perfect trigonal bipyramid ob@H)PO, and
Cop(OH)AsO, with respect to the three crystallographic axjb, ¢

The structure of the penta-coordinated complex ot'Cis
very close to a trigonal bipyramid, and the positions of the Co
and of the five O are given with respect to the crystal axes ino co§m,¢) and serim,¢) respectively [36]. In the ab-
table XIl. Following a method similar to that employed in the sence of the spin-orbit interactions one employs the irre-
octahedral case we chose an orthogonal system of axes X,Y,2ycible representations of the trigonal bipyramid to clas-
such that the normal modes obtained from the crystallographigify the eigenstatels, S L, I",y,a) of the Hamiltonian, which
positions would not have contributions of irrelevant rotationsare simply related to the statéa,SL,M.) (the indexa
and expansions. The direction cosines of the axes of this sy&entifies the particular states with the sa®é). In ta-
tem with respect to the crystal ax@s andc are given intable  ble | of reference 30 we find that the irreducible representa-
XlIl, and the coordinates of the six atoms in the reference pertions A, A7, A;, E’ andE" are contained in the two terms
fect trigonal bipyramid are given in table XIV. There are two “F and“P, and that thda,S,L,M,) states that generate the
different Co-O distances in the reference complexccorre-  corresponding subspaces af8,3/2,3,0),|3,3/2,1,0)}—
sponds to the three ligands in the XY plane (equatorial O) and,, {|3,3/2,3,£3)}— (A{, A}), {|3,3/2,3,+2)}— E’ and
R. to the two along the Z axis (axial O); their values for the {|3,3/2,3,+1),/3,3/2,1,+1)}— E”.  The Hamiltonian
phosphate and arsenate are given in the caption of table XI\Wvithout spin orbit interaction is diagonal in the partngrs
Two crystal field paramete®s and D; are necessary in the of each irreducible representatidh and in the spin com-
trigonal bipyramid, and are given in the point charge modeponentMs, so it is not necessary to write them explicitly

[30, 35] by: here. The onlyC{’(6,¢) that contribute to Eq.(20) in the
perfect trigonal bipyramid have= 0,2,4 andg = 0. To cal-
De — [4% . 3%1} (r ), culate the matrix elements of the Hamiltonian that contains
TR R Ve = Yi—17Vet(ri), we have used the standard tensorial op-
e [16gc 9G] 4 erator techniques [37] as well as the unitary operators obtained
Dt = 763 [ Re + Rg] (r, (19)  form Nielsen and Koster’s tables [37, 38], and we have veri-

fied that our matrix coincides with that given in table Il or

where we shall usg, = gc = —2e. The crystal field potential  reference 30.

Vet can be expressed by the usual formula Our main objective here is to find the gyromagnetic fac-
tors that one would expect to measure in the penta-coordinated
Cc?t, and we shall employ the spectroscopic data measured

Ver (r ;\/ 2k 1 ;CM o1 Yieq(8e; $0) cé")(e,q)), (20) by diffuse reflectance to estimate the parame®eids andD;
T for both Co:Zp(OH)PO, and Co:Mg(OH)AsO,. In the two

rows labelled a) of table VII we give the corresponding as-

whereYiq(6,,9,) are the spherical harmonics at the positionsignments of the transitions from the grouf#g, to the levels

of the-th ligand and th€” (8, ¢) = \/41/(2k+ 1)Yiq(0,0)  With symmetry*A], “A7, 4E”, “E’, *A,(P) and*E” (P), where

are usually called the Racah S ratlonallzed spherical harmorwe use(P) to indicate the higher levels of the same symmetry.

ics. In our actual calculation we have employed the real From the eigenvalues of the Hamiltonian in the absence of

combinationsCi(6,¢) and Sm(6,4) that are proportional the spin-orbit interaction, we find by trial and error the values
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sider only that subspace, and the corresponding matrix of the
total Hamiltonian splits into five boxes of the following di-
mensions:(Mj = 1/2) — I'7(a) — (7x7), (M3 =3/2) —
Fg(a) — (6)(6), (MJ = 5/2) — Fg(a) — (4><4), (MJ =
7/2) — rg(b) — (2 X 2), (MJ = 9/2) — rg(b) — (l>< 1), and
there are no matrix elementsdf; = 11/2, i.e. I'7(b), within
the subspacé*F,*P} of d’ that corresponds t8= 3/2. The
matrices we have obtained coincide with those given in table
TABLE XIV: The columns X,Y,Z give the position of the five oxy- || of reference 31, and their eigenvalues have been calculated
gens (n=1,...,5) and Cobalt (n=6) in the reference perfect pentay the different sets oB, Ds and D; values that were ob-
goooigg”ﬁ]egﬁggg%ﬁz‘;gﬁg'iof ggg;&%gﬁzé'“_ag%g‘%; tained above, employing the one-electron spin-orbit parame-
/°§] with res’pect 1o the axes d4efined in.table o : ter { = 580 cnt L. For all the set of parameters in table XV
the lowest doublet is &7(a) (M; = +1/2), separated by at
least75 cnm ! from the followinglg(a) (M3 = 3/2) doublet,
B Ds Dt B Ds Di and by more thar2377 cmr! from the remaining doublets.
POy AsOy This situation is not altered by making fairly large changes
b 728. 165. 947. 785. 313 919. in the three basic parametes Ds and D;, and shows that
€ 852. 745. 885. 875. 749. 869. even for moderate increases in the temperature only the low-
. ) 1 _ _ est doublet M; = +1/2) would be occupied. This doublet
TABLE XV: The values ofB, Ds, Dy in cm thatfit the optical ran- 55 5)16wed ESR transitions, and should be observed within
sitions, given in table VI, of the two penta-coordinated complexes o o oximation employed. If the position of the two low-
The best fit to'the five tral’.lS.I'[IOI’l.S is given in row b_), and_ the best fit doublets were exchan ed. the ESR transitions of the lowest
to the three highest transitions in row c). The spin orbit paramete stdou . geda,
{ = 580cm ! was used in all these fittings dgublet \(/jvould be forbidden and the spectra should not be then
observed.
The fact that the two lowest doublets hdve = +1/2 and

of B, Ds andD; that minimize the mean square deviajpfor ~ My = £3/2 and are separated by a large energy from the re-
the two systems, and we give them in row b) of table XV. TheM&ining doublets is easily understood when we notice that the
transitions calculated with these two sets of values are givelpwestlevel |ln.the absence of spin-orbit interactioh$. The

in the two rows of table VII that are labelled b). The fitting is ©"Pital partA; is a singlet with no orbital angular momentum,
rather poor, and in particular the transitions to the legals ~ and the total would then correspond to tr= 3/2. These

4A% and*E” fall below the range of the measuring equipment.four states would be rather far apart from the remaining ones,

As an alternative we have fitted only the three highest transi‘:’Ind would splitin the way calculated above through the higher

tions, obtaining the values given in row c) of table XV, and the®"9€" SPin orbit mixing with those excited states. _

corresponding values calculated with these two sets of para- 1€ Present calculation was for a perfect trigonal bipyra-
meters are given in the two rows of table VII that are labelled™d With Dsn symmetry, and one wonders whether the defor-
c). In the following section we shall consider these two setdnations with respect to this structure could alter the relative

of values to estimate the gyromagnetic factors for each of th@0Sition of the two lowest doublets, thus changing from an
two compounds. allowed to a forbidden ESR transition. We shall then study

the effect of these deformations, both on the relative position

of the two lowest doublets and on the value of the gyromag-

netic tensor. In this study we shall follow a treatment similar

to that employed in the octahedral case, by considering the

effect of the normal modes of the trigonal bipyramid on the
It is now essential to include the spin orbit interaction Hamiltonian of the penta-coordinated €o

into the calculation. The basis of the irreducible represen-

tationsl'7, I'g andlg, of the double grou®3, have a sim-

p!e expression in our system (cf. reference [31]): they are 3. The normal modes of the trigonal bipyramid
given by |[d’aSLIMy), and in particular we havé7(a) =

(
{|d7°‘SLJi 1/2)}, T(b) = {‘dYO‘SLJi 11/2)}, Tg(a) = As in the octahedral case we are interested in a contribution
{\d7uSLJi 5/2)}, Te(b) = {\d7aSLJi 7/2)}, To(8) = 1o the Hamiltonian of the same type of Eq. (5), but here the
{|d’aSLI+3/2)} andg(b) = {|d’aSLI+9/2)}. These normal modex; andV;(r) transform like the same partners
states are easily obtained from tW,a,SMS,L,MQ cal- of irreducible representations of the trigonal bipyramid. As
culated above by employing the 3-j or the Clebsch Gordarthe undistorted complex does not have a center of symmetry,
coefficients. In the absence of magnetic fields the two statelsoth the even an odd modes against reflection in the equatorial
of each Kramer's doublet have the same energy, and to caplane may have non-zero matrix elements inside the configu-
culate the energies of the system it is enough to considewtion d’ of Co?*, and therefore we shall need to consider
only the states with positivé;. As only the mixture of the both types of normal modes in our discussion.
4F and“P states is important in our problem we shall con- The departures of the six atoms of the complex span a re-
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2. The spin-orbit interaction in the trigonal bipyramid.
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Q X1Y17Z1 Xp Y2 Zp X3 Y3 Z3 X4 Ya 24 X5 ¥5 Z5 ML M{  (*F, Mg, M Ve [*F, Mg, M[ >)
231200 1 v/30 1 /300000 00 —3 —2 —(3c2+10c4) Q/ (7V3)
23 0 20v3-10+3-1 0000000 —3 —1 (6¢2Qa—15¢4Qy) /(56V/5)
V2 0 00O 0O 00 0O 0 0100100 -3 0+/15c¢4Qq/4
V2, 0 00 0 0 0 0 0 0010010 -3 1-/5c¢4Q;/16
ﬁQE, 1001 001 0 0000000 2 ~1-(9c2—40c4) Q§/<21\@)

3% 0100 10 0 1 0000000
\/égs 0010 010 0 1000000 2 0(1262Qa+504 Q) /(56V10)
V23 000 0 00 0 0 0001001 2 1V54Qq/(2V6)

V2o 000 0 0 0 0 0 00-10010 2 2-5c4Q;/(16V3)

V2w 0 0 0 0 0 0 0 0 01 00-100 -1 0-v2(3c2-25¢4) Qi/(35/3)

-1 1(18¢2Qa+25¢4Qp)/(140V/3)

TABLE XVI: The six even (1-6) and four odd (7-10) normal mo_d_es 1 2-/5c4Qq/ (2\/é>

E’ that are relevant to our problem. The numbers are the coefficients 1 3-/5c40:/16

of the departuresj = {Xj,yj,zj} of the j=th ion from their equilib- ) ) Qc/ .

rium position. 0 1+v2(3c2—-25¢4) Qi/(35V3)
0 2(12c2Qa+50c4Qp)/(56V/10)
0 3-/15¢4Qq/4

ducible representatidn of the D3y, group, that can be reduced 1 2(9c2-40c4) Q;/ (21\/5)

as follows:" = 2N+ A, +4E'+ 3 ’2’+2E”_(see e.g. the Eq. 1 3(6c2Qa—15c4Qp)/(56V5)

(9.19) in reference [39]). Of these irreducible representations, 2 3(3c2+10c4) Qi/ (7V3)

the A, corresponds to an axial rotation, oé to two equato-
rial rotations, one\; to an axial translation and orfi€ to two ~ TABLE XVII: The non-zero matrix elements of the crystal field
equatorial translations. After eliminating these three transV¢r = 3 Qj Vj(r) generated by the normal mod€s, ...Qi1o be-
lations and rotations we are left with three even irreducibleween statefr, S Ms, L, M) = |*FMsM_ ) in the subspactF x 4F.
representationg’, as well as twoA] and oneE” odd repre- Only the elements corresponding to the upper triangle of the matrix
sentations. The six even normal mod€s (.., Qg) transform ~ are given, and the .rer.na.ining ones are obtaingd by ngmitian con-
in pairs like the partners d&’; they have been obtained em- jugation. The matrix is independent of, and diagonal in, the spin
ploying standard techniques[39, 40] and are defined in tablE2MPOoNentMs. To compress the table we have used the follow-
XVL. In the same way the two mode§ (Q7,Qg) and the two 3 abbreviations:Qa = (Q2 +1Q1) +5(Q6 +1Qs), Qp = 3(Q2 +

v o 1Q1)+7(Qs +iQ5), Qc = 9(Q2+iQ1) + (Qs +iQs5), (even modes)
partners oE"” ((Qg, Q10) have been obtained, and are def'”edande —1Q7, Qe = (1Qg+ Q10) (0dd modes), as well as their com-

in the same table. i © OF OF OF "
' plex conjugate®, QF, Qi, QF andQ,

The modes)s3,Q4, andQg are translations of only the two & by e °
axial oxygens, and th®s, Qg, andQy are translations of only

the three equatorial oxygens whi® and Qo are rotations ML M{ (*P Mg, MLV, [*P Mg, M[ >)
along thex andy axis of the two axial oxygens. As these -1 03c2Q;/5

modes are only partial rotations or translations they are capa- -1 1-3v/3¢2Q,/20

ble of changing the crystal field. Theandy rotations of the 0 1-3c2Q;/5

three equatorial oxygens can be combined v@thand Q19

to give full rotations of the trigonal bipyramid, and theota- TABLE XVIII: Same as in table XVII but for the sub-matri%P x
tion of the three equatorial oxygens is already a full rotation,'P- The same abbreviations are used here.

so these three sets of displacements would not appear in our

calculation.

From tables XII, XIlII, and XIV we can calculate the dis- fractione of that particular normal mod®;. Expanding this
placementsi; of the five O with respect to their positions in change oW:¢(r) in a power series of the coefficienaind tak-
the reference trigonal bipyramid (cf. section IVD 1) and cal-ing the linear terms irg gives the corresponding;(r) from
culate the corresponding normal mod@g defined in table Eq. (5). As we are only interested in the subspaﬂé“ P}
XVI. Employing theseQ; we calculate in the next two sec- with S= 3/2 of the configuratiord’, and theV;(r) are inde-
tions the g values of the distorted complex. pendent of the spin componeNs, we need al0x10 matrix

(*L, Mg, M_ V&g %L, Mg, M| ) for eachQj, with fixed Ms and

L,L' = 3,1. There are regularities between the matrix ele-
4. The effect of the normal modes on the crystal field ments associated to differe@, and we shall employ the fol-

lowing abbreviationsQ, = (Q2+iQ1) +5(Qs +1Q5), Qp =

We can now try and find an expression similar to Eqg. (5)3(Q2+1Q1) 4+ 7(Qs +iQs), Qc = 9(Q2 +iQ1) + (Qs +iQ5),
for the trigonal bipyramid. To this purpose we have employedQq = iQ7, andQe = 9(Q10+iQg), as well as their complex
a relation equivalent to Eq. (20) to calculate, for each of theconjugate<Q;, Qf Q¢, Qj andQjg. In tables XVII and XVIII
ten normal mode®); given in table XVI, the change in the we give the non-zero matrix elements in the upper triangle of
crystal fieldVq¢(r) when all the ligands are displaced from the submatrice& x *F and*P x “P respectively, and in table
their equilibrium position in the reference complex by a smallXIX we give all those associated wift? x *F; the remaining
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ML M{ (*P,Ms, MLV [*F, Mg, M[) 91 % 93 Gav
% = PO
-1 -3 (72c2Q;—5¢4Q;) / (56v30 4
bo 4.8027 4.8027 1.9904 3.8653
-1 -2 V2(12¢2 + 5¢4) Qe/ (NE by 5.0477 4.5577 2.2998 3.9684
-1 0 —2(18c2+25c4) Q;/105 by, 5.0477 4.5577 1.9904 3.8653
-1 1(24c2Qa—25¢4Qp)/ <280ﬂ> Co 5.0435 5.0435 1.9829 4.0233
} cp 5.7379 4.3492 2.1171 4.0680
L2 \/§C4Qd/4 C2 5.7379 4.3492 1.9829 4.0233
1 3-/5caQ;/ (8V6) ASO;
0 -3 -v5c4Qq/ (4V3) bo 4.8723 4.8723 1.9885 3.9110
0 -2 (12c2Q3+5c4 Q) / (28V10) by 5.7637 4.2279 2.2364 4.0760
0 -1 v2(24c2—25¢4) Qe/ (35/3) by 5.7637 4.2279 1.9885 3.9934
o 1z z5ed Q309 b $40 11014 1999 s
8 g (_:I-\Z/EZCSEIQ+/5(Z4\/(§§)/(28@) gg 7:1232 3:5385 1:9854 4:2157
d Cy 7.1232 3.5385 1.9818 4.2145
1 -3-V5c4Qc/ (8V8) Cs 6.8591 3.2744 1.9818 4.0384
1 -2/5c4Qy/4
i} *_ * TABLE XX: The principal components of the calculateften-
1 -1 (24c2 25c4 280v2
10 (2 18 2Qa2 Q*b)1{)< M> sor for the penta-coordinate€o? and their averagegay in
(18c2+25¢4) Qz/105 Co:Zmp(OH)PQ, and Co:Mg(OH)AsO,. The rowshy andcy are
1 2-v2(12c2 + 5¢4) Qe/ <7¢T5) for the reference trigonal bipyramid, whiba, b, bz, c1, ¢2, andcs
1 3 (72c2Qa—504Qp)/(56v/30) include the effect of deformations produced by the crystallographi-

cally calculated normal modes. Rows andc; include all the nor-
TABLE XIX: Same as in table XVII but for the sub-matrfse x 4F. mal modes, whild, andc; only include the even modes, and in rows

All the non zero matrix elements are given here, and those corrd?s andce we have also puQ; = Q, = 0. The values oB, Ds, Dy

sponding to the sub-matr& x P are obtained by Hermitian con- and¢ employed here for rowb; (j = 0—3) are given in row b of
jugation. The same abbreviations are used here. :ﬁgﬁaﬁg and those corresponding to rogysare given in row c of

at, with the two sets of parameté3sDs andD; obtained in
at section, the two lowest doublets belong to the= 1/2
ndM; = 3/2 subspaces and that they are separated by more
han75 cn !, while the remaining doublets are more than
2300 cnrt above them. A good approximation to calculate
the effect ofV ¢ on these levels is then to consider the total
Hamiltonian inside the two subspadds = 1/2,3/2, and one
has then to consider a matrix of 26 x 26 elements, correspond-
ing to values ofl equal t09/2, ..., 1/2. The eigenstates of this
matrix show that there is no change in the relative position
of the two lowest doublets, so that the ground state remains
My=1/2.

non-zero elements are obtained by Hermitian conjugation. |
is interesting to note that the matrix elements associated tg:
Qs, Q4, andQg are all zero: these modes involve only the two
axial ions, and the corresponding two atom partial comple
is not only invariant against the operations®fy,, but also
against a twofold axis along thedirection. This extra sym-
metry forces all the one-electron matrix elements betweeen
states of the crystal field associatedQg, Q4, andQg to be
zero.

As in the crystal field of the reference complex, g
has coefficients containing the Co-O distanBgsandR;, as
well as the atomic averagés?) and (r*), and they appear
ascp; andcy in the tables XVII, XVIII and XIX. As theR,
andR; are nearly the same, it is possible from Eq. (19) to
relate the crystal field parametddg andD; to these two co-
efficients. Assuming thaR, = R; we obtainc, = 14 Dg and
cs = (168/25)Dy, but we have derived slightly better relations
considering the difference betweBg andR.:

5. The g-factors of the penta-coordinated®Co

To calculate the spin Hamiltonian we employ the traditional
method [41]. In the present case we consider the four states

cr— 7 D of the two lowest doublets of the reference trigonal bipyramid

2 —(3/2)+2 (Ra/Re)3 calculated in section IVD 2 as the eigenstates of the unper-
21 turbed Hamiltonian, wittM; = 1/2 as the ground doublet and

%= (o/8)+ 2 (Ra/RC)5Dt' (21) M, = 3/2 as the excited one. Both the Zeeman term and the

crystal fieldV produced by the deformation of the normal
As with the reference complex, we employ the 3-j coeffi-modes are the perturbations, and in the usual way we find the
cients to calculate the matrix elements of the crystal fiéld ~ gyromagnetic tensayin second order. We have calculated the
in the representation that diagonalizes the tdtahdJ,, be-  three components af for the penta-coordinated €o for all
cause the double11$i7(xSLJl\/h> are basis for the irreducible the sets 0B, Ds andD; given in table XV, and the results are
representations of the reference trigonal bipyramid, and thgiven in table XX. The values corresponding to the reference
eigenstates of the reference complex would then belong ttyigonal bipyramid are given in the roviig andco, while those
subspaces with fixet;. In section IVD 2 we have shown given in the rows; andc; (with j = 1,2 for the phosphate
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andj = 1,2, 3 for the arsenate) have been calculated employ- We notice that the relative intensities of the extra lines in
ing the normal mode®); derived from the crystallographic Fig. 4 are rather smaller than those in Fig. 5. This can be
positions (cf. table XII) as discussed in section IV D 3. Oneunderstood because the concentration &t'n the arsenate
verifies in table XX that the average of the principal values ofis ten times larger than in the phosphate, and this should also
gis not very different from 4.33, but that it changes withnd  alter their relative occupations.

the crystal field parameters more than in the octahedral case. The rather small intensity of the lines that could be at-
The rowsb; andc; include the effect of all normal modes, tributed to the penta-coordinated complex indicates a very
while in by andc; only the even modes are considered. In thesmall occupation of Co in the penta-coordinated sites. This
phosphate case, the crystallograpRic= Qs = 0, and for the  conjecture has been verified [3], from the heat of formation of
arsenate we have also imposed this condition in royand  these compounds, estimated by a molecular orbital calculation
c3. From table XX we conclude that of the heats of formation of the clusters [M(OP(QM]?", n

. =5,6 and M = Co and Zn.
e With only even modes an@1 = Qs = 0 (compare rows

b, andc; in phosphate antis andcz in arsenate with
rowsb; andcy) the averagg is not altered by the lower
symmetry crystal fields generated by the remaining nor-
mal modes, and these fields affect the equatorial compo-
nents ofg, but leave their sum and the axial component
unaffected.

V. CONCLUSIONS

We have discussed the ESR of the @of+ in different sys-
tems: Co*" in aMgO crystal [1], Co?" in single crystal and
powder samples of NHNiPO,.6H,0 [2] and Co?* in pow-
¢ Only the axialg-factor is altered by the inclusion of the ders of Co(OH)PQ, and Ce(OH)AsO, [3].

odd modes, while the two equatorigdfactors are not ~ The Co?* in a MgO crystal is in an octahedral symmetry,

altered (compare rows; with b, andc; with ¢2). This  and we discuss why it retains its cubic symmetry although it

result is true both witlQ; = Qs = 0 (in the phosphate)  would be naively expected to suffer a static Jahn-Teller defor-

or otherwise (in the arsenate). mation, because the ground teff has a rather large orbital
degeneracy. We then briefly discuss the origin of this effect,
and point out how the Jahn-Teller crystal fields affect the prop-
erties of the system, like the ESR and the electronic Raman
scattering fronCo?*.

When Co** substitutesNi**  in single crystals of

From the calculations in the present section, it follows thatNH4NiPO4.6H,O its nearest O form a deformed octahedron,
one should observe an allowed ESR line of?€Cdrom the  and we study the effect of the non-cubic crystal fields em-
penta-coordinated complex when that site is occupied. Wgloying the normal modes of the octahedron to simplify the
have seen in Section IV B that besides the lines associated gystematic study of the effect of these fields.
the octahedral spectra, there are some weak extra lines thatThere are two type of sites @0?" in the compounds
could be interpreted as belonging to that complex: their estiCo(OH)PQ; and Ce(OH)AsO, of the adamite type: a de-
matedg-factors are given in rows b) of table VIII, and should formed octahedron and a deformed trigonal bipyramid, and
be compared with the values given in table XX, that werewe have analyzed the ESR of impurities of?Can synthetic
calculated for different sets of parameters derived from therystals of Zp(OH)PQy, Mg2(OH)AsO, in powder form.
optical spectra and with normal modes calculated from theCrystal field theory has been employed to try and understand
crystallographic positions. It is clear that the arsenate valthe experimental ESR results for the two“Cocomplexes
ues in rowcs of table XX are fairly close to the estimated with coordination five and six that are present in the adamite
values in rowb from table VIII. It is well known that the structure. The Racah parameBeas well as the crystal fields
g(i) obtained from the crystallographically calculated normalDq for the octahedral complex and bolh, and D; for the
modes are generally different from those experimentally obtrigonal bipyramid one have been estimated from the assign-
served, as discussed for the octahedral compounds (cf. sements that were made of the diffuse reflectance spectrum of
tion IVC ), and we could expect that a good fitting could these two complexes. Two alternative sets of parameters were
be obtained by making small changes in the crystallographiproposed for the penta-coordinated complex.
normal modes. To verify this assumption it is sufficient to From the crystallographic structure, a reference octahedron
change onlyQ, and Qg, keeping all the remaining modes centered in the Co was defined, such that the normal modes
at their crystallographic values. Employi@/R, = —0.03  of the complex corresponding to rotations and expansions
andQg/Ry = —0.07 for the phosphate we find(1) = 7.05,  would be zero and the remaining normal modes would not
g(2) = 3.03, andg(3) = 2.12, while for the arsenate we obtain have any contribution of these irrelevant deformations, and
g(1) =7.62, g(2) = 3.04, andg(3) = 1.99with Q2/R, =0.01  following the same method employed to study the ESR of
andQs /R, = —0.07. These fittings are fairly good, and show Co?* in NH4NiPO4.6H;0, the crystal fields that would repro-
that the ESR spectra of €oin the two compounds can be de- duce the experimenta tensor of the octahedral complex in
scribed perfectly well within our theory, but the crystal fields both Zn,(OH)PQ; and Mg (OH)AsO, have been obtained..
obtained can not be taken too seriously because of the very As the penta-coordinated complex seems to have at most
large errors in the experimentgtensor. minor contributions to the ESR spectra, we have analyzed the

e The fields associated to the mod@s and Qs change
the sum of the two equatorig-factors but leave the
axial value unaffected (compare rotswith bz andc,
with cz in the arsenate).
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possible motives for this behavior. We argue that two double XX for both the perfect and deformed trigonal bipyramid,
blets withM; = £1/2 andM; = £3/2 would be lowest in  this last subjected to different deformations. The trace of the
energy, separated by a rather large excitation energy from thgtensor in the perfect trigonal bipyramid changes more with
remaining excited states. T = +3/2 has forbidden ESR the parameterB,Ds andD; than in the octahedral case, where
transitions, and this would explain the experimental results ift is always fairly close to 13.
that were the ground doublet, but when the crystal field of The trigonal bipyramid has no center of symmetry, and it
the trigonal bipyramid is considered together with the spinwas necessary to consider all the normal modes, even those
orbit interaction, it was found that thé; = +1/2 doublet, that are odd against reflection in the horizontal symmetry
with allowed ESR transitions, is the lowest. To verify whetherplane. We have shown that these last modes affect the ax-
this result would be altered by the deformations of the trig-ial component ofg but that they have little or no effect on
onal bipyramid, we considered their effects in a way similarthe two equatorial components. The experimegitansor of
to that employed in the octahedral case to calculatgtie®-  the penta-coordinated complex could be measured but with
sor. First it was necessary to derive the normal modes of theather large errors. As in the octahedral case, the crystallo-
trigonal bipyramid that are relevant to our problem, and theygraphically determined normal modes could not explain the
are given in table XVI. The corresponding Jahn-Teller con-observed values, but for the two type of complexes it was pos-
tributionsV{- to the crystal field, whose non-zero matrix ele- sible to find values of the normal modes that would generate
ments(*L, Mg, M( [V L', Mg, M ),for L,L' = 3,1, are given  crystal fields that describe the experimental ESR spectra for
in tables XVII, XIX and XVIII. Defining a reference perfect both the phosphate and arsenate compounds.
trigonal bipyramid by the same method employed in the octa- We conclude that both our theoretical analysis of the ESR
hedral case, the values of the relevant normal modes were obf the systems studied, as well as the molecular orbital calcu-
tained by employing the crystallographic positions, and sublation of the formation energies, coincide in assigning a rather
sequently used to calculate their effect on the relative positiosmall relative occupation of the penta-coordinated sites with
of the two lowest doublets. No appreciable change was foundgspect to the octahedral ones in those systems. The exper-
and as an alternative explanation we assumed that the peniasental spectra of both the octahedral and penta-coordinated
coordinated complex is scarcely occupied in the dilute syseomplexes can be understood by considering the effect of the
tem. This conclusion is compatible with the calculation of thecrystal fields generated by the corresponding normal modes
heat of formation of the octahedral and the trigonal bipyramidon theg tensor.
complexes with both Co and Zn as the central ions, calculated
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