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We discuss @del’s universe in the context of the induced-matter theory. We show that the problem of
generating @del’'s metric from an extra dimension is equivalent to finding an embeddin@dél3 universe
in a Ricci-flat five-dimensional space. On the other hand, according to the Campbell-Magaard theorem, any
spacetime can be locally embedded into a five-dimensional pseudo-Riemannian Ricci-flat manifold. We obtain
explicitly a global embedding of &lel’s universe which is Ricci-flat and has a non-Lorentzian signature of type
(++——-).

I. INTRODUCTION laborators have shown how to obtain from five-dimensional

vacuum (or Ricci-flat) spaces a number of known solutions
of the Einstein equations (regarded as hypersurfaces in five
dimensions) whose energy-momentum tensor is generated by
he extra-dimension [4]. In fact, the energy-momentum thus
generated corresponds to the extrinsic curvature of the four-
anifold embedded in five-dimensional vacuum space [11]. It
as been later realised [12] that any energy-momentum ten-
or can be generated in this way, provided that any solution of
lief that all forces of nature are ultimately different aspects"nEl-nS-tem,S equations has :_;m'embeddmg Into a five-dimensional
“Ricci-flat solution, and this is almost precisely the content of

of a single entity. Besides the quest for unification there iShe Campbell-Magaard theorem [5, 6]. Therefore, according
another motivation for constructing higher-dimensional theo- ’ '

. . . ; o . to the this theorem, it is possible, to locally embedd@l’s

res V.Vh'Ch goes back to Einstein and consists in regarding thgolution in a five-dimensional Ricci-flat pseudo-Riemannian
physical world as a manlfesta_tlon of pure geometry[_3]. Of pace. From the standpoint of the induced-matter theory, that
these two schemes the latter mclud(?s_ the so-called .|nduce \eans it must be possible to geometrically generate a source
matter theory (IMT) or non-compactified Kaluza-Klein the-

) ; i of matter and energy which is the source didel’'s universe
ory of gravity, an approach which regards macroscopic mattelih all its peculiarities

as being geometrically “induced” by a mechanism that locally To be more precise let us recall the content of the Campbell-

embeds our four-dimensional (4D) spacetime in a Ricci-flal‘M ; -
i . . ) L agaard theorem [5, 6]. It states that amdimensional
five-dimensional manifold [4]. Moreover, it is asserted thatpseudo-Riemannian manifoleM™,g) can be locally, ana-

only one extra dimension should be sufficient to explain all}lg/tically and isometrically embedded in a Ricci-flat (n+1)-

Einstein’s first contact with the idea that our ordinary
four-dimensional spacetime might be embedded in a highe
dimensional manifold was made through the work of T.
Kaluza, sent to him in 1919. From the old Kaluza-Klein[1]
model to modern theories of supergravity and superstrings [
the assumption that extra dimensions may exist, though n

the phenomenological properties of matter. One interesting. ional ifol N1 Sj its "redi
point is that the matter “generated” by this process is of a verjlimensional manifoldN™,g). Since its "rediscovery” in

general kind, i.e.any energy-momentum tensor can be pro- he nineties [12] the theorem h"’.‘S found a number 9f appll_ca—
duced by choosing the appropriate embedding, a result whiciions and has been discussed in various contexts in the liter-

is mathematically supported by a powerful theorem of differ-ature [13-24]. Therfefore, in vievy of ,the Ca_mpbeII-Magaard
ential geometry due to Campbell and Magaard [5, 6]. theorem one would like to look atd@@el’s solution as a hyper-

. ) ] ) ) surface embedded in a five-dimensional Ricci-flat space.
In 1949, Kurt Gddel [7] found a solution of Einstein’s field

equations which soon became very popular because it de-

scribed a spacetime possessing very strange properties. FQf THE EMBEDDING OF G ODEL'S UNIVERSE IN FIVE
example, the model admitted the existence of timelike closed DIMENSIONS

curves, thereby violating global causality. Although not vi-

able as a physical model of our universé&del’s solution has Godel’s metric may be expressed in the form

some historical importance as it certainly stimulated a great

deal of research on questions of causality and global proper- 1

ties of relativistic spacetimes [8, 9]. ds? =dt?—d¥+ > exp(2v2wx)dy? —dZ+ 2 exp( v 2wx)dtdy

Due to its peculiarity, different aspects of the so-called (1)
Godel’s universe have always been studied with interest. Fowherew is a constant.
example, Rosen [10]in 1965, was able to characterizgets In this section we shall show how to obtain the embedding
model as a four-dimensional hypersurface embedded in af Godel’'s spacetime in a five-dimensional Ricci-flat space,
pseudo-Euclidean space with ten dimensions. A recent motthe metric of which has signatufe-+ — — —). Whenn > 3,
vation to study the embedding ofi@el’s solution comes from the Campbell-Magaard alows us to lower the number of di-
the induced-matter proposal. It is known that Wesson and canensions of the embedding spaé&™* from n(n+1)/2 to
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n+1, as long ad"*! be Ricci-flat. However, we shallnotem-  Let us conclude this section with the following comment.
ploy directly the Campbell-Magaard; instead we shall makeThe manifold on which @del’'s metric is defined i&*, i.e.
use of the following theorem due to Magaard [6]: —oo < t,X,y,Z< o0 [25], and it is clear that the present embed-
Theorem (Magaard). Let (M",g) be an-dimensional ding takes the whole d®* into M®, irrespective of the domain
pseudo-Riemannian manifoldx*} a local coordinate sys- chosen fory. Moreover, we see that the embedding functions
tem of a neighbourhoodl) of p € M", with coordinates and the metric of the embedded spacetime are analy®&¢ in
(x%,,...,xg) defined by the parametrizationnU — M". Asuf-  while the metric of embedding space is analyticaMA. It
ficient and necessary condition fgvI", g), with line element  turns out then that in spite of the local character of the theorem
d< = gaB(x)dx“de, to be locally, isometrically and analyti- mentioned previously in this particular case the embedding
cally embedded in &+ 1)-dimensional manifolyM™+? ) ~ found happens to bglobal(a global version of the Campbell-

is that there exist analytical functions Magaard theorem has been discussed recently in [27] ). Itis
interesting to have a look at the components of the extrinsic

Top = gaﬁ(xl, X1 XD (2)  curvature tensof)qgs of the hypersurfacey = constof M°.

In the coordinates of (5) it can easily be shown thgg is

given byQqg = —iaggf [18], so that the nonvanishing com-

ponents 0, areQor = Q20 = — 5 v2wexp(v/2w(x+ k),
definided in an open s@& C x(U) x R" containing the point Qz, = —v2wexp(2v/2w(x + ki))).As we see, the extrinsic
(x%,, e XB» 0), satisfying the following conditions: curvature is also well-behaved (analytical) everywhere for any

hypersurface of the foliationy = const in particular for

¥ = 0. As a consequence of the global caracter of the embed-
;s X1, 0) = qu(x17...,x”) ding, all global properties so characteristics aidel’s uni-

B verse, such as the existence of closed timelike curves, are pre-

in an open set ak(U); Gyp = Opq- |TJop| #0; @# 0, and that  served inM®.

@= <, ..., X" X"t ®)

gu[}(x

082 = gqpd®dx® + £ dx X" 4)
Il.  FINAL REMARKS
with €2 = 1, represents the line elementMf'*1 in a coordi-
nate neighbourhood of M™[6, 26]. We would like to call attention for the fact that the space
In the light of the above theorem let us take- 4, e =1, (M5 g), which is a solution of the Einstein vacuum field equa-

¢ = —k?, wherek is a constant, and the set of analytical fions in five dimensions, has the peculiarity of possessing a
functions {Gup(t, Xy, W} [36], (a,B = 0,1,2,3) the non-  pon-Lorentzian (ultra-hyperbolic) metric, with two timelike
null elements of which argyy = 1,00, = J,0 = exp(vV2w(x+  dimensions. Spaces of these kind have been studied recently,
k)01 = — 1,000 = %exp(Z\wa(x+ kY));013=0s1,033=  Mainly in connection with the idea that massless particles in
—1. Clearly the conditiong,p = Ggq, ¢ # O are satisfied, five dimensions may appear "massive” when viewed from
and lsl ] — —3ex2vanic k) 7 0. Woreover,  Urimensons spacelime 26301, Ther are o clains
Oup(t,%,Y,2,0) = gyp(t, Xy, 2), hence the functiong,g may y y

be identified with the components ofd@el's metric written [31]. On the other hand, examples of embedding spaces with

in the form (1). We conclude, therefore, from the above the-eXtra timelike dimensions are many, and include, for in-

orem that the Gdel's universe can be embedded in a five_stance, the embedding of the Schwarzschild spacetime in a
dimensional spack!® with metric given by six-dimensional flat manifold obtained for the first time by

Kasner [32, 33]. Isometric embeddings in flat spaces with two
5 1 times have also been investigated in the context of branes [34].
d$ = dt?—d¥ + > exp(2v/2w(x+ ky))dy* — dZ Finally, it is interesting to note that it is not possible to glob-
210 ally embed a spacetime which is not globally hyperbolic into
+ 2exp(f2w(x+klp))dtdy+k dy ®) a pseudo-euclidean space with only one timelike dimension
[35]. We do not know whether a similar result holds in the

the embedding taking place fgr= 0, i.e. by choosing the case of Ricci-flat embedding spaces [38]

embedding functions given by—t,Xx - X,y —y,z— z, ) =
0.

If we calculate [37] the componen® Ry, of the Ricci ten-
sor directly from (5) we get? Ry, = 0. We see then that the IV.. ACKNOWLEDGEMENT
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