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Sewing String Tree Vertices with Ghosts
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It is shown how to sew string vertices with ghosts at tree level in order to produce new tree vertices
using the Group Theoretic approach to String Theory. It is then veri�ed the BRST invariance of
the sewn vertex and shown that it has the correct ghost number.

I Introduction

In the early days of String Theory, one way to obtain
amplitudes for the scattering of an arbitrary number of
strings was by using the factorization property, what
means that the scattering amplitude of N strings may
be interpreted as the scattering amplitudes of a smaller
number of strings sewn together. This made it possible
to build the N string scattering amplitude by knowing
the expression for three string scattering amplitudes.
Even though they were very ingenious and successful,
those calculations didn't take into account the ghost
structure of the vertices, and that is what is done here.

In [1], it was shown how to sew tree vertices without
ghosts using the Group Theoretic approach to String
Theory [2] in order to obtain a new, composite vertex.
Following the same procedure, we shall calculate the
scattering amplitude of N strings taking account the
ghost structure.

We shall start with a short review of how to sew tree
vertices without ghosts. What we must do is sew two
legs of two vertices, one leg from each vertex. What we
have in the beginning are two vertices V1 and V2 with
N1 and N2 legs, respectively (Fig. 1).

Figure 1. Individual vertices.

We now sew leg E from V1 with the adjoint of leg
F from V2. What we have now is the substitution of
the two sewn legs by a propagator (Fig. 2). When this
propagator is written in parametric form, it is an inte-
gration of one of the variables (in order to cancel one

spurious degree of freedom) and a conformal factor P
which contains terms of Ln's acting on leg E only.

Figure 2. Sewn vertices.

So the resulting vertex Vc (called the composite ver-

tex) has the generic form

Vc = V1PV
y
2 ; (1)

where the hermitian conjugate of V2 is for the sewn leg
F only and

P =

Z
dx P (2)

where x is a suitable variable. In what follows, we shall
often write P instead of P , calling attention to the in-
tegration when necessary.

When the two vertices are sewn together, we iden-
tify legs E and F . We also identify the Koba-Nielsen
variable zE with one of the Koba-Nielsen variables of
vertex V y

2 , and the Koba-Nielsen variable zF we iden-
tify with one of the Koba-Nielsen variables of vertex
V1. In [1], this identi�cation is made in the following
way: zE may be identi�ed with zF�1 or zF+1, and zF
may be identi�ed with zE�1 or zE+1. So there are four
possible combinations: a) zE = zF�1 ; zF = zE�1; b)
zE = zF+1 ; zF = zE+1; c) zE = zF�1 ; zF = zE+1; d)
zE = zF+1 ; zF = zE�1.
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II Oscillator case

The two original vertices satisfy some overlap identities
and so shall do the composite vertex. One particular
overlap identity is given by considering the operator
Q�i with conformal weight d = 0 de�ned by [2]

Q�i(�i) = �
1X

n=�1
n6=0

1p
n
��in (�i)

�n + ��i0 ln �i +
@
 

@�i0�
:

(3)
where ��in are bosonic oscillators with commutation re-
lations

[��in ; a�jm ] = ����ÆijÆn;�m ; n;m 6= 0 ; (4)

[��i0 ; a�jn ] = 0 ; 8n : (5)

The overlap identity is given by

V
�
Q�i(�i)�Q�j(�j)

�
: (6)

Because we are considering the adjoint of leg F in
vertex V2, we must see what the adjoint of these overlap
identities are. First, by the de�nition of Q�i, we have
that

Q�iy(�i) = �Q�i(�i)� = Q�i(�i) : (7)

So, the adjoint of the overlap equations is given by�
Q�i(��i)�Q�j(�j)

�
V y = 0 : (8)

We now take the overlap identity considering the
e�ects of the operator Q�i(�i) on the vertex V1 on a
generic leg i and on leg E1 (Fig. 3):

Figure 3. Overlap identity for V1.

V1
�
Q�i(�i)�Q�E(�E)

�
= 0 : (9)

We may then insert the unit operator 1 = PP�1
and multiply by P without altering the result:

V1PP�1
�
Q�i(�i)�Q�E(�E)

�P : (10)

Since the conformal operator P acts only on leg E,
it will have no e�ect on Q�i(�i). In order to compute
the e�ect of P on Q�E(�E), we must know that, for
a conformal transformation V acting on a conformal
operator R(z) of weight d,

V R(z)V �1 =

�
dV z

dz

�d

R(z) : (11)

Since Q�E(�E) has conformal weight d = 0, we have

P�1Q�E(�E)P = Q�E
�P�1�E� ; (12)

and (Fig. 4)

Figure 4. Overlap identity for V1P.

V1P
�
Q�i�i �Q�E(P�1�E)

�
= 0 : (13)

The second term in the expression above is facing
now leg F of vertex V y

2 , or best, its Hermitian conju-
gate. Considering that the Hermitian conjugate of Q�i

(given by (7)), we then have the following overlap iden-
tity between legs i and F :

V1P
�
Q�i(�i)�Q�F (�P�1�F )

�
= 0 : (14)

We can then make a cycling transformation in order to
obtain the correct factor for an arbitrary leg j (j 6= F )

of vertex V y
2 . The only term that will be a�ected is the

term depending on leg F :

V �1
j VFQ

�F
�
�P�1�E

�
V �1
F Vj =

Q�j
�
V �1
j VF�P�1�E

�
: (15)

Doing this, the overlap identity for the composite ver-
tex Vc (Fig. 5) can be written as

Figure 5. Overlap identity for Vc.

Vc
�
Q�i(�i)�Q�j(V �1

j VF�P�1�E)
�
= 0 ; (16)

which is the overlap equation between two arbitrary
legs i and j of the composite vertex Vc.

1As we shall be seeing soon, this form of the overlap will not lead to the correct composite vertex in the case where the cycling
transformations of the legs that are not sewn involve the sewn legs E or F .
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But the overlap identity for the composite vertex,
since none of legs i or j involves the propagator, must
be given by

Vc
�
Q�i(�i)�Q�j(�j)

�
= 0 (17)

and so in order for the equation we have obtained for
the overlap of the composite vertex Vc to be true we
must have

VF�P�1V �1
E = 1) P�1 = ��1V �1

F VE (18)

which implies that the propagator is given by

P = V �1
E VF� : (19)

In order to give an explicit expression for the prop-
agator, we will now choose �i to be of the form

�i = V �1
i z = z � zi : (20)

This choice is called the \simple cycling" [1] and it is
the one that simpli�es our calculations the most. In
this choice, the propagator is given by

Pz = 1

z
+ zF � zE ; (21)

or in terms of the LE
n operators2,

P = e(zF�zE�1)L
E
�1(�1)LE0 eLE1 e�LE�1 : (22)

This form works for all choices for the composite
vertex discussed before3. The true propagator is given
by expression (22) integrated over a suitable variable.
Choosing this variable to be s = zF � zE, we then have

P =

Z 0

�1

ds P =
1

LE
�1

(�1)LE0 eLE1 e�LE�1 ; s = zF � zE :

(23)
Before going any further, we must discuss another

aspect of the theory that depends on the particular way
in which the legs are identi�ed during the sewing pro-
cedure. Let us consider the more general case of an
arbitrary cycling Vi. This kind of cycling may depend
on other coordinates that are not zi. As an example, let
us suppose that we are identifying coordinate zE of leg
E with coordinate zF�1 of vertex V y

2 and coordinate
zF of leg F with coordinate zF�1 of vertex V1. The
overlap identity between legs i and E � 1 on vertex V1
is

V1

h
Q�i

�
V �1
0i z

��Q�(E�1)
�
V �1
0(E�1)z

�i
(24)

where we are calling V �1
0j the cycling transformation

on leg j (j = 1; : : : ; N). These cycling transformations
may depend on the other legs. As an example when this
happens, we take another choice of the cycling trans-
formations �i that is not as trivial as (20) but gives a
simpler formula for the propagator. This choice is given
by [1][3]

�i = V �1
0i z =

(zi+1 � zi�1)

(zi+1 � zi)
� (z � zi)

(z � zi�1)
(25)

which is the transformation that takes zi�1, zi and zi+1
to 1, 0 and 1, respectively. Its inverse is given by

V0iz =
zi�1(zi � zi+1)z + zi(zi+1 � zi�1)

(zi � zi+1)z + (zi+1 � zi�1)
: (26)

In the case of the cycling given by (25), the cycling
for leg E�1 will depend on leg E, which is not present
in the composite vertex. On this vertex, the overlap
between leg E � 1 and an arbitrary leg j reads

Vc

h
Q�(E�1)

�
V �1
0(E�1)z

�
�Q�j

�
V �1
0j z

�i
: (27)

This overlap equation involves terms that depend on
leg E, which is non-existent in the composite vertex Vc.
The correct overlaps should be given by

Vc

h
Q�(E�1)

�
V �1
E�1z

��Q�j
�
V �1
j z

�i
; (28)

where the cycling transformations V �1
E�1 and V �1

j do
not depend on legs E or F . So, in order to restore the
correct cycling transformation for the composite ver-
tex, a conformal transformation must be made on the
cycling transformations on vertex V1. These are given
by

V �1
0j �! C1V

�1
0j ; j 6= E ; (29)

where

C1 =

N1Y
i=1

V �1
i V0i : (30)

In this de�nition, we consider implicit that the trans-
formation V �1

E V0E = 1 since the conformal transforma-
tions on leg E will not be part of the composite vertex
and so need not be modi�ed.

Considering the general case, we have that the over-
lap equation for V1 (Fig. 6) that will lead to the cor-
rect composite vertex is now obtained from the original
overlap

2Other forms for this propagator are given by [1]:

P = e�L
E
1
=s(�1)L

E
0 s2L

E
0 e

LE
�1

=s

P = (�1)L
E
0
�LE

1
=ss2(L

E
0
�LE

1
=s)e

�(LE
1
�LE
�1

)=s
:

3This aÆrmation is usually not valid for other choices of �i.



Leonidas Sandoval Junior 235

Figure 6. Overlap identity for V1.

V1
�
Q�i(�0i)�Q�E(�0E)

�
= 0 ; (31)

where �0i = V �1
0i z and �0E = V �1

0E z. By inserting con-
formal transformation (30), we obtain (Fig. 7)

Figure 7. Overlap identity for V1C
�1
1 .

V1C
�1
1

�
Q�i(�i)�Q�E(�E)

�
= 0 : (32)

Inserting now the propagator, we obtain (Fig. 8)

Figure 8. Overlap identity for V1C
�1
1 P.

V1C
�1
1 P �Q�i(�i)�Q�E(P�1�E)

�
= 0 (33)

and we expect the composite vertex to have a di�er-
ent form (given shortly) than in (1) in order to amount
for the contributions of the conformal transformations.
The second term of the overlap is now facing leg F of
vertex V y

2 so that we have the following overlap between
legs i and F :

V1C
�1
1 P �Q�i(�i)�Q�F (�P�1�E)

�
= 0 : (34)

We are now facing the conformal transformation CF
4,

de�ned by
CF = V �1

F V0F (35)

which is necessary in order to change �0F ! �F . Intro-
ducing this transformation we obtain (Fig. 9)

Figure 9. Overlap identity for V1C
�1
1 PCF .

V1C
�1
1 PCF

�
Q�i(�i)�Q�F (V �1

0F VF�P�1�E)
�
= 0 :

(36)
Making a cycling transformation from leg F to leg

j, we then obtain (Fig. 10)

Figure 10. Overlap identity for V1C
�1
1 PCFV

y
2 .

V1C
�1
1 PCFV

y
2

�
Q�i(�i)�Q�j(V �1

0j VF�P�1�E)
�
= 0 :
(37)

Once again, a conformal transformation must be in-
troduced because of the cycling transformations V �1

0j .
This is de�ned by

C2 =

N2Y
i=1
i6=F

V �1
i V0i : (38)

so that we now have (Fig. 11)

Figure 11. Overlap identity for V1C
�1
1 PCFV

y
2 C

�1
2 .

4In this case, like we have seen for leg VE, VF may depend on the variable zE .
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V1C
�1
1 PCFV

y
2 C

�1
2

�
Q�i(�i)�Q�j(V �1

j VF�P�1�E)
�
= 0 : (39)

The composite vertex must be de�ned in terms of the new cycling transformations and so it must now include
the conformal transformations that perform this change. So, it will now be de�ned by

Vc = V1C
�1
1 PCFV

y
2 C

�1
2 : (40)

Considering this, the overlap identity for the composite vertex Vc can be written as

Vc
�
Q�i(�i)�Q�j(V �1

j VF�P�1�E)
�
= 0 : (41)

Since the correct overlap identity for the composite vertex is given by

Vc
�
Q�i(�i)�Q�j(�j)

�
= 0 (42)

we must have

VF�P�1V �1
E = 1 (43)

which implies once again that

P = V �1
E VF� : (44)

For the cycling transformation (25), it is only necessary to do conformal transformations on legs E�1, E, E+1,
F � 1, F and F + 1, depending on the particular way the variables associated with these legs are identi�ed with
the variables associated to legs E and F . In this particular example (which is case a seen before), the conformal
transformations are given by

V �1
0(E�1) �! C1V

�1
0(E�1) ; C1 = rL

E�1
0 ; (45)

V �1
0(F�1) �! C2V

�1
0(F�1) ; C2 = tL

F�1
0 (46)

where

r =
(zF�1 � zE�2)

(zF�1 � zE�1)

(zE�1 � zE)

(zE�2 � zE)
; t =

(zE�1 � zF�2)

(zE�1 � zF�1)

(zF�1 � zF )

(zF�2 � zF )
: (47)

For the cycling (25), the propagators obtained for the four possible combinations discussed before are given by

a) Pa = aL
E
0 ; b) Pb = e�L

E
1 aL

E
0 e�L

E
�1 ; c) Pc = e�L

E
1 bL

E
0 ; d) Pd = bL

E
0 e�L

E
�1 ; (48)

where5

a =
(zE+1 � zE�1)(zF+1 � zF�1)

(zE+1 � zF�1)(zF+1 � zE�1)
; b =

(zE+1 � zE�1)(zF+1 � zF�1)

(zE+1 � zF+1)(zF�1 � zE�1)
: (49)

The true propagators are obtained when we integrate the expressions above multiplied by a suitable constant. The
results are:

a) Pa =

Z 1

0

da aL
E
0
�1 =

1

LE
0

; b) Pb =

Z 1

0

da e�L
E
1 aL

E
0
�1e�L

E
�1 = e�L

E
1

1

LE
0

e�L
E
�1 ; (50)

c) Pc =

Z 1

0

db e�L
E
1 bL

E
0
�1 = e�L

E
1

1

LE
0

; d) Pd =

Z 1

0

db bL
E
0
�1e�L

E
�1 =

1

LE
0

e�L
E
�1 : (51)

It is now necessary to verify the e�ect of the gauge transformations C1 and C2 on the composite vertex as given
by formula (40). We shall do it by verifying the e�ect of C1 on vertex V1. In order to do this we need the explicit
expression for the bosonic oscillator vertex V1, given by [1] [4]

V1 =

 
NY
i=1

ih0j
!
exp

2
664�1

2

N1X
i;j=1
i6=j

1X
n;m=0

��in Dnm

�
�V �1

0i V0j
�
�jm�

3
775 (52)

5The coeÆcient a can be connected with the coeÆcient c in reference [1] by a = c
c�1

.
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where V �1
0i and V0j are cycling transformations involving leg E and the oscillators ��in have commutation relations

given by (4, 5). Matrices Dnm() are de�ned in the following way [3]:

Dn0() =
1p
n
[(0)]

n
; (53)

Dnm() =

r
m

n

1

m!

@m

@zm
[(z)]n

����
z=0

; (54)

D00() =
1

2
ln

�
d

dz
(z)

�����
z=0

(55)

and have the following multiplication property:

Dnm(12) =

1X
p=1

Dnp(1)Dpm(2) +Dn0(1)Æ0m + Æ0nD0m(2) : (56)

In order to calculate the e�ects of the conformal transformation C1 on these oscillators we must make use of the
following conformal operator [2]

P �i(�0i) =

1X
n=�1
n6=0

p
jnj��in (�0i)

�n�1 + ��i0 (�0i)
�1 (57)

which has conformal weight one, what means it transforms like

P�i(�0i) =
d�0j
d�0i

P�j(�0j) : (58)

An oscillator ��in (n � 1) can be expressed in terms of this conformal operator in the following way:

��in =
1p
n

I
�0i=0

d�0i (�0i)
nP�i(�0i) : (59)

Acting on it with the conformal transformation C1, we have

C1�
�i
n C�1

1 =
1p
n

I
�0i=0

d�0i (�0i)
n

�
d

d�0i
V �1
i V0i�0i

�
P�i(V �1

i V0i�0i) : (60)

Making now a change of variables �0i ! �i, we have

C1�
�i
n C�1

1 =
1p
n

I
�i=0

d�i (V
�1
0i Vi�i)

nP�i(�i) : (61)

Expanding (V �1
0i Vi�i)

n in terms of Dnm() matrices and P�i(�i) in terms of the oscillators, we obtain

C1�
�i
n C�1

1 =
1X

p=�1
p6=0

r
p

n

I
�i=0

d�i

"
p
nDn0

�
V �1
0i Vi

�
(�i)

�p�1 +

1X
m=1

r
n

m
Dnm

�
V �1
0i Vi

�
(�i)

m�p�1

#
��ip

+
1p
n

I
�i=0

d�i

"
p
nDn0

�
V �1
0i Vi

�
(�i)

�1 +

1X
m=1

r
n

m
Dnm

�
V �1
0i Vi

�
(�i)

m�1

#
��i0 : (62)

Performing the integrations we then obtain

C1�
�i
n C�1

1 =

1X
m=0

Dnm

�
V �1
0i Vi

�
��im : (63)

Using the same process for ��i0 , we obtain

C1�
�i
0 C�1

1 = ��i0 : (64)
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Using these transformation properties, the multiplication rules of matrices Dnm() (equation (56)) and the
property [3]

Dnm() = Dmn(�
�1�) ; (65)

we can show that the e�ect of the conformal transformation C1 on vertex V1 is given by

V1C
�1
1 =

 
NY
i=1

ih0j
!
exp

2
664�1

2

N1X
i;j=1
i6=j

1X
n;m=0

��in Dnm

�
�V �1

i Vj
�
�jm�

3
775 ; (66)

d

i.e. the e�ect of C1 on vertex V1 is to change V �1
0i !

V �1
i and V0j ! Vj thus eliminating the dependence of

the cycling transformations of every leg except leg E on
the latter. The same can be done to obtain the e�ect
of conformal transformation C2 on vertex V y

2 , with the
same results. So, the e�ect of these transformations
is to eliminate from the cycling transformations of the
composite vertex all dependence on the sewn legs E and
F .

III Introduction of ghosts

We now introduce ghosts in the vertex so that what we
must sew now are two vertices with some ghost vari-
ables attached to them, i.e. we will be considering the
physical vertices [4] which have the correct ghost num-
ber. In this case, in addition to satisfying the over-
lap identities with the conformal operator Q�i, the two
physical vertices and the composite vertex must also
satisfy some overlap identities with the conformal op-
erators bi and ci, given by [4]

bi(�i) =

1X
n=�1

bi�n(�i)
n�2 ; (67)

ci(�i) =

1X
n=�1

ci�n(�i)
n+1 (68)

where cin and bin are ghost anticommuting oscillators
with anticommutation relations

fcin; bjmg = Æn;�m : (69)

These operators have, respectively, conformal weights
2 and �1, what means that they transform like

bi(�i) =

�
d�j
d�i

�2

bj(�j) ; (70)

ci(�i) =

�
d�j
d�i

��1
cj(�j) : (71)

The overlap identities for a vertex V with these op-
erators are given by

V

"
bi(�i)�

�
d�j
d�i

�2

bj(�j)

#
= 0 ; (72)

V

"
ci(�i)�

�
d�j
d�i

��1
cj(�j)

#
= 0 : (73)

We shall be working here with overlap identities for
the physical vertex U [4], which has the correct ghost
number, instead of the overlap identities for vertex V .
The physical vertex is given by [4]

U = V

NY
i=1

i6=a;b;c

NX
j=1

1X
n=�1

eijn b
j
n (74)

where a; b; c are any three legs of the vertex and the
matrix eijn is given by

1X
n=�1

eijnLj
n = V �1

j @ziVj (75)

where the cycling transformations are now de�ned on
the complete generators Li

n of the conformal algebra
of the bosonic oscillators and of the ghost oscillators.
These vectors eijn have the following property:

@V

@zi
= V

NX
j=1

1X
n=�1

eijnLj
n : (76)

In order to derive the overlap identity for the physi-
cal vertex U , we must multiply the overlap identity for
V by the same factor as in equation (74),
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V

"
bi(�i)�

�
d�j
d�i

�2

bj(�j)

#0B@ NY
k=1

k 6=a;b;c

NX
l=1

1X
n=�1

ekln b
l
n

1
CA = 0 ; (77)

V

"
ci(�i)�

�
d�j
d�i

��1
cj(�j)

#0B@ NY
k=1

k 6=a;b;c

NX
l=1

1X
n=�1

ekln b
l
n

1
CA = 0 (78)

and pass it through the overlap identities, obtaining

U

"
bi(�i)�

�
d�j
d�i

�2

bj(�j)

#
= 0 ; (79)

U

"
ci(�i)�

�
d�j
d�i

��1
cj(�j)

#

+V
NX
p=1

p6=a;b;c

(�1)p
NY
k=1

k 6=a;b;c
k 6=p

NX
l=1

1X
q=�1

eklq b
l
q

1X
n=�1

"
epin (�i)

n+1 �
�
d�j
d�i

��1
epjn (�j)

n+1

#
= 0 : (80)

d

From (80) we can see that there will be an anoma-
lous term in the ci overlap of the physical vertex U
unless both legs i and j are precisely those legs (a, b
or c) that do not have any ghosts attached to them.
These ghosts which are attached to all the other legs
are responsible for the anomalous terms.

III.1 Analysis of the ghost number

Before going any further, it is necessary to make
some considerations on the ghost number of the com-
posite vertex. As we shall see shortly, in the case where
we perform the sewing with ghosts included, using the
physical vertices, the resulting composite physical ver-
tex will not have the correct ghost number unless we
insert some extra ghosts in vertex U1 before the sewing
takes place. Considering this, we shall de�ne the com-
posite vertex to be given by

Uc = U1GPU
y
2 (81)

where G are some extra ghosts that will be introduced
in order to make vertex Uc have the correct ghost num-
ber and P is the propagator (in its integrated form).

We must now analyze the ghost number of the com-
posite vertex and of its parts in order to calculate the
ghost number that the extra ghosts G must have. In
order to do this, we shall use the ghost number opera-
tor Ngh. For a vertex with N legs, the ghost number
operator is de�ned by

Ngh =

NX
i=1

 
1X

n=�1

ci�nb
i
n �

1X
n=2

bi�nc
i
n

!
: (82)

The reason why the ghost number operator is a sum
from i = 1 to i = N is because there are N vacua that
will annihilate the operators corresponding to each one
of them. When acting on the physical vertex, this oper-
ator gives a ghost number N , what is the correct ghost
number for a tree vertex with N legs.

In the case of the composite vertex, it hasN1+N2�2
legs (because it does not have legs E and F , which have
been sewn together) and so it must have ghost number
(N1+N2� 2). For this vertex, the ghost number oper-
ator Ngh

c can be divided into two parts:

Ngh
c = Ngh

1 +Ngh
2 (83)

where

Ngh
1 =

N1X
i=1
i6=E

 
1X

n=�1

ci�nb
i
n �

1X
n=2

bi�nc
i
n

!
; (84)

Ngh
2 =

N2X
i=1
i6=F

 
1X

n=�1

ci�nb
i
n �

1X
n=2

bi�nc
i
n

!
: (85)

This ghost number operator will have the following ef-
fect on the composite vertex:

UcN
gh
c = Uc

�
Ngh
1 +Ngh

2

�
= (N1 +N2 � 2)Uc : (86)

Given formula (81) for the composite vertex, we then
have

UcN
gh
c = U1N

gh
1 GPUy

2 + U1

h
G;Ngh

1

i
PUy

2

+ U1GPU
y
2N

gh
2 : (87)
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In order to calculate this, we must pay some atten-
tion to terms one and three of the right hand side of
the expression above. We know that

U1

�
Ngh
1 +Ngh

E

�
= N1U1 ; (88)

U2

�
Ngh
2 +Ngh

F

�
= N2U2 (89)

where

Ngh
E =

1X
n=�1

cE�nb
E
n �

1X
n=2

bE�nc
E
n ; (90)

Ngh
F =

1X
n=�1

cF�nb
F
n �

1X
n=2

bF�nc
F
n : (91)

Taking the Hermitian conjugate of equation (89) only
on leg F , we obtain

U y
2N

gh
2 +Ngh

F

y
U y
2 = N2U

y
2 : (92)

Since for Ngh
F

y
(and for any arbitrary ghost number

operator)

Ngh
F

y
= �Ngh

F + 3 (93)

we then obtain, substituting (88), (92) and (93) into
equation (87),

c

UcN
gh
c = (N1 +N2 � 3)U1GPU

y
2 + U1

h
G;Ngh

1

i
PU y

2 � U1N
gh
E GPU y

2 + U1GPN
gh
F Uy

2 : (94)

Passing Ngh
E through the extra ghosts G, we then obtain

UcN
gh
c = (N1 +N2 � 3)U1GPU

y
2 + U1

h
G;Ngh

1

i
PU y

2

�U1

h
Ngh
E ; G

i
PUy

2 � U1GPN
gh
E U y

2 + U1GPN
gh
F Uy

2 : (95)

We must now remember that, in the composite vertex, we identify every operator on leg E with operators on
leg F so that Ngh

E = Ngh
F . Doing this, the last two terms in (95) cancel and we obtain the following result:

UcN
gh
c = (N1 +N2 � 3)U1GPU

y
2 + U1

h
G;Ngh

1 +Ngh
E

i
PUy

2 : (96)

d

The fact that Uc has ghost number N1+N2�2 then
implies that h

G;Ngh
1 +Ngh

E

i
= G ; (97)

i.e. the extra ghosts that must be introduced in vertex
U1 must have ghost number 1.

6

There is an in�nite number of combinations of
ghosts that have ghost number 1. We could have any
linear combination of ghosts of the type b, bcb, bcbcb,
etc. but it will prove to be simpler to choose G to be a
combination of b0s only so that we may represent it as

G =

N1X
i=1

1X
n=�1

�inb
i
n (98)

where �in are the coeÆcients of the linear combination.
In order to determine the correct linear combination, we
must use some other conditions, like BRST invariance
of the scattering amplitude. This we shall see next.

III.2 BRST invariance

We must now impose that the scattering amplitude
obtained from the composite vertex is BRST invariant
and check whether this condition is strong enough to
determine G. The scattering amplitude [1] is obtained
by acting with the composite vertex

Uc = U1GPU
y
2 (99)

on a certain number of physical states
(j�1ij�2i : : : j�N i) and then by integrating over all vari-
ables zi (i = 1; : : : ; N1 +N2; i 6= E;F ):

W =

Z N1+N2Y
i=1

i6=E;F

dzi U1GPU
y
2 j�1ij�2i : : : j�N i : (100)

6This contrasts with references [5] and [6] where it is claimed that the extra ghosts should have ghost number 1, 2 or 3, depending
on the way one chooses legs E and F to have or not to have ghosts attached to them.
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P is the propagator in its integrated form and G are
the extra ghosts to be inserted in U1.

The action of the BRST charge Q on this scattering
amplitude is given by

c

WQ =

Z N1+N2Y
i=1

i6=E;F

dzi [U1; Q]GPU
y
2 j�1ij�2i : : : j�N i

+

Z N1+N2Y
i=1

i6=E;F

dzi U1 [G;Q]PU
y
2 j�1ij�2i : : : j�N i+

Z N1+N2Y
i=1

i6=E;F

dzi U1G [P;Q]Uy
2 j�1ij�2i : : : j�N i

+

Z N1+N2Y
i=1

i6=E;F

dzi U1GP
h
Uy
2 ; Q

i
j�1ij�2i : : : j�N i : (101)

d

The �rst and third terms will result in total derivatives
that give zero when one integrates over some variables
[1] and so what remain are just the second and third
terms.

The commutator P is given by a pure conformal
transformation, and it is a function of the generators
LE
n (n = �1; : : :) only. As the BRST charge commutes

with all LE
n 's, i.e. �LE

n ; Q
�
= 0 (102)

we have
[P;Q] = 0 : (103)

Considering now that�
bin; Q

�
= Li

n ; (104)

we then have, for G given by (98),

U1 [G;Q] = U1

N1X
i=1

1X
n=�1

�inLi
n : (105)

In order for the scattering amplitudeW to be BRST
invariant, expression (105) must be zero or a total
derivative (that can be integrated out to become a null
surface term). At the same time, we want these extra
ghosts to place (talking in terms of the simple cycling)
a ghost on one of the legs in U1 that do not have any
ghosts attached to them. If we now remember property
(76), we see that we can satisfy these constraints in a
nice way by choosing G to be given by

G = (�1)N1+a
N1X
j=1

1X
n=�1

eajn bjn (106)

where a (a 6= E) is one of the legs of vertex U1 that does
not have ghosts attached to it. Inserting these ghosts
in vertex U1, we have

c

U1G = V1

N1Y
i=1

i6=a;b;c

N1X
k=1

1X
m=�1

eikn b
k
m � (�1)N1+a

N1X
j=1

1X
n=�1

eajn bjn = V1

N1Y
i=1
i6=b;c

N1X
j=1

1X
n=�1

eijn b
j
n : (107)

Using formula (106) for the extra ghosts G, we then have

U1 [G;Q] = U1(�1)N1+a
N1X
j=1

1X
n=�1

eajn
�
bjn; Q

�
= (�1)N1+aU1

N1X
j=1

1X
n=�1

eajn Lj
n

= (�1)N1+a
@V1
@za

N1Y
i=1

i6=a;b;c

N1X
j=1

1X
n=�1

eijn b
j
n (108)

what is a total derivative that will vanish when one does the integration over za.
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d
In references [5] and [6], the extra ghosts have been

placed in the propagator. Although this can be done,
there is no way one can derive a formula for the ghosts
in the propagator for a general cycling. In that case,
the extra ghosts must be derived and BRST invariance
has to be checked for each particular cycling. Also, the
resulting composite vertex obtained in that case is not
similar in its ghost structure to an ordinary tree vertex,
although it has the correct ghost number.

III.3 Overlap identities

We must now use the overlap identities to determine
the propagator that satis�es them. In order to do this
we shall start with vertex U0

1 , which is the vertex with

cycling transformations V �1
i which involve leg E. Con-

sidering equations (79) and (80), the overlap identities
for vertex U0

1 between an arbitrary leg i and leg E are
given by (Fig. 12)

Figure 12. Overlap identity for U0
1 .

c

U0
1

"
bi(�0i)�

�
d�0E
d�0i

�2

bE(�0E)

#
= 0 ; (109)
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"
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d�0E
d�0i
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cE(�0E)
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+V 0
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k 6=p

N1X
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eklq b
l
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"
epin (�0i)
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�
d�0E
d�0i

��1
epEn (�0E)

n+1

#
= 0 : (110)

The extra ghosts must then be inserted in vertex U0
1 so that the composite vertex will have the correct ghost

number. Multiplying expressions (109) and (110) by the extra ghosts G (given by (106)) and passing them through
the overlaps we obtain (Fig. 13)

Figure 13. Overlap identity for U0
1G.
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@ N1X
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�
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��1
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The second and third terms of equation (112) can be combined so that it becomes

U0
1G

"
ci(�0i)�

�
d�0E
d�0i

��1
cE(�0E)

#

+V 0
1

N1X
p=1
p6=b;c

(�1)p
N1Y
k=1
k 6=b;c
k 6=p

 
N1X
l=1

1X
q=�1

eklq b
l
q

!
1X

n=�1

"
epin (�0i)

n+1 �
�
d�0E
d�0i

��1
epEn (�0E)

n+1

#
= 0 : (113)

At this point, we must introduce conformal transformations of the type of C1, given by (30) in order to have at
the end the correct cycling transformations for the composite vertex. In order to do this we need to use matrices
Enm(), de�ned by [5]

Enm() =
1

(m+ 1)!

@m+1

@zm+1

"
(z)

n+1

�
@

@z
z

��1#�����
z=0

(114)

which have the following properties:

1X
t=�1

Ert(1)Ets(2) = Ers(12) ; r; s; t = �1; 0; 1 ; (115)

Ern() = 0 ; r = �1; 0; 1 ; n � 2 ; (116)
1X

p=�1

Enp(1)Epm(2) = Enm(12) ; n;m � �1 ; (117)

1X
p=2

Enp(1)Epm(2) = Enm(12)�
1X

r;s=�1

Enr(1)Ers(2)Æsm ; n;m � 2 : (118)

The action of the operator C1 on the ghosts bin can then be calculated in the following way: �rst we write bin in
terms of an integral over the conformal operator bin(�i)

bin =

I
�0i=0

d�0i (�0i)
n+1bi(�0i) : (119)

Then we insert the operator C1:

C1b
i
nC

�1
1 =

I
�0i=0

d�0i (�0i)
n+1

�
d

d�0i
V �1
i V0i�0i

�2

bi
�
V �1
i V0i�0i

�
: (120)

After a change of variables �i = V �1
i V0i�0i we have

7

C1b
i
nC

�1
1 =

I
�i=0

d�i
�
V �1
0i Vi�i

�n+1� d

d�i
V �1
0i Vi�i

��1
bi(�i) : (121)

Using matrices Enm(), we then may expand �0i in terms of �i. If we also expand bi(�i), we then obtain

C1b
i
nC

�1
1 =

1X
m=�1

1X
p=�1

I
�i=0

d�i Enm(V
�1
0i Vi)(�i)

m+1bi�p(�i)
p�2 : (122)

Performing the integration we then have

C1b
i
nC

�1
1 =

1X
m=�1

Enm(V
�1
0i Vi)b

i
m : (123)

Using (123) in equations (111) and (113) and multiplying (111) by (d�i=d�0i)
�2

and (113) by d�i=d�0i, we then
have (Fig. 14)

7Note that, because �i is a polynomial in �0i (with no constant term), then �0i = 0) �i = 0.
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Figure 14. Overlap identity for U0
1GC
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Before going further, some words must be said about the e�ects of C�1
1 on vertex U0

1 with the extra ghosts G.

This is given explicitly by [4][5]

U0
1G =

 
N1Y
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ih0j
!
exp

2
664

N1X
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n : (126)

Making use of matrices Fnm(), de�ned by [5]

Fnm() =
1

(m� 2)!

@m�2

@zm�2

(
[(z)]

n�2

�
@

@z
(z)

��1)�����
z=0

(127)

we may calculate in a similar way as we did for the bin ghosts the e�ect of C1 on the cin ghosts, obtaining

C1c
i
nC

�1
1 =

1X
m=2

Fnm(V
�1
0i Vi)c

i
m : (128)

Using this together with the property

Fnm() = Emn(�
�1�) (129)

and equation (123), we may then show that the result of acting with C�1
1 on U0

1G is
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So we can see that in this case the action of C�1
1 on U0

1G is not just to change V0i ! Vi. Because of the peculiar

nature of eijn , it transforms as

eijn !
1X

m=�1

eijnEnm(V0jVj)b
j
m : (131)

Only in one particular group of cycling transformations (as we shall see later) will this be just equivalent to changing

V0i ! Vi. We shall call from now on U0
1GC

�1
1 � U1 and V 0

1 C
�1
1 � V1. The calculation for vertex CFU

y
2C

�1
2 will be

similar to the one we have just made for U0
1GC

�1
1 .

Having done this, we must insert the propagator P into the overlap identities (124) and (125) in the same way

as in the case with no ghosts. But now we must take extra care since there are terms depending on bEq in the second

term of equation (125). Using equation (123) as a guideline, we have

P�1bEq P =

1X
t=�1

Eqt(P)bEt (132)

so that the result of inserting P into overlaps (124) and (125) is (Fig. 15)

Figure 15. Overlap identity for U1P.
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The operators of the overlap equations are now facing leg F of vertex U y
2 . In order to obtain the overlap identities

for this leg, we must now identify the operators of leg E with the ones of leg F , which are adjoint operators:

bEt ! bFt
y
; bE ! bF

y
; cE ! cF

y
: (135)

First, as bF and cF are conformal operators with weights 2 and �1, respectively, we have

bF
y
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Then, for bFn and cFn , we obtain
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y

= �cFn� = �cF�n ; (138)
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F
�n : (139)
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Then, we must also make the change�
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So, the overlap equations become
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We are then facing the conformal transformation CF that takes �F into �0F . Inserting this transformation we
obtain (Fig. 16):

Figure 16. Overlap identity for U1PCF .
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We are facing now vertex V 0y
2 . This vertex satis�es the following overlap identity [4]:
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Using equation (117), we have
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All terms on bFt with t � 2 get annihilated by the conjugate vacuum j0iF , while we may use identity (145) to

substitute the terms in bFr , r = �1; 0; 1. Doing this, equation (144) becomes
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Equations (143) and (147) are the overlap identities between legs i and F .

In order to obtain the overlaps between leg i of vertex U1 and an arbitrary leg j of vertex Uy
2 , we must now

perform a cycling transformation that will take the operators from leg F to leg j. The e�ect of this transformation
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Then, we must also write
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Doing this, overlap equations (143, 147) become (Fig. 17)

Figure 17. Overlap identity for U1PCFV
0y
2 .
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The operators are now facing the ghosts that surround vertex U0y
2 (like in equation (74)):

N2Y
k=1

k 6=d;g;h

0
B@ N2X

l=1
l6=F

1X
q=�1

eklq b
l
q +

1X
q=�1

ekFq bF�q

1
CA : (152)

so that we must insert these ghosts into the expressions for the overlaps. Before doing that, we must notice that

the extra ghosts acting on vertex V 0y
2 have at their left both the conformal transformation CF and the propagator

P so that we must �rst pass them through in order to reach vertex U1:
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Then, identifying legs E and F , we have the following expression for the ghosts:
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We may now pass it through the conformal transformation C1, obtaining

N2Y
k=1

k 6=d;g;h

2
64 N2X

l=1
l6=F

1X
q=�1

eklq b
l
q �

1X
q;t=�1

ekFq Eqt

�
V �1
0F VF�P�1V �1

E V0E
�
bEt

3
75P : (155)

This is now facing vertex V 0
1 , which satis�es the following overlap identity [4]:
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Using this identity, we may then write the extra ghosts as

N2Y
k=1

k 6=d;g;h

2
64 N2X

l=1
l6=F

1X
q=�1

eklq b
l
q +

N1X
l=1
l6=E

1X
q;t=�1

ekFq Eqt

�
V �1
0F VF�P�1V �1

E V0l
�
blt

3
75 : (157)

Passing it back through C1 we then have

N2Y
k=1

k 6=d;g;h

2
64 N2X

l=1
l6=F

1X
q=�1

eklq b
l
q +

N1X
l=1
l6=E

1X
q;t=�1

ekFq Eqt

�
V �1
0F VF�P�1V �1

E Vl
�
blt

3
75 : (158)



Leonidas Sandoval Junior 249

We now insert these ghosts into expressions (150) and (151). We do so by multiplying them by (158) and passing

it through the �rst term of the overlaps. What we obtain is (Fig. 18)

Figure 18. Overlap identity for U1PCFU
0y
2 .
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We are then facing the last term of this composite vertex: the conformal transformation C2 on vertex V 0y
2 .

Inserting it into equations (159) and (160), we obtain (Fig. 19)

Figure 19. Overlap identity for U1PU
y
2 .
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where we have called CFU
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2 C�1

2 � Uy
2 and CFV
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2 � V y
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We must now extract the ghosts from vertex U1 in the second term of equation (162):
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Identifying bEt with bF�t and passing now these ghosts through the conformal transformation CF , we obtain
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Using now overlap identities (145) for vertex V y
2 and inserting the conformal transformation C2, we then obtain
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Substituting (165) into equation (162) we then obtain the overlap identities between legs i and j:
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If we now impose that these are the correct overlap equations between legs i and j of the composite vertex we
then must have:
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These are the overlap identities between legs i and j of the composite vertex Uc.
From these overlap equations it is then possible to derive the form of the composite vertex. It is given by
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Although this is the correct composite vertex for a general cycling, its ghost structure is not very apparent. We
may use the explicit expression for the vectors eijn [7]:
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n=p+1

�ajnLj
n

!
; p � 1 : (177)

If we assume now that the cycling transformations V �1
E and V �1

F do not depend on the variables zi of vertex U1

or zj of vertex Uy
2 , and if we have in mind that eijn = 0 for any leg i of vertex U1 and a leg j of vertex Uy

2 (or
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vice-versa), then we have

eijn = Æij
1X

r=�1

E�1r(Vi) (178)

what simpli�es things considerably. We shall call all cyclings that have such properties \simple cycling-like". In
this kind of cyclings, each leg has its own ghost attached to it, with the exception of three of the legs which have no
ghosts attached to them. We will now consider three cases separately: one in which none of the legs E or F have
ghosts attached to them, one in which one of these legs (say E) has a ghost attached to it, and a case where both
legs (E and F ) have ghosts attached to them.

The composite vertex for the case where neither E nor F (we choose E = b and F = g) have ghosts attached is
given by

Ugh
c = V gh

c �
N1Y
i=1
i 6=b
i6=E

1X
r=�1

E�1r(Vi)b
i
r �

N2Y
i=1
i6=d;h
i6=F

1X
r=�1

E�1r(Vi)b
i
r (179)

where V gh
c is the vertex given by the �rst two terms of equation (172). For the case where leg E has a ghost attached

to it, but not leg F (we shall call F = g), the composite vertex is given by

Ugh
c = V gh

c �
N1Y
i=1
i6=b;c
i6=E

1X
r=�1

E�1r(Vi)b
i
r �

N2X
j=1
j 6=F

1X
r=�1

E�1r(Vj)b
j
r �

N2Y
i=1
i6=d;h
i6=F

1X
r=�1

E�1r(Vi)b
i
r : (180)

In the last case, where both E and F have ghosts attached to them, we then have

Ugh
c = V gh

c �
N1Y
i=1
i6=b;c
i6=E

1X
r=�1

E�1r(Vi)b
i
r

�
N2X
j=1
j 6=F

1X
r=�1

E�1r(Vj)b
j
r �

N1X
j=1
j 6=E

1X
r=�1

E�1r(Vj)b
j
r �

N2Y
i=1

i6=d;g;h
i6=F

1X
r=�1

E�1r(Vi)b
i
r : (181)

We can see that, for each case, the composite vertex has the correct ghosts number (N1 +N2 � 2).

d

IV Conclusions

Using overlap identities, two vertices were sewn to-
gether in order to become a composite vertex. The
calculations have been done with the correct ghost num-
bers for each vertex and the result has both BRST in-
variance and the correct ghost counting.
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