
1074 Brazilian Journal of Physics, vol. 35, no. 4B, December, 2005

Quantum Correlations in Inflationary Spectra and Violation of Bell Inequalities
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In spite of the macroscopic character of the fluctuation amplitudes, we show that the standard inflationary
distribution of primordial density fluctuations still exhibits inherently quantum mechanical correlations (which
cannot be mimicked by any classical stochastic ensemble). To this end, we propose a Gedanken experiment
for which certain Bell inequalities are violated. We also compute the effect of decoherence and show that the
violation persists provided that the decoherence lies below a certain non-vanishing threshold. Moreover, there
exists a higher threshold above which no violation of any Bell inequalities can occur, so that the corresponding
distributions can be interpreted as stochastic ensembles of classical fluctuations.

Inflation implies that the primordial density fluctuations
arise from the amplification of vacuum fluctuations [1]. As
a result, the initial vacuum state becomes a product of highly
squeezed two-mode states [2] characterized by the wave vec-
tors k and−k. This follows from the homogeneity of the
state and the linearity of the mode equation. However the lin-
ear treatment is only approximate. Hence, when no longer
neglecting the weak non-linearities of inflationary models [3],
and when restricting attention to a given two-mode sector, de-
coherence will unavoidably develop. Since the interactions
preserve the homogeneity and are weak (so as to justify the
use of a Hartree approximation) inflationary distributions be-
long to the class of Gaussian homogeneous distributions ob-
tained by slightly decohering the standard distribution ob-
tained by neglecting non-linearities [4–6].

Given the macroscopic character of the fluctuation ampli-
tudes at the end of inflation, one might ask whether some
quantum properties have been preserved by these distribu-
tions, and if so, how to distinguish those which have kept some
from those which have lost them. To show that the standard
distribution has kept quantum properties and to sort out these
two classes of distributions, we shall analyze the possibility of
violating Bell inequalities [7].

I. THE INFLATIONARY SPECTRA

A. The ’standard’ distribution

In inflationary models based on one inflaton field, one can
express the dynamics of the linear perturbations around the
background solution of Einstein equations in terms of a mass-
less scalar field minimally coupled to gravity,φ. This field is
the gauge-invariant linear combination of the gravitational po-
tential and the inflaton fluctuations which satisfies canonical
commutation relations [8]. We briefly outline how one obtains
the two-mode squeezed states and the time-coherence of the
modes [2, 5].

The background geometry is a Friedman-Robertson-Walker

space-time, with line element

ds2 = a2(η)
[−dη2 +δi j dxidxj] . (1)

The spatial sections in the present Hubble volume are flat
to an excellent precision if inflation has lasted enough to
have increased the radius of curvature to super-horizon scales.
The scale factor, as a function of the conformal timeη is
given by a(η) = −1/Hη in the inflationary period we ap-
proximate by a de Sitter space. At the reheatingηr , we
paste this law to a radiation dominated phase characterized
by a(η) = (η− 2ηr)/(Hη2

r ). We can then follow the time
dependence of modes from the onset of inflation till horizon
re-entry in the radiation dominated era.

After expanding the action of matter and metric fluctua-
tions up to quadratic order around the background solution,
the Hamiltonian for each complex Fourier modeφk is

Hk =
1
2

[
|∂ηφk |2 +

(
k2− ∂2

ηa

a

)
|φk |2

]
. (2)

The state ofφk at the onset of inflation follows from the
kinematics of the background [9]: if some inhomogeneities
are present at an early stage of inflation, they are diluted by
the quasi-exponential expansion over proper lengths bigger
than our causal patch, i.e., to us, they are indistinguishable
from the background. One is thus left with the vacuum. One
can also reach this conclusion by considering the evolution
of perturbations backward in time. Then, non-vacuum contri-
butions (classical inhomogeneities as well as quantum exci-
tations of the field) to the energy-momentum tensor blow-up
thereby violating the consistency condition of no-large back-
reaction. In conclusion, all the modes observable today were
in their ground state about70 e-folds before the end of in-
flation (the minimal duration of inflation to include today’s
horizon inside a causal patch).

This ground state is unambiguously defined for the rele-
vant modes because, at that time, their wavelength was much
shorter than the Hubble radius (i.e.k2 À ∂2

ηa/a in Eq. (2)).
One therefore works with the vacuum defined in the asymp-
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totic past by positive frequency modes

lim
η→−∞

[i∂η−k]φin
k (η) = 0, (3)

whereφin
k (η) are solution of the mode equation:

∂2
ηφ̂k +

(
k2− ∂2

ηa

a

)
φ̂k = 0,

φ̂k(η) = âin
k φin

k (η)+ âin†
−k φin∗

k (η) . (4)

The time-dependent term∂2
ηa/a mixes the positivek and

negative frequency−k modes. Therefore the vacuum unitar-
ily evolves into an entangled state: a two-mode squeezed state.
Confusion about the origin of this entanglement seems to per-
sist: entanglement isnot a consequence of the reality (self-
adjointness) of̂φ(η,x). Pair production of charged particles
(in an electric field) also leads to entangled states. Two-mode
entanglement is due to the mixing of positive and negative fre-
quencies and to the homogeneity of the background.

At the end of inflation,∂2
ηa vanishes and the amplification

stops. During the radiation dominated era, in the absence of
iso-curvature modes, the fluctuations of physical fields (those
of the gravitational potential and of cold dark matter and radi-
ation density fluctuations) are all linearity related to the values
of φ and∂ηφ evaluated at the end of inflation. This is true both
classically and quantum mechanically because of the linearity
of the transfer matrix.

Instead of working with these physical fields, it is sim-
pler to keep working withφk , since its time evolution is sim-
ply governed bye±ikη. We shall use this behavior to fur-
ther simplify the writings by introducing creation and destruc-
tion operatorsâk , â†

k defined in the adiabatic era bŷφk =
(âke−ikη + h.c.)/

√
2k. In terms of these operators, the ‘in‘

vacuum (i.e. the state annihilated by theâin
k of Eq. (4)) reads

[2]

|0, in〉 = ∏̃
k

(
1−|zk|2

)1/2

× exp
(

zk â†
k â†

−k

)
|0, k〉⊗ |0,−k〉 . (5)

The tilde tensorial product takes into account only half the
modes. It must be introduced because the (squeezing) opera-

tor exp
(

zk â†
k â†

−k

)
acts on the pairs of modes. The complex

numberzk characterizes the two-mode states of wavenumber
k = |k|. It is related to the following expectation values

〈â†
k âk′〉= nk δ3(k−k′) , 〈âk âk′〉= ck δ3(k +k′) . (6)

The mean occupation number isnk = |zk|2/(|zk|2− 1) and
the cross correlation term isck = zk/(|zk|2− 1). They obey
|ck|2 = nk(nk +1). This is the highest value of|ck| for a given
nk. It is obtained for the states which minimize Heisenberg
uncertainty relations [6].

Asking that the spectrum describes fluctuations with r.m.s.
amplitude10−5 for wavelength observable in the CMB, one

gets the rough estimationnk ∼ 10100. The phase ofzk deter-
mines the temporal phase of the modes as they re-enter the
Hubble radius [6]. Namely, the power spectrum ofφk at con-
formal timeη is given by a product of two modes proportional
to eikη +zke−ikη. In inflationary models,zk is very close to−1,
giving rise tosin(kη) functions, i.e. to ’growing modes’.

B. Partially decohered Gaussian distributions

The two-mode entanglement of squeezed states follows
from the homogeneity of the vacuum and the linearity of the
mode equation. However, as discussed in the introduction,
the linear treatment is only approximate. When no longer ne-
glecting the weak non-linearities of gravitation [3], and when
restricting attention to a given two-mode sector, some deco-
herence develops. This is very similar to the description of an
experiment of diffraction of a slightly anharmonic cristal. The
calculation of the reduced density matrix of the two modes
under scrutiny is very difficult. But the weakness of the inter-
actions guarantees that the modifications of the power spec-
trum are extremely small. It also guarantees that the reduced
density matrix can still be accurately described by a Gaussian
distribution. Moreover, since homogeneity is preserved, these
distributions always factorize into products of uncorrelated
two-mode sectors. In conclusion, inflationary distributions
of primordial fluctuations belong to the class of Gaussian ho-
mogeneous distributions obtained by (slightly) decohering the
standard distribution̂ρin = |0, in〉〈0, in| [4, 6].

These are described by products of two-mode density ma-
trices ρ̂2 which are characterized by the expectation values
(6), wherenk and |ck| are nowindependentparameters. We
shall work at fixednk (fixed power spectrum), and fixed
arg(ck) (changing this phase does not change the entropy [6]),
and let the norm|ck| vary. A convenient parametrization is
provided byδk:

|ck|2 = (nk +1)(nk−δk) . (7)

Squeezed states (5) are maximally coherent and correspond
to δk = 0. The least coherent distribution, a product of two
random density matrices, corresponds toδk = nk. Hence, the
parameterδk controls the level of decoherence of the distrib-
ution, or equivalently the strength of the correlations between
thek and the−k sectors. It also fixes the r.m.s. amplitude of
thedecayingmode, as seen by decomposing the field modes
φ̂k in terms of the growing and the decaying modes:

φ̂k(η) = ĝk
sin(kη)√

k
+ d̂k

cos(kη)√
k

. (8)

Whenδ¿ n,

〈ĝk ĝ†
k〉 = n+

1
2
−Re(c) = 2n

(
1+O(

δ
n
)
)

,

〈d̂k ĝ†
k〉 = n+

1
2

+Re(c) = n1/4
(

1+O(
δ
n
)
)

,

〈d̂k d̂†
k〉 = Im(c) =

δ
2

+O(n−1/2)¿ 〈ĝk ĝ†
k〉 . (9)
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We have dropped the indexesk since each two-mode can be
analyzed separately (unless one is considering localized wave
packets).

We emphasize that the increase of entropy from the initial
pure vacuum state to a statistical mixture follows, as usual,
from the neglect of correlations, see footnote p.188 in [10].
In other words, ignoring the correlations between several two-
modes is the coarse graining we adopt. We also notice that
this Gaussian ansatz is a first order (Hartree) approximation.
With the future experiments, deviations from Gaussianity will
hopefully be measurable and will become a powerful tool to
raise the degeneracy between various models for the primor-
dial universe [11].

II. CLAUSER-HORNE INEQUALITIES FOR
INFLATIONARY SPECTRA

A. Local Hidden Variable completions of Quantum Mechanics
and the Clauser-Horne inequality

Bell inequalities and their generalizations form a set of con-
strains on the statistics of outcomes of measurements when
one demands that these outcomes are compatible with the
classical concept of locality [12].

Consider a system made of two subsystems I and II and let
the two parts interact. In general they will become correlated.
Suppose that after ’turning off’ the interactions, the system is
in a pure state of the form

|χ〉= ∑
n

An|φ〉In⊗|ψ〉IIn , (10)

where there is more than one term in the sum, where|φ〉In and
|ψ〉IIn are two sets of orthonormal states in the Hilbert spaces
H I andH II of I and II respectively, and wherePn = |An|2 < 1
are the probabilities for then-th outcome to be realized such
that ∑nPn = 1. The states (10) are a special case of entan-
gled states, see Section III.C for the definition of entanglement
for statistical mixtures. (Notice that each two-mode squeezed
state in Eq. (5) is an entangled state.) Being orthonormal,
the |φ〉In and |ψ〉IIn can be seen as eigenstates of observables
Φ̂I ⊗1II and1I ⊗ Ψ̂II acting non-trivially onH I andH II re-
spectively.

After having let the two subsystems interact, we separate
them to two distant places where two measurement separated
by a space-like interval will be performed. We suppose that
we have a ensemble of copies of the same system all prepared
in state|χ〉 in order to perform different measurements and
to accumulate statistical data. The space-like character of the
interval guarantees that the state of one subsystem cannot be
affected by any measurement performed on the other subsys-
tem. Once the apparatus I has measured the observableΦ̂I

on system I, we can predict with probability1 (as checked
by reproducing the experiment in the same conditions a large
number of times and bringing the data together) the outcome
of the measurement of1I ⊗ Ψ̂II , irrespectively of the values
of the probabilitiesPn and despite the space-like separation of

the events of the measurements on subsystems I and II (sup-
posing we have thea priori knowledge that the system is in
the entangled state|χ〉, as we do in inflationary cosmology,
see eq. (6)).

In order to explain these correlations one might be tempted
to consider that they result from unknown common proper-
ties shared by the two subsystems, and whose values were as-
signed while I and II were still interacting. These properties,
to which we do not have access by the experiments, are called
Hidden Variables. The Hidden Variable Programm consists in
establishing the conditions which have to be met. In particu-
lar, Bell’s theorem and its generalizations [12–14] show that
Quantum Mechanics cannot be embedded in aLocal Hidden
Variable Theory. In this paper, we will consider a particular
type of inequalities called the Clauser-Horne (CH) inequali-
ties [12, 15].

1. Local Hidden Variable Theory

A Local Hidden Variable Theory (LHVT) is the specifica-
tion of
i) the conditional probabilitypΦ[φ; λ] (resp.pΨ[ψ; λ]) that the
measurement of̂ΦI (resp. Ψ̂II ) gives the eigenvalueφ (resp.
ψ), given a valueλ of the hidden variables,
ii) a probability measurep(λ)dλ.

The requirement of locality forces that
1) the conditional probabilitiespΦ (resp. pΨ) is independent
of Ψ̂II (resp.Φ̂I ),
2) the probability distributionp(λ) is independent of botĥΦI

andΨ̂II ,
3) given a valueλ of the hidden variables, the outcome of the
measurements of̂ΦI andΨ̂II are statistically independent, i.e.

pΦΨ(φ,ψ; λ) = pΦ[φ; λ]× pΨ[ψ; λ] . (11)

A given quantum statêρ∈H I⊗H II admits a LHVT if, and
only if, for any pair of observables with spectral decomposi-
tions Φ̂I = ∑n φnΠ̂Φ

n andΨ̂II = ∑n ψnΠ̂Ψ
n , the statistical pre-

dictions of the model reproduce those of Quantum Mechanics,
i.e. the joint probability is

PΦΨ(φ,ψ) =
Z

dλ p(λ) pΦΨ(φ,ψ; λ)

= Tr
(

ρ̂Π̂Φ
n Π̂Ψ

n

)
. (12)

2. Clauser-Horne inequalities

The Clauser-Horne inequality is a condition verified by the
joint probabilitiesPΦΨ(φ,ψ) if Quantum Mechanics can be
embeded in a LHVT. They follow from the algebraic inequal-
ity satisfied by any set of four real numbers(x,x′,y,y′), all
lying in the interval[0, 1], see [15] for a proof:

xy+xy′+x′y−x′y′−x−y≤ 0. (13)
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Identifying x = pΨ[ψ;λ], x′ = pΨ[ψ;λ], y = pΨ[ψ;λ], y′ =
pΨ[ψ′;λ], and averaging overλ one gets

[
PΦΨ(φ,ψ)+PΦΨ(φ,ψ′)+PΦΨ(φ′,ψ)

− PΦΨ(φ′,ψ′)
]× [PΦ(φ)+PΨ(ψ)]−1 ≤ 1, (14)

wherePΦ, PΨ are the marginal probabilities.

B. A set of observables for Gaussian states

In searching for a violation of Bell inequalities in infla-
tionary spectra, one encounters an unexpected difficulty be-
cause we are dealing with Gaussian states. Indeed, observ-
ables which are polynomes of the field amplitude and its con-
jugate momentum cannot violate Bell inequalities. The reason
is that the Wigner representation of Gaussian density matrices
is positive. Hence, it can be used as a probability distribution
function to build an LHV description of the expectation values
[13].

We must therefore consider observables which do not have
a direct classical counterpart. Nonetheless the operators we
shall consider have a clear and simple meaning. They are pro-
jectors on a given pair of coherent states|v,k〉 and|w,−k〉

Π̂(v,w) = |v,k〉〈v,k|⊗ |w,−k〉〈w,−k| . (15)

The coherent states obey, by definition,âk |v,k〉 = v|v,k〉 and
â−k |w,−k〉= w|w,−k〉.

We want to make a pose and advertise the pertinent
role of coherent states in inflationary cosmology. Firstly,
for quadratic Hamiltonians, they are minimal uncertainty
Gaussian states which are stable in time. They are thus the
quantum counterparts of classical points in phase space. More
generally, one expects that they are still stable as long as the
secular effects of non-linearities (changes in the width of co-
herent states, formation of small scale structures -whirls and
tendrils- of the classical trajectories [17]) remain small. Such
is the case in cosmology as long as the the linear regime (and
therefore the Gaussian approximation) are good approxima-
tions.

Secondly, for quadratic systems weakly interacting with a
reservoir of modes (here the coupling is through the non-linear
gravitational terms), there exists a finite time after which the
system reaches a state which is a statistical mixture of coher-
ent states (more generally, of minimal uncertainty Gaussian
states) [18, 19][? ].

Coherent states can therefore be thought as providing a
particular realization of the Gaussian ensemble describing
the primordial fluctuations. The probability that the semi-
classical valuesv andw of thek-th mode be realized is

Q(v,w;δ) = Tr[ρ̂2(δ)Π̂(v,w)]
= Qv(v)×Qw|v(w;δ) ,

=
1

n+1
exp

[
− |v|2

(n+1)

]

× 1
1+δ

exp

[
−|w− w̄(v)|2

1+δ

]
. (16)

We have written this probability in an asymmetric form to
make explicit the power spectrum (= n+ 1), and the much
smaller width (= 1+δ) governing the dispersion of the val-
ues ofw aroundw̄(v) = v∗c/(n+1). Hence, as long asδ¿ n,
the amplitude of the mode−k conditional to the detection of
the modek in the coherent state|v〉 is fixed by thatv. We see
explicitly that it isδ, the decoherence level, which governs the
strength of the correlations between thek and the−k sectors.

Thirdly, given a realization, one can calculate conditional
correlations. The latter have specific spatial properties best
revealed by wave-packets. Although their Fourier content and
their localization depends on the chosen wave-packet, their
space-time structure is uniquely determined by the frequency
mixing. More precisely, given the ensemble of realizations
selected bŷΠw.p. the projector on some wave packet, the con-
ditional field amplitude is (see [5] for more details)

〈φ̂(η,x)〉=
〈Π̂w.p. φ(η,x)Π̂w.p.〉

〈Π̂w.p.〉
= φ̄R+ φ̄L , (17)

where

φ̄R(η,x) =
Z

d̃3k

(2π)3/2

(
vk eikxφout

k (η)+c.c.
)

,

φ̄L(η,x) =
Z

d̃3k

(2π)3/2

(
w̄k(vk)e−ikxφout

k (η)+c.c.
)

.

One sees that the centers of these wave-packets propagate in
opposite directions on the future light cone from the event of
creation at the reheating. Hence, on a given time slice, e.g. the
Last Scattering Surface (in the matter dominated era), they are
separated by more that twice the Hubble radius at that time.

The important conclusion for Bell inequalities is that the
measurement (15) (more precisely, its generalization which
contains a product overk so as to describe a localized wave
packet) can be performed on subsystems which are causally
disconnected. Violations of Bell inequalities with such ob-
servables were first considered by Wòdkiewicz et al in the
context of Quantum Optics [16].

C. Separable states

A two-mode state is called separable, or classically corre-
lated, if and only if it can be written as a convex sum of tensor
products of one-mode density matrices [20]. Otherwise, the
state is called entangled. Restricting to the class of homo-
geneous Gaussian states (6), separable states are of the form
[21]

ρ̂sep.
2 (δ) =

Z
d2v
π

d2w
π

P(v,w;δ)Π̂(v,w) , (18)

whereP is a Gaussian function. For homogeneous distribu-
tions, it is given by [6]

P(v,w;δ) =
1
∆′

e−|v|
2/n×exp

[
−|w− (cv∗/n)|2

∆′/n

]
,
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where∆′ = n2− |c|2 must be positive. This implies|c| ≤ n,
or δ ≥ n/(n+1). In other words, all the states such thatn <

|c| ≤
√

n(n+1) are entangled.
The physical meaning of separable states is revealed by

the fact that they can be prepared by a classical protocol: a
random generator produces the four real numbers encoded in
(v,w) with probability P. The result of each drawn is send
by classical communication channels to two distant observers
performing separate measurements on the subsystemsk and
−k respectively so as to prepare them into the two-mode co-
herent state|v,k〉|w,−k〉. By construction, the statistical prop-
erties of separable states can be interpreted classically. In
particular, separable states cannot violate Bell inequalities as
demonstrated in [20]. We will use them to derive the CH in-
equalities.

When applied to separable Gaussian states (18), the proba-
bility (16) is

Qsep.(v,w;δ) =
Z

d2α
π

d2β
π

P(α,β;δ) p(v|α) p(w|β) ,

wherep(v|α) = |〈v|α〉|2 = e−|v−α|2 ≤ 1. This has the struc-
ture of Eqs. (11) and (12), where(α, β) play the role of the
”hidden variable”λ, andP(α,β;δ) the role of the probability
densityρ(λ). Then Eq. (14) gives

C (v,w;δ) = [Q(0,0;δ)+Q(v,0;δ) (19)

+ Q(0,w;δ)−Q(v,w;δ)]× n+1
2

≤ 1.

III. VIOLATION AS A FUNCTION OF THE LEVEL OF
COHERENCE

We now have all the elements to search for combinations
of v andw which maximizeC of Eq. (19). The maximum
is reached forarg(c∗vw) = π and|v| = |w|. To make contact
with [16], we choose the arbitrary phase2arg(v) = arg(c) to
getw =−v. The maximum of this function is reached for

|vM(δ)|2
1+δ

=
ln

[
1+

√
n−δ
n+1

]

1+2
√

n−δ
n+1

=
ln2
3

[
1+O

(
1+δ

n

)]
, (20)

and its value is

CM(δ) =
1

2(1+δ)

[
1+

3

24/3
+O

(
1+δ

n

)]
. (21)

There is a violation even for macroscopic occupation num-
bers. This fact demonstrates thatnÀ 1 is a necessary butnot
sufficient condition to have a classical (stochastic) distribu-
tion. The latter are only the separable ones for whichδ≥ 1.

More precisely, the inequality (19) is violated for

δ <
−1+3/24/3

2
' 0.095, (22)

irrespectivelyof the value ofn when nÀ 1. Even though
each probability in (19) decreases like1/n, the range ofδ is
asymptotically constant in the regime relevant for inflationary
cosmology. One also verifies that, as expected, the maximal
violation is obtained forδ = 0, i.e. for pure states. In Fig. 1
we have plotC (v) for three values ofδ.

1.1

1

1.05

0.95

0.85

x

10.80.60.40.20

0.9

FIG. 1: The loss of violation as decoherence increases.The function
is normalized to its maximal classical value:C = 1. The variable
x = |v|2 gives the square amplitude of the field configurations. The
occupation number isn = 100, and the three values ofδ are0 (red,
upper), the pure state,0.05 (blue, middle), and0.1 (brown, lower),
the border regime. The functionC (v,−v,δ) is asymptotically inde-
pendent ofn in the largen limit.

IV. FINAL REMARKS

First, there might be operators which violate Bell inequal-
ities for 0.1≤ δ < 1. However it is not guaranteed that these
will have a simple interpretation in cosmological terms.

Second, an observational verification of the violation would
require several steps. First, one should be able to distinguishk
from−k configurations, i.e. to have access to the primordial
velocity field, see [5]. Second, one should isolate rare realiza-
tions, far from the r.m.s. values, and specified with a precision
given by the spread of the coherent states (= 1) which is also
much smaller thann. Given thatn∼ 10100, an observational
verification seems therefore excluded.

It is nevertheless conceptually important to realize that if
non-linearities, and hence decoherence, are weak enough so
that δ < 1, the distribution of primordial density fluctuations
would have kept its quantum properties in spite of the macro-
scopic character of the amplitudes and even though we cannot
observationally verify it.
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