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At very high energies, the partons in the nuclear wavefunction form a color glass condensate. Since the oc-
cupation number of partons in the color glass condensate is large, classical methods can be used to compute
multi-particle production in the initial instants of a high energy heavy ion collision. Non-perturbative expres-
sions are derived relating the distributions of produced partons to those of wee partons in the wavefunctions of
the colliding nuclei. The time evolution of components of the stress—energy tensor is studied and the impact
parameter dependence of elliptic flow is extracted. We discuss the space-time picture that emerges and interpret
the RHIC data within this framework.

| Introduction els) must fail at high energies.

o ] A traditional view is that the physics of wee partons
At the Relativistic Heavy lon Collider (RHIC), beams of s jntrinsically non-perturbative-for example, multi-particle
Gold ions collide at center of mass energieg/@hv y = 200 production is believed to be determined by non-perturbative
GeV/nucleon. The goal is to create briefly an equilibrated excitations, called Pomerons, with vacuum quantum num-
state of quarks and gluons called the quark gluon plasma anghe(s [g, 9]. Itis believed that Pomerons could be constructed
to study its stat|stlcgl properties [1], in particular its change perturbation theory (the BFKL Pomeron [7]) but the sta-
of phase to hadronic matter. It was understood very early s of that approach is at present unclear [10]. An alterna-
on that the likelihood of creating this novel state of mat- e increasingly popular, viewpoint is that smalphysics
ter depended crucially on the initial conditions for the colli- 5 \veak coupling physics. This approach is motivated by the
sion [2, 3, 4, 5]. There are several time scales in the problemjyea of saturation [11], namely, that at smalthe density
and the appropriate values of these are determined by they hartons could be sufficiently large that recombination and
initial conditions. o screening effects are significant enough to halt the growth

__It was al_so understood very early on thgt the initial con- ¢ parton distributions>. The large parton density pro-

partons” (partons that carry a very small fractiorof the  the running of the QCD coupling constant- thereby making
nuclear momentum) in the wavefunctions of the colliding weak coupling methods feasible. Another consequence of
nuclei [2]. This is because, in the language of quantum me-this approach is that smallphysics is classical because the

chanics, smalk refers to Fock components of the nuclear occypation number of partonsds1/ag(A,) >> 1[13].
wavefunction that contain a large number of partons (mostly

gluons) [6]. In a nuclear collision, these virtual excitations
of the vacuum go on-shell and are therefore responsible for
multi-particle production. Thus an understanding of srall
physics is essential to any formulation of a theory of heavy
ion collisions.

The problem of initial conditions is a difficult one be-

Both of these ideas, the weak coupling due to high
parton densities and the applicability of classical methods
can be cast in the framework of an effective field the-
ory (EFT) [13] which treats partons at large as static
sources of color charges for the to partons at small
For a large nucleus, from the central limit theorem, these

. . . sources of color charge are Gaussian weigl: =
cause the behavior of the wee partons is mysterious and de- 9 gl

fies our naive intuition. For instance, wee partons are long *XP (— [ &, A%TY(PQ)) where the color charge charge
wavelength excitations of the vacuum but they last for very density squared per unit are&2, interestingly, is the sat-
short times'. The large coherence length of the excitations uration scale we mentioned previously. The classical theory
is also why a probabilistic picture of multi-particle produc- for a single nucleus is solvable analytically and the distri-
tion (as implemented, for instance, in parton cascade mod-butions of partons computed [14]. Whatasd hocin the

1 This is why, from the uncertainity principle, one needs very high energies to probe these excitations.
2For a discussion of an alternative “final state” saturation scenario, see Refs. [12]



224 A. Krasnitz, Y Nara, and R. Venugopalan

classical picture is the separation between static sources and fields in the central region of the collision obey source-
dynamical fields. Remarkably, a Wilsonian renormaliza- less Yang-Mills equations (this region is in the forward light
tion group procedure has been developed which quantifiescone of both nuclei) with the initial conditions inthle. = 0
this separation of scales inin a systematic way JIMWLK.  gauge given byl = A} + A} andA* = £+ [A], A}).
The structure of the classical field is preserved under evo-Here the pure gaugefielcl@2 are solutions of%?) for each
lution; it is the weight functionP[p] in the effective action  of the two nuclei in the absence of the other nucleus.
that obeys a renormalization group equation. The saturation  |n order to obtain the resulting gluon field configuration
scale (whose validity extends beyond the Gaussian model)at late proper times, one needs to solve the YM-equations
now acquires energy dependence-it is a functlaiz) of  with the above mentioned initial conditions. Since the lat-
x. The analogy of the EFT to spin glasses, and the high oc-ter depends on the random color source, averages over dif-
cupation number of fields with the momenta peaked at  ferent realizations of the color sources must be performed.
suggests that matter in this state is a Color Glass CondenkKMW showed that in perturbation theory the gluon num-
sate (CGC)[13, 16, 17]. ber distribution by transverse momentum (per unit rapidity)
Our focus in this talk is on applying the Color Glas Con- suffers from an infrared divergence and argued that the dis-
dgnsate_ to nuclear cpllisions. I_n the following sect_io_n, We 4 ibution must have the formy, o A (A=) In (g) for
will outline the classical formalism for nuclear collisions. oo \ku As
In section 3, we will apply this formalism to compute en- k_L > AS._ T_he log term clearly indicates that the perturba-
ergy and number distributions of the gluons produced in ative desc.:rlpnon breaks down fér ~ A.. ) )
heavy ion collision. To study non-central collisions, we will A reliable way to go beyond perturbation theory is to re-
have to consider collisions of non-identical nuclei and that formulate the EFT on a lattice by discretizing the transverse
will require we impose stringent constraints on color neu- !olane. The resultlng lattice theory can then b_e_ solved numer-
trality at the nucleon level. These improvements allow us to iC@lly to all orders in the color charge densitigsand p;.
discuss elliptic and radial flow as well. In the final section The lattice Hamiltonian is formulated id™ = 0 gauge. The
we will discuss an interpretation of the RHIC data and shall €@l time gluodynamics of gauge fields can then be studied

conclude with brief outline of open problems and potential PY S0lving Hamilton's equations on the lattice. We shall not
solutions in the classical approach. dwell here on the details of the lattice formulation, which is

described in detail in Ref. [20, 21]. We will first consider, for
simplicity, collisions of uniform, cylindrical nuclei. Keep-
. . ing in mind thatA, and the linear sizd, of the nucleus’
Il Classical formalism for nuclear are the only physically interesting dimensional parameters
collisions of the model [16], we can write any dimensional quantity
q asA?f,(AsL), whered is the dimension of;. All the
The classical EFT was first applied to the study of collisions non-trivial physical information is contained in the dimen-
of large nuclei by Kovner, McLerran and Weigert [18]. The sionless functionf,(A,L). We can estimate the values of
model, as applied to nuclear collisions, may be summarizedthe productA ;L which correspond to key collider experi-
as follows. The colliding nuclei are idealized to travel along ments. Assuming Au-Au collisions, we tale = 11.6 fm
the light cone The high-and the lowz modes in the nu-  (for a square nucleus!) and estimate the saturation gcale
clei are treated separately. The former corresponds to vato ~ 1.4 GeV for RHIC and~ 2.2 GeV for LHC [24].
lence quarks and hard sea partons and are considered re- Also, we have approximately = 2 for energies of in-
coilless sources of color charge. Each of the large Lorentz-terest. The rough estimate is thanR ~ 45 (for RHIC
contracted nuclei (for simplicity, we will consider only col- andA;R ~ 72 for LHC. Since the gluon distribution in nu-
lisions of identical nuclei) now has a Gaussian distribution clei is not known to great precision, there is a considerable
of their color charge density; » in the transverse plane. systematic uncertainty in these estimates. We find that, this
The variance\, of the color charge distribution is the only uncertainity notwithstanding, the dependence of our results
dimensionful parameter of the model, apart from the linear on A; R is rather weak in the broad regime of interest.
size of the nucleus. For central impact parameteys;an be The assumption of uniform, cylindrical nuclei is clearly
estimated in terms of single-nucleon structure functi@s [  not realistic since nuclear matter is not uniformly distributed
Itis assumed, in addition, that the nucleus is infinitely thinin in a nucleus. Therefore, in general, we expect the satura-
the longitudinal direction. Under this simplifying assump- tion scale to vary from point to point in the transverse plane,
tion, the resulting gauge fields are explicitly boost-invariant. namely,A, = A,(x;). Furthermore, since the initial condi-
The small z fields are then described by the clas- tions for a heavy ion collision at a fixed energy can be varied

sical Yang-Mills equationsD,F,, = J, with the by varying the centrality of the collisions, it will be impor-

random sources on the two light cones:.J, = tant to extend our previous considerations to collisions of
Y1900, +0(xx)p1,2(r:). The two signs correspond to two finite nuclei. The most important consideration in this case
possible directions of motion along the beam axis As is that the color charge of the quark and gluon fields in a nu-

shown by Kovner, McLerran and Weigert (KMW) [18], low- cleus remain confined inside its radius. That this is the case

3L is the length scale for a cylindrical nucleds? = = R? whereR is the radius of the nucleus.
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is not a natural consequence of our picture and additional 0.07p
constraints have to be imposed on the color charge distribu- 0.06 ANgR=83.7 -SU3
tions of the sources to ensure that the classical gluon fields 0.050\ ! Su2
do not “leak” outside the nucleus [24]. These constraints, 0.04- —fit
termed Color Neutral | and Color Neutral Il in the follow- %‘/0_03;
ing, respectively require that the monopole and dipole com- 0.02-
ponents of the source color charge density be set to zero. 0.01F
The results from these color neutrality constraints will be ' A e ===
contrasted below with those from the global color charge 0 0.2 0.4 0.6 0.8 1
constraint (namely, only the color charge density integrated LSTZAYS
over_the entire nucleus is set to zero) imposed in our earlier 10° | . SU3: A_R=25
studies. : SU2: AJR=25
A10 N SU3: A;R=83.7
x'_]_o'4 % — fit
T .5
[l Energy and Number distributions 0 F (b)
of produced gluons o ¢
0 2 4 6 8 10 12 14 16 18 20
The classical formalism has been applied to study classical LSTZAYS

gluon production arising from the “melting” of the Color Figure 2. Transverse momentum distribution of gluons, normal-
Glass Condensate. The energy and number distributiongzed to the color degrees of freedom(kr) = fn/(NZ —1) (see
were initially computed numerically for central collisions EG. (2)) as a function oAs /2 for SU(3) (squares) and SU(2) (dia-
of uniform cylindrical nuclei and the dependence of these monds). Solid lines correspond to the fitin Eq.(3).
guantities omA; was determined [21, 22]. The initial simu- For the transverse enerav of aluons. we obtain the rela-
lations were performed for an SU(2) gauge theory [21, 22]. .. gy org '

) ) tion
These simulations were extended to an SU(3) gauge theory 1 dE 1
. . . . T A3
in Ref. [23]. Recently, these distributions have been ob- TRQTnM:O = gﬁfE(AsR) s 1)
tained for an SU(3) gauge theory for finite nuclei with re-

alistic initial conditions [24]. The function fz is determined non-perturbatively as fol-

lows. In Fig. 1(a), we plot the Hamiltonian density, for
a particular fixed value oA ;R = 83.7 (on a512 x 512

065¢ lattice) in dimensionless units as a function of the proper
06E @ time in dimensionless units. We note that in the SU(3) case,
0'55§ as in SU(2)7 converges very rapidly to a constant value.
s The form ofe is well parametrized by the functional form
SOOSE e, , eT = a + Bexp(—y7). HeredEr/dn/mR* = o has the
& 04F AR A KRR proper interpretation of being the energy density of pro-
0.35 duced gluons, whilep = 1/v/A; is the “formation time”
0.3F * SUs of the produced glue.
O-ZSE Su2r8/3 In Figure 1(b), the convergence of to the contin-
T I T TRV TR uum limit is shown as a function of the lattice spacing in
AgT dimensionless units for two values &f, R. In Ref. [21],
r this convergence to the continuum limit was studied exten-
0615 sively for very large lattices (up td024 x 1024 sites) and
055 shown to be linear. The trend is the same for the SU(3) re-
F sults. Thus, despite being further from the continuum limit
¥ o5k for SU(3) (due to the significant increase in computer time),
5 . a linear extrapolation is justified. We can therefore extract
045F0 SU3: AR=25 the continuum value fore. We find f(25) = 0.537 and
oaf 232;;;;3;8;:25 fe(83.7) = 0.497. The RHIC value likely lies in this range
F. suzar. /\SR:83.7 of A;R. The formation timep = 1/v/A; is essentially the
P SO R R same for SU(2)-fo\s R = 83.7, v = 0.362 4+ 0.023. As

0.35

o

R A discussed in Ref. [21], it is- 0.3 fm for RHIC and~ 0.13
Figure 1. (a)er/A? as a function ofrA, for A,R = 83.7. (b) fm foWr LHC (taklng./\s =20GeV and4 GgV :Eespeftlve_lt)r/]).

et /A2 as a function of\.a for A;R = 83.7 (squares) and 25(cir- € now C,Om ine our. expression In q ( ) with our
cles), whereq is the lattice spacing. Lines are fits of the form Non-perturbative expression for the formation time to ob-

a— bx. tain a non-perturbative formula for the initial energy density,
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e = %17 A%, This formula gives a rough estimate of the ini- ative to the SU(2) result in the low momentum region. In

tial energy density, at a formation time of) = 1/9/AR Fig. 2(b), we plot the same quantity over a wider range in
where we have taken the average value of the slowly varyingkr /A for two values ofA; R. At large transverse momen-
function~ to bey = 0.34. tum, we see that the distributions scale exactlyVas— 1,

To determine the gluon number per unit rapidity, we first the number of color degrees of freedom. This is as expected
compute the gluon transverse momentum distributions. Thesince at large transverse momentum, the modes are nearly
procedure followed is identical to that described in Ref. [22] those of non—interacting harmonic oscillators. At smaller
-we compute the number distribution in Coulomb gauge, momenta, the suppression is due to non-linearities, whose
V. - A, = 0. In Fig. 2(a), we plot the normalized gluon effects, we have confirmed, are greater for larger values of

transverse momentum distributions verdys/ A, with the the effective coupling\, &.

valueA R = 83.7, together with SU(2) result. Clearly, we The SU(3) gluon momentum distribution can be fitted
see that the normalized result for SU(3) is suppressed rel-by the following function,
|
1 dN 1 -
= ﬁfn(kT/As) ’ ()

7R2 dnd?kr g
wheref, (kp/A,) is

7= { ar [exp (v ¥/ Tug ) - 1}—1 (kz/As < 3) -
as A log(47rkT/As)k;4 (kr/As > 3)

with a; = 0.0295, m = 0.067A,, T.g = 0.93A,, and recovers the form of the expressions in Refs. [22, 23]. The
az = 0.0343. At low momenta, the functional form is color charge squared in the center of the nucleus?js =
approximately that of a Bose-Einstein distribution in two C'-5(0,0)/2, SOA%(b, z1) = A%,5(b, x7)/p(0,0). One can
dimensions even though the underlying dynamics is thatthen re-write the previous equation as

of classical fields. The functional form at high momen-

tum is motivated by the lowest order perturbative calcula- ANy _ fn(b) AgON () (5)
tions [19, 18, 26]. dn g% po PV

Integrating our results over all momenta, we obtain for _ L
the gluon number per unit rapidity, the non-perturbative Whgre po = p0,0) = 4321fm™" and Npare =
result, =),y = Hfn(A.R)A2. We find that [ dxrp(b, ar).

In Tables | and II, we show the calculated SU(3) results
for two values of the saturation scale in the center of the
nucleus: Ay = 1.41 and A, = 2.32 GeV respectively.

In the tablesp is an impact parameter (in units of fm) and
Npare 1S @ nuMber of participants at that impact parame-
ter. The latter is calculated using a Woods-Saxon nuclear
dN, . A%(b,z7) dpnsity profile. We list in the tables our results, as a func-
yr fn(b) /d T (4) tion of impact parameter, faf N,; the number of produced
gluons and;® E,; the transverse energy of produced gluons
where A, (b, z7) is the local saturation scale defined to in GeV multiplied by the value of the strong coupling con-
be A2(b,zr) = C - p(b,x7)/2, wherej is the partici-  Stantsquareg?, evaluated (to one loop order) at the average
pant density at a particular position in the transverse plane,value of the saturation scale (denoted in the table345))
and C is the color charge squared per nucleon. When for thatimpact parameter.
A4 (b, zp)=constant, as for cylindrical uniform nuclei, one

fn(83.7) = 0.3. The results for a wide range of; R vary
on the order ofl0% in the case of SU(2).

For realistic nuclei, these non-perturbative relations are
less simple. One can parametrize our results for the gluon
number with the more general relation

Table I.A,o = 1.41 GeV. In the calculation, lattice size @b6 x 256 and nuclear radius of 64 in lattice units is used. All
dimensionful scales are in GeV units unless otherwise stated.

b(fm) Npare g°Ng  g°E,  A()  Qs(b)  fn(b)

0.000 377.89 1628.68 2725.40 1.1777 1.0836 0.3695
3.150 321.35 1309.83 2170.08 1.1545 1.0563 0.3484
4725 263.33 1035.84 1663.88 1.1234 1.0197 0.3359
6.300 199.11 760.95 1182.02 1.0741 0.9623 0.3249
7.875 136.47 515.61 751.902 0.9993 0.8758 0.3152
9.450 81.21 295.76 384.004 0.8876 0.7487 0.3004
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Table Il. A;,g = 2.32 GeV. In the calculation, lattice size 612 x 512 and nuclear radius of 128 in lattice units is used. All
dimensionful scales are in GeV units unless otherwise stated.

b(fm) Npart g°Ny  g*E, A)  Qsb)  fn(b)

0.000 377.89 3768.00 9198.736 1.9517 2.0355 0.2867
3.150 321.35 3061.59 7492.084 19132 1.9866 0.2757
6.300 199.11 1808.89 4183.888 1.7800 1.8185 0.2610
7.875 136.47 1215.17 2636.300 1.6560 1.6636 0.2522
8.367 118.17 1042.54 2243.692 1.6060 1.6017 0.2514
9.450 81.21 699.95 1411900 1.4708 1.4356 0.2411

IV  Elliptic Flow and dense matter produced in ultra-relativistic heavy ion col-

lisions [27]. A measure of the azimuthal anisotropy is the
The azimuthal anisotropy in the transverse momentum dis-second Fourier coefficient of the azimuthal distribution, the
tribution has been proposed as a sensitive probe of the hotlliptic flow parametew,. Its definition [28] is

]

(6)

02 = {cos(26)) = <p3' ‘p3> _[7n docos(26) [ prdpr i

2 2 d3 N
Pz + Dy f d¢ f PTdPTW

The first measurements of elliptic flow from RHIC, of color charges sampled fa?, we solve Hamilton’s equa-
at center of mass energysyy, have been reported re- tions on the lattice for the gauge fields and their conjugate
cently [29]. Hydrodynamic model calculations provide canonical momenta. We compute the space-time evolution
good agreement, for large centralities, and for particular ini- of the components of the Stress—Energy tensor, in particular,
tial conditions and equations of state, with the measuredthe two transverse components of the pres$irfeand7v¥
centrality dependence of the data. The agreement at smalleas well as the energy densiff°.
centralities is less good, perhaps reflecting the breakdown of  In order to calculatev, within our model, we apply
a hydrodynamic description in smaller systems. Hydrody- the cooling method which was proposed in our previous
namic models are also in excellent agreement withptoke- work [22]. There we obtained, for the total number of classi-

pendence of the unintegrated elliptic flow parametép, ) cally produced gluons, the equation = \/>f0 dt V (t)

up to 1.5 GeV/c at mid-rapidity [30]. However, abov& hereV (1) is th tential f ¢ ff h
GeV, the experimental distribution appears to saturate, whileV"ere (t ). IS the potential energy Tor a system ot iree har-
monic oscillators as a function of treolingtime ¢. It is

the hydrodynamic model distribution continues to rise. It , o .
has been argued recently that jet quenching might explaindear that the gluon number defined in this manner is gauge
invariant. Forv,, one can similarly prove that

this saturated behavour of(p;) [31]. We should also note

here that hadronic transport model calculations underesti- s dt (7w (g) — T (4)
mate the RHICy, data[29, 32]. vy = Vi @)
We will now apply the classical Yang—Mills approach to f0°° %V(t)

compute the elliptic flow generated in a nuclear collision. As
previously, we assume boost invariance—the lattice Hamilto- As in the case of the gluon number, this expression is gauge
nian is the Kogut-Susskind Hamiltonian in 2+1-dimensions invariant.
coupled to an adjoint scalar field in™ = 0 gauge [20]. We now turn to our results [25]. In Fig. 3, we plofl...,
In our earlier work, periodic boundary conditions were im- 7T, and the proper time times the energy density, in
posed to compute the space-time evolution of the gaugedimensionless units as a functionmfalso in dimensionless
fields after the collision [21, 22, 23]. Since, as discussed units, for a particular value ok o R and impact parameter
previously, elliptic flow is a consequence of an initial spa- b. We observe that T, and T, increase very rapidly
tial anisotropy, periodic boundary conditions are inadequateat very early times and then decreases quickly as well, be-
and open boundary conditions are required. This technicalfore saturating at a much later time. Their magnitudes are
improvement has been implemented in the work describedthe same right after the collision but begin to differ shortly
here. thereafter generating an anisotropy. Note thatoo rises
The rest of the numerical procedure is as discussed innearly as rapidly but has a smaller maximum value before
our previous work [20, 21, 22, 23]. For each configuration relaxing to its asymptotic value. The asymptotic values of
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T Ty, andr T, differ from each other (and frome). Also, We now turn to our result for the impact parameter de-
interestingly, the energy densityat late times equals the pendence ofi,. In Fig. 4, we plotv, (computed using the
sum of the two components,, andT,, of the pressure in  definition in Eq. (7)) versus. /nmaz-
the transverse plane. All of the described behavior is generic e note, as anticipated, thatincreases with increasing
for all values ofA o R. impact parameter. The ratio.; /1mq. 1S computed self-
Our interpretation of the results presented in Fig. 3 is consistently within the model. For very peripheral colli-
as follows. The componentg,, andT), of the pressure  sjons, we expect that the predictions of the model are unre-
are spatial gradients of the gauge fields. Even at the earliesfjzpje since a hard sphere nuclear matter distribution should
times, the gauge fields decrease sharply to the edges of thge replaced by a Wood-Saxon distribution in this regime.
“almond” characterizing the initial spatial anisotropy. Oné The absolute prediction of the model with the data gives
therefore gets a finite contributionq.. and7),. Since the 554t half of the observed,. The rest of the anisotropy
initial decreqse in the gauge fields at the edges is similar in, st pe generated at later times- presumably by hydrody-
thez andy directions, the values df,, andT,, should be namic flow. Interestingly, the dependencevgfon AR is

fr']m”ar N rgagmtude; |tr|1d?ﬁd, 't:'g' 3 demci_nstrat_ef thatchls ISEather weak. For a fixed impact parameter, a prediction of
e case. Subsequently, the strong nonlinear interactions ofy o 1\ el is that as., R — oo, we would have the classi-

the gauge flelds sr_nooth out their spatial dependence. EVencal contribution to the elliptic flow go to zera; — 0. This
tually, the interactions die off and the system free streams. . : ; . ) .
. o . is because increasin, R is equivalent to increasing and
in the transverse plane. This is confirmed by the fact that ; o . : ;

. therefore reducing the initial anisotropy. This again contra-
e ~ Ty + T, at late times.

dicts the trend in the RHIC data suggesting that the late time
dynamics is important for the elliptic flow. The momentum

mj 0.011 distributionvs (p;) has also been computed in Ref. [25]. The
% 0.0105 - ET shape and the magnitude of this distribution also disagrees
§ 001 A, R=18.5 . ZT;; with the RHIC data.
g 0.0095 b/(2R) = 0.5 ST
> .
£ 00 i V The CGC and RHIC data
)
£ 0.0085 * L il
17 it L] littcecooonnssdilillsl

£ o008 *H}““H{Hiﬂﬂf 93835344441 The classical formalism discussed here is applicable only in
Py the initial instants of a nuclear collision. It is inapplicable
g %07 once the occupation numbér << 1. Moreover, the fi-
@ 0.007%— é - ‘1‘0‘ - ‘1‘5‘ - ‘2‘0‘ - ‘2‘5‘ 30 nal states observed are hadrons while the CGC predicts only

A1 the initial distribution of gluons. Subsequent interactions

. . . may lead to a thermalized Quark Gluon Plasma. The pos-
Figure 3. Time evolutions of energy-momentum tensorfoR = ibility that the CGC th l has b di d ext
18.5 with the impact parametéy2R = 0.6 Lattice sizel28 x 128 S! ity that the ermalizes has been 'Scussfe exten-
andR = 32 are used in the calculation. sively [33]. It was argued recently that for asymptotic values
of the saturation scale\( — oo) the CGC matter does in-
deed thermalize [34]. For realistic values of the saturation

——

v, (%)

P N WD 01O N

(@)

CG v.s.Cooling scale, the situation is unclear.
We will assume here, minimally, that gluonic matter
formed from the CGC interacts very strongly in the trans-
¢ verse plane at early times and then free streams. Since the
typical momentum of the gluons<( A;) is large than the
2 hadronization scale{ Agc p), the gluons may further frag-
f ment independently before hadronizing. Invoking parton-
! R LI hadron duality at hadronization then enables us to compare
\'\ our results to the data.
corrected values 3 } From the numerical simulations described previously we
P N R R T N N RR B find that if we fit the total hadron multiplicity ay/syy =
0 0.102030.4050.60.70.80.9 130 GeV (directly equating initial num. of gluons=final
Nen/Nmax num. of hadrons) we find that we obtain a valuem§ N
Figure 4. Centrality dependence af using cooling (open sym- that’s proportional to\ ; and significantlly .Iargerthan the ob-
bols) and CG (filled symbols). Results are fdroR = 18.5 served vaIu_e_ (see Tables 1 & 2). Within the framework of_
(squares), 37 (triangles), and 74 (stars). Full circles depmte  the model, itis clear why this is the case-the CGC overesti-
liminary STAR data. The band denotes estimated value,aét mates the contributions from high > A-this is more pro-
very late times. “Corrected values” is the late time cooling and CG hounced inE; since it is a more ultraviolet sensitive quan-
result forAso R = 18.5 at one centrality value. tity. A more careful treatment of this regime will reduce the
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global ratio of E;/N. One still expect thaE, /N to be sig- [9] A. Donnachie and P. V. Landshoff, Phys. Lett2®, 227

nificantly larger than the measured number. NBy N is (1992).
not a conserved quantity and will reduce due to both inde- 1] v. 5. Fadin and L. N. Lipatov, Phys. Lett489, 127 (1998);
pendent fragmentation of the gluon “mini-jets” or hydrody- . Ciafaloni and G. Camici, Phys. Lett480, 349, (1998).

namic flow or both. Which of these is correct will become
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