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Effects of Torsion on Electromagnetic Fields
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In this work, we investigate the effects of torsion on electromagnetic fields. As a model spacetime, en-
dowed with both curvature and torsion, we choose a generalization of the cosmic string, the cosmic dislocation.
Maxwell’'s equations in the spacetime of a cosmic dislocation are then solved, considering both the case of a
static, uniform, charge distribution along the string, and the case of a constant current flowing through the string.
We find that the torsion associated to the defect affects only the magnetic field whereas curvature affects both
electric and magnetic fields. Moreover, the magnetic field is found to spiral up around the defect axis.

I. INTRODUCTION nonzero component of the torsion tensor in this case is given
by the two-form [6]

The study of electromagnetism in a curved background
has very important astrophysical implications as for exam-

ple helping the understanding of the signals received fromwhere<32(r) is the two-dimensional delta function. Analo-

neutron stars and maybe also from black holes. Electromag- S
: . : : ously, the nonvanishing components of the curvature two-
netic processes near such objects certainly will have gener orm are [6]

relativistic effects. After the generalization of Einstein’s grav-
itational theory to include torsion, done by Hehl and cowork- (1-a)
ers [1], one might ask what are the effects of torsion on elec- R,=-Rf= 2ﬂT5Z(r)de(P~ 3)
tromagnetic fields. In this work we study a simple but illus-
trative case: the electromagnetic field produced by a cyllindri- This study intends to show how the changes introduced in
cally symmetric source coincident with a topological line de-the geometrical structure of spacetime by a topological line
fect that carries both curvature and torsion. defect affect the solutions of Maxwell's equations. We are
Topological structures like domain walls, strings andinterested in the following two cases involving a cosmic dis-
monopoles may have been produced by phase transitions ifecation: (i) the defect carries a density of charge and (ii) it
volving spontaneous symmetry breaking in the early uni-carries a current. A similar problem was handled by M.F.A. da
verse [2]. Such defects are associated to curvature singgilvaet al. [7, 8], who calculated the magnetostatic field due
larities [3] and are solutions to Einstein’s field equations.to an electric current placed in the gravitational background
Although astronomical observations keep indicating that thef a rotating cosmic string. In their work, torsion comes from
macroscopic geometry of the universe is Riemannian it igotation, thus coupling time to the angular coordinatélere,
possible that torsion may appear near curvature singularitie®rsion comes from the coupling betwegandz, as it is clear
[4]. Line defects containing torsion, like dislocations, appearfrom Eq. (1). Other cases, with spherical symmetry, have
within Einstein-Cartan-Sciama-Kibble gravitation theory [1] appeared in the literature. For example,the electrostatic field

TZ = 213&%(r)dr A dg, 2)

in Riemann-Cartan spacetirhk. and the potential of a point charge in the Schwartzschild met-
We consider the cosmic dislocation [5] spacetime whoseic obtained by Linet [9] and the magnetostatic field of a loop

metric is given by current around a black hole obtained by Petterson [10]. Re-

lated to these problems is the question of the self-force on

ds® = —dt? + dr? 4 a®r?d¢? + (dz+ Bd@)?, (1)  electric and magnetic sources in the presence of topological

defects, the object of much attention in recent years [11]-[19].
in cylindrical coordinates. The parameters associated with e restrict ourselves to the study of the generation of elec-
the angular deficit of a cosmic string spacetime. The valuegic and magnetic fields by static sources. To facilitate the
of o are restricted to the interv@l< a < 1, since the linear calculations, we consider the approximation [10] where the
density of mass of a cosmic string, giveniby- (1—a)/4G,  electromagnetic field is taken as a weak perturbation on the
must be positive. The paramet@ris related to the torsion spacetime metric. Thus the influence of the metric on the
associated to the defect. For dislocations in solid state physicslectromagnetic field is much stronger than the influence of
B is related to the Burgers vectbiby 3 = %. the electromagnetic field on the metric. In this approxima-

This topological defect carries both torsion and curvaturetion, the task of solving Einstein-Maxwell equations reduces
both appearing as conical singularities on#faxis. The only  to solving Maxwell equations in covariant form.
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This work is organized as follows. In Section Il, we derive covariant vector components are related. In the same way, the
Maxwell equations in the cosmic dislocation spacetime. Inmagnetic field vector componen(8", B®, B?) are related to a
Section |l we solve them for the electrostatic field generatednagnetic field one-forn; componentsB;, By, B;). Never-
by a line of charge. We find that there is no effect of torsiontheless, the two-form is related taB; by the Hodgex oper-
on the electric field. On the other hand curvature amplifiesation :
it. In Section IV we calculate the magnetostatic field of a line
current in the spacetime of the cosmic dislocation, finding an *B =By/dt. 13)
interesting effect: the peculiarities of the metric give rise to a  Applying the Hodgex operator on Eg. (9) we obtain
z-component of the field. Finally, in Section V we we present
our concluding remarks. We observe that in this paper we use <0(2r2+ B2 B )

. . *B = (| ————Fx+ —F ) doAdt
geometrical units. ar ar

1 B F
i (Frq,—i—szr) dzdt+ Edradt (14)

Il.  MAXWELL EQUATIONS IN THE COSMIC ar
DISLOCATION SPACETIME Therefore, we identify the components of the magnetic field
one-formB;
We start by writting Maxwell equations using differential 1
forms: B = —Fg
ar
dF =0 @) ar?4p?_ B
By = For+ —F 1
. [0} ar 7r + ar 1£0) ( 5)
an 1
B, = *Fr(p‘f' EFzr
*dxF=J, (5) ar ar
N Now, applying the Hodge operator on Eq. (10) we obtain
where
1 *(EAdt) = — arFydoAdz
== H v — 1
F=SRud¥AdX =B+EAdt (6) B (quI 3 OI(BrFZt) dzndr (16)
is the Faraday two-form antlis the current density one-form a2r2 4 p2 B
given by — (aert— arFqI> dr Adeo.
J = —pdt+Jdr + Jodo+ Jdz (7)  Finally, using Egs. (6), (11), (14), (15) and (16), we obtain
In Eq. (6) the magnetic field is represented by the two-f8rm wdxF— {i@ i@ E}dr

and the electric field by the one-fori ar ¢ ar dz ot

The Faraday two-form in terms of its components is there- 22 A2
fore + {E%_E@ or"+B7 08
ar or  ar d@ ar 0z
F = Fed@A dz+ FrdzAdr 4 Fedr Ad@ a?r2+ B2 0B, 0Eq g
+Fedr Adr + Fed@A dt + FxdzA dt. (8) T T w o )
, 108y 10B [BoB PoB, OE
Egs. (6) and (8) imply that - {EW_JT@JFJE_EWZ_OTZNZ
B = Fd®A dz+ F,dzA dr + Fredr Ad@ (9) 410 o, 1. B
{r ar () + a(p(cxzr2 ? 02r2 2)
and s o
+ ———[(a‘r +B°)E,— BEy| }dt. a7
E Adt = Fydr Adt+ Fgd@A dt + Fadzadt,  (10) a2r2 0z c
. Care should be taken in interpreting the contravariant com-
which leads to ponents of the fields since the metric (1) is associated to a non-
_ _ _ orthonormal basisg, &, &y, &), whereg,, = &,-8,. There-
B=Ft Bo=Fa E=Fn (1) fore we need to relate the components of the electric and mag-
where netic field one-forms to the respective vectors in a normalized

basis, such that in the no defect limit we recover the fields
E = E/dr + Egd@+ Edz (12) generated by a line source in flat spacetime.The new basis
(&,&,8,,&) is simply obtained by
We observe that the electric field vector components
(E',E®,E?) are related to the one-fornE components & — & (18)
(Er,Eg, E;) by the metric in the usual way contravariant and \/%'
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The components of a generic 1-fon= A;dr + Aydp+ Ill.  ELECTRIC FIELD OF THE LINE CHARGE
Azdz are related to the components of the equivalent vector

A= Aféf+A‘Pé?p+ A%g,, expressed in the normalized (but non-  In this section we briefly discuss the case of a uniform line

orthogornal) basis, by: of charge coincident with the cosmic dislocation. In this case,
A = A (19) the charge density is described by
. _ A3
Ap = 1/02r2 + B2A + BAZ (20) PN =5 (30)
B X whereA is the linear charge density. The presence of this
Ap=—t AP AZ (21)  expression is due to the change in the volume element caused
o%r2 42 by the string metric.

After some algebraic manipulations we finally obtain Eq. The Symmetries of the problem suggest tHat =
(5) in terms of the components of the electric, magnetic andE’ (r), E®=E®(r) andE? = E¥(r). Eqgs. (27-29) imply readily

current density vectors that
10 1 aEfp dE2 E%r) =E¥r)=0 31
A - E0=FO (31)
v and Eq. (22) gives
1 B 0 LA ¢ Al
= - - — | B? r S
or < /02r2 + B2 0 a‘re+p 0z E"(r) ST T (32)
1/0 0 ¢ OEf This result might be explained by a simple argument based
ar \agp "oz =J+ ot (23)  on the electric field lines, as follows. The process of creat-
ing the defect involves cutting out a wedge of space, which
o ¢ R leaves less volume for the field lines to spread through. This
M o8 9 z LBw increases the density of field lines therefore corresponding to
ar 0z or \/a2r2 4 p2 an amplification of the electric field amplitude. This should
A aE be compared to the amplification found in the magnetostatic
= J‘P+ ., (24) field of a current-carrying cosmic string [7]).
1[0 oB' BEZ IV. MAGNETIC FIELD OF THE LINE CURRENT
| = 2 2 ZB(P B - — 2, 7= 2
ar [ar (w/(xr + BB+ ) a(p} J+ . (25)

Now we treat the case where a current flows along the de-
ct. The important equations now are (23 - 25). Here the
symmetry suggests that the nonvanishing components of the

. magnetic field ar® = B®(r) andB? = B(r). With this, in
10 g 1 05‘” oB? the regiorr > 0, Egs. (24) and (25) turn into

rarlt O+ Vo221 2 09 T =0 (@0

d 5 B p
— [ B*+ ——=——-=B%| =0 (33)
1 (Ba _ /0(2r2+[320) E® dr < Vo2 4 32 )
ar \ /a2r2+p20¢ 0z

1/9 0\ _, 0B d 7 o )
(L ® _ (4 B® 1 pBZ) = 0. 34
+ <acp Baz>E + 5 0, (27) dr( a2r24B2B?+ B (34)

Notice that Eq. (22) corresponds to Gauss law and that Eq?.
(23 - 25) correspond to Angwe-Maxwell law. e
In a similar way, Eq. (4) leads to

. We have thus a coupled set of equations of very simple so-
ooz 2 6E6< i B jution
ar 0z or /a2r2 + 2
- 02r2 + B2
080 BO(r) =y YL (35)
+— =0, (28) asr
ot
and
170 ; ,\ OEf] oB? 5
ar [ar (V"Zrz*BZE”BEZ) ‘am} T =0 @ B(r) ~ ke~ gz (36)

Now, Eq. (26) describes the absence of magnetic monopolegherek; andk; are integration constants. In order to deter-
and Eqs. (27 - 29) correspond to Faraday law. mine these constants we withdraw the defect by settingl
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FIG. 1: ¢-component of the magnetic field in flat spacetimed =
1 andp = 0), o in the cosmic string spacetime & 0.5 and3 = 0),
o in the cosmic dislocation spacetine £ 0.5 andp3 = 1)

andp = 0. Thus, we recover the magnetic field of a line cur-

rent in flat spacetime:

®
Bu:LB:O(r) = E7 (37)
B 1po(r) =0, (38)
wherel is the electric current. Hence, we hawe= '—n and
ko = 0. Substituting this into Egs. (35) and (36), we finally
get
- | /o2r2+p2
B® - _ vy
(=527 (39)
. I B
Bi(r)= —— ——. 4
(N =—5rq2r2 (40)

The coupling between the angular and theoordinates

639
system below:
i(t) = B (g2
®t) = Br,92) (41)
2t) = BY(r,92),

wheret is a parameter. Sind® =0, B® = B9, /Ogp aNdB? =
BZ (see Eq. (18)) and with Egs. (39) and (40) we have

rt) =0
W) = s (@2
) — - B
whose solution is e 2nasr
rit) = ro
o) = g+ (@3
2(t) = 2n|aBZr2t+Z°’

whererg, (o, Zp are integration constants.
It is clear that the above set of equations describes a helix.

V. CONCLUDING REMARKS

In this work we investigated the influence of the torsion
and curvature of a topological defect on electromagnetic fields
generated by a line source coinciding with the defect. Torsion
affects the magnetic field whereas curvature affects both elec-
tric and magnetic fields, but in different ways. Also, torsion

forces the magnetic field lines to spiral up along the defect
axis.

brings about an unexpected component of the magnetic field,

which vanishes properly in the no torsion lirfit— 0. In Fig.
1 it is shown thep-component of the magnetic field in a few

illustrative cases. In what follows we take a closer look at theAcknowledgments

magnetic field lines in this torsioned space.

In order to find the integral curves (magnetic field lines) of We are grateful to CNPq, FINEP(PRONEX) and CAPES
our vector (magnetic) field we need to solve the parametri¢PROCAD) for partial support of this work.

[1] Friedrich W. Hehlet al,, Rev. Mod. Phys48, 393 (1976).

[2] T. W. Kibble, J. Phys. A9, 1387 (1976).

[3] D. D. Sokolov and A. A. Starobinskii, Sov. Phys. DoRR, 312
(1977); Manuel Barriola and Alexander Vilenkin, Phys. Rev.
Lett. 63, 341 (1989).

[4] William M. Baker, Class. Quantum Gray, 717 (1990).

[5] D. V. Gal'tsov and P. S. Letelier, Phys. RevA43, 4273 (1993).

[6] R. Puntigam and H. H. Soleng, Class. Quant. Gdaly. 1129

(1997).
[7] A. G. R. Muriano, M. F. A. da Silva, Am. J. Phy$§5, 914
(1997).
[8] M. F. A. da Silva, O. T. da Silveira Filho, and J. A. Souza, Am.
J. Phys57, 735 (1989).
[9] B. Linet, J. Phys. A9, 1081 (1976).
[10] J. Petterson, Phys. Rev. 10, 3166 (1974).
[11] B. Linet, Phys. Rev. 33, 1833 (1986).



640 Brazilian Journal of Physics, vol. 35, no. 3A, September, 2005

[12] A. G. Smith, in Proceedings of Symposium on The Formation 14, 3425 (1997).
and Evolution of Cosmic String, edited by G. W. Gibbons, S. W.[17] E. R. B. de Mello and C. Furtado, Phys. Re\66) 1345 (1997).
Hawking, and T. Vachaspati(Cambridge Unversity Press, Cam{18] Sérgio Azevedo and Fernando Moraes, Phys. Let26%& 208

bridge, England, 1990). (2000).

[13] E. R. Bezerra de Mello, V. B. Bezerra, C. Furtado, and F.[19] A. M. de M. Carvalho, Claudio Furtado, and Fernando Moraes,
Moraes, Phys. Rev. B1, 7140 (1995). Phys. Rev. D62, 067504 (2000).

[14] T. Souradeep and V. Sahni, Phys. Revi) 1616 (1992). [20] A. Vilenkin, Phys. Rev. 23, 852 (1981).

[15] M. E. X. Guimaraes and B. Linet, Class. Quant. Gi#,.1665  [21] C. W. Misner, K. S. Thorne, and J. A. Wheel&ravitation
(1993). (Freeman, San Francisco, 1973).

[16] Claudio Furtado and Fernando Moraes, Class. Quantum Grav.



