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Femtoscopic Correlations in Multiparticle Production and Beta-Decay
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The basics of formalism of femtoscopic and spectroscopic correlations are given, the orthogonal character
of these correlations is stressed. The similarity and difference of femtoscopic correlations in multiparticle
production and beta-decay is discussed.
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I. INTRODUCTION

The momentum correlations of two or more particles at
small relative momenta in their center-of-mass (c.m.) system
are widely used to study space-time characteristics of the pro-
duction processes on a level of fm = 10−15 m, so serving as a
correlation femtoscopy tool. Particularly, for non-interacting
identical particles, like photons, or to some extent pions, these
correlations result from the interference of the production am-
plitudes due to the symmetrization requirement of quantum
statistics (QS) [1–5].

The momentum QS correlations were first observed as an
enhanced production of the pairs of identical pions with small
opening angles (GGLP effect [1]). Later on, Kopylov and
Podgoretsky settled the basics of correlation femtoscopy in
more than 20 papers (see a review [5]) and developed it as a
practical tool; particularly, they suggested to study the inter-
ference effect in terms of the correlation function, proposed
the mixing techniques to construct the uncorrelated reference
sample and clarified the role of the space–time characteristics
of particle production in various physical situations.

There exists [2–8] an analogy of the momentum QS cor-
relations of photons with the space–time correlations of the
intensities of classical electromagnetic fields used in astron-
omy to measure the angular radii of stellar objects based on
the superposition principle (HBT effect) [10]. This analogy
is sometimes misunderstood and the momentum correlations
are mixed up with space-time (HBT) correlations despite their
orthogonal character. The absence of the former in astronomy
measurements due to the extremely large space-time extent
of stellar objects (and vice versa) was already pointed out in
early paper [8] (see also [9]).

Note that though space-time (HBT) correlations are absent
in subatomic measurements, they can still be used in the lab-
oratory as an intensity-correlation spectroscopy tool allow-
ing one to measure the spectral line shape and width (see
[11, 12] and references therein). In fact, the QS space-time
correlations give information about the shape and width of
the three-momentum distribution (including the angular one)
of the quanta coming from a distant source and can be consid-
ered as a spectroscopy tool in this more general sense.

The momentum correlations of particles emitted at nuclear
distances are also influenced by the effect of final state inter-
action (FSI) [13–17]. Thus the effect of the Coulomb inter-
action dominates the correlations of charged particles at the

relative momenta 2k∗ in the two-particle rest frame smaller
than the inverse Bohr radius |a|−1 of the two-particle system,
respectively suppressing or enhancing the production of parti-
cles with like or unlike charges.

Though the FSI effect complicates the correlation analy-
sis, it is an important source of information allowing for coa-
lescence femtoscopy (see, e.g., [18–21]), and the correlation
femtoscopy with unlike particles [15–17], including the ac-
cess to the relative space–time asymmetries in particle pro-
duction [22–33], and a study of strong interactions between
specific particles [29, 32, 33].

In fact, femtoscopic Coulomb correlations were observed
more than 70 years ago when the sensitivity of the differential
beta-decay rate to the nucleus charge and radius was estab-
lished [34].

The paper is organized as follows. In sections II-IV we give
the basics of the formalism for femtoscopic and spectroscopic
correlations. The similarity and difference of femtoscopic
correlations in multiparticle production and beta-decay is dis-
cussed in section V. We conclude in section VI. For recent re-
sults from femtoscopy of multiparticle production processes,
one can inspect several reviews [33, 35–37].

II. FEMTOSCOPIC QS CORRELATIONS

A. Formalism

The correlation function R (p1, p2) of two particles with
four-momenta p1 and p2 is usually defined as the ratio of
the measured momentum distribution of the two particles to
the reference one obtained by mixing particles from differ-
ent events of a given class, normalized to unity at sufficiently
large relative momenta.

For identical pions or kaons, the effect of the strong FSI
is usually small and the effect of the Coulomb FSI can be in
first approximation simply corrected for (see [38] and refer-
ences therein). The corrected correlation function is then de-
termined by the QS symmetrization only. The space-time in-
formation contained in the momentum QS correlations can be
extracted based on the Kopylov-Podgoretsky (KP) formalism
of independent one-particle classical emitters that are charac-
terized by their production (excitation) four-coordinates, four-
velocities, lifetimes and decay amplitudes. The KP formalism
is valid on the following assumptions:
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(i) The multiplicity of produced particles is assumed suffi-
ciently large to neglect the influence of conservation laws.

(ii) Independent or incoherent particle emission is assumed,
i.e. the coherent contribution of multiparticle emitters is ne-
glected (this contribution can be eventually taken into account
with the help of the suppression parameter λ).

(iii) The mean freeze-out phase space density is assumed
sufficiently small so that the correlation function of two parti-
cles emitted with a small relative momentum Q = 2k∗ in their
c.m. system is mainly determined by their mutual correlation.

(iv) The momentum dependence of one-particle emission
probabilities is assumed inessential when varying the parti-
cle four-momenta p1 and p2 by the amount characteristic for
the correlation effect. This so-called smoothness assumption
requires the components of the mean space-time distance be-
tween particle emitters much larger than those of the space-
time extent of the emitters.

The probability amplitude to observe a particle with the
four-coordinate x from an emitter A decaying at the four-
coordinate xA can depend on x through the relative four-
coordinate x− xA only and so can be written in the form:

〈x|ψA〉 = (2π)−4
∫

d4κ uA(κ)exp[iκ(x− xA)]. (1)

We assume here that after production the emitter moves along
a classical trajectory and decays exponentially. Such a classi-
cal treatment of the decay is often applied also to resonances
(see, e.g., [39–41]). It is justified for a heavy emitter with the
energy spectrum of the decay particle substantially wider than
the emitter width. One can avoid the classical treatment of the
emitter decay by considering xA in Eq. (1) as the emitter pro-
duction (excitation) four-coordinate and adding, in the case
of a negligible emitter space-time extent, the theta-function
θ(t − tA).

The probability amplitude to observe a particle with the
four-momentum p is

〈p|ψA〉 =
∫

d4x 〈p|x〉〈x|ψA〉 = uA(p)exp(−ipxA), (2)

where 〈p|x〉 = exp(−ipx). The probability amplitude to ob-
serve identical spin-0 bosons with four-momenta p1 and p2
emitted by emitters A and B should be symmetrized in accor-
dance with the requirement of QS:

T sym
AB (p1, p2) = [〈p1|ψA〉〈p2|ψB〉+ 〈p2|ψA〉〈p1|ψB〉]/

√
2.
(3)

The corresponding QS correlation function is given by the
properly normalized square of this amplitude averaged over
all characteristics of the emitters:

R (p1, p2) = 1

+
ℜ∑AB uA(p1)uB(p2)u∗A(p2)u∗B(p1)exp(−iq∆x)

∑AB |uA(p1)uB(p2)|2
.= 1+ 〈cos(q∆x)〉, (4)

where q = p1 − p2, ∆x = xA −xB and the last equality follows
from the smoothness assumption (iv).

It should be noted that the last equality in Eq. (4) is usually
used to calculate correlation functions within classical trans-
port models identifying the emitter four-coordinates as those
of the decay four-coordinates of the primary emitters includ-
ing resonances or those of the last collisions of the emitted
particles. Concerning the accuracy of the classical approach
to the emitter decay, we note that, for example in the case of a
ρ-meson and a pion emitted from a small space-time region, it
is a valid approximation at Q < 0.1 GeV/c but overestimates
the tail of the corresponding two-pion correlation function by
about 15 percent (see Fig. 2 in [39]). This overestimation is
however not important when the space-time separation of the
emitters is larger than 2 fm (as in heavy ion collisions) and so
the interference effect rapidly vanishes at Q > 0.1 GeV/c.

It is instructive to introduce the emission function G(x̄, p)
(similar to Wigner function) as a partial Fourier transform of
the space-time density matrix:

G(x̄, p) =
∫

d4ε exp(−ipε)∑
A
〈x̄+

1
2

ε|ψA〉〈ψA|x̄− 1
2

ε〉. (5)

Since the single-particle emission probability is given by the
integral

∫
d4x̄ G(x̄, p) = ∑

A
|〈p|ψA〉|2, (6)

the emission function, though not positively defined, can be
usually interpreted as a probability density to find a particle
with four-momentum p and an average four-coordinate x̄ =
1
2 (x + x′). For the QS correlation function of two identical
spin-0 bosons one has:

R (p1, p2) = 1+
∫

d4x̄1d4x̄2 G(x̄1, p)G(x̄2, p)cos(q∆x̄)∫
d4x̄1d4x̄2 G(x̄1, p1)G(x̄2, p2)

.= 1+ 〈cos(q∆x̄)〉, (7)

where ∆x̄ = x̄1 − x̄2 and p = 1
2 (p1 + p2) ≡ 1

2 P. Similar to Eq.
(4), the last equality follows from the smoothness assumption
allowing one to identify the average four-coordinate x̄ of the
emitted particle with the decay four-coordinate of its emitter,
i.e. neglect the space-time extent of the emitter.

Generally, for two identical bosons or fermions with total
spin S, the ”+” sign in Eq. (3) should be substituted by (−1)S

or, equivalently, the two-particle amplitude should be sym-
metrized (anti symmetrized) only for identical bosons (fermi-
ons) emitted with the same spin projections. As a result, in
the case of initially unpolarized spin- j particles, the ”+” sign
in Eq. (4) or (7) for the QS correlation function should be
substituted by (−1)2 j/n j, where n j is the number of possible
spin projections: n j = 2 j+1 or, for massless particles, n j = 2.

A special comment requires the correlation function of
massless particles with spin j > 1/2 when the helicities in-
between the extreme values ± j are forbidden. Thus, for pho-
tons, due to the transversality of the electromagnetic field (for-
bidden zero helicity), the spin factor multiplying the correla-
tion term 〈cos(q∆x̄)〉 actually depends on the angle θ between
the photon three-momenta [42, 43]. Particularly, in the model
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of randomly oriented one-photon dipole or quadrupole emit-
ters, it equals 1

4 (1 + cos2 θ) or 1
4 (1− 3cos2 θ + 4cos4 θ), re-

spectively [43]. However, in the case of practical interest,
when the photon wavelength is essentially smaller than the
size of the photon emission region, the angle θ between pho-
tons contributing to the interference effect is very small and
the spin factor reduces to the value 1/n j = 1

2 irrespective of
the multipole order of the emitter.

The correlation function of neutral kaons also deserves
comment. Two neutral kaons with four-momenta p1
and p2 are originally produced as pairs K0(p1)K0(p2),
K̄0(p1)K̄0(p2), K0(p1)K̄0(p2) and K̄0(p1)K0(p2). The cor-
relation pattern now depends on the way the neutral kaons
are detected. In principle, one can detect K0 and K̄0, e.g., by
charge exchange reactions K0 → K+ and K̄0 → K−. In this
case, only the first two production channels would give the
interference effect similar to that for identical pions. Usually,
however, neutral kaons are detected through their two-pion
and three-pion decays as so-called short-lived (K0

S ) and long-
lived (K0

L) states, respectively. Neglecting the small effect of
CP-violation, these states correspond to the eigen states with
CP = ±1:

|K0
S 〉 = (|K0〉+ |K̄0〉)/

√
2, |K0

L〉 = (|K0〉− |K̄0〉)/
√

2. (8)

Therefore, all four production channels of the pairs of
K0- and K̄0-mesons contribute to the production of the
pairs K0

S (p1)K0
S (p2), K0

L(p1)K0
L(p2), K0

S (p1)K0
L(p2) and

K0
L(p1)K0

S (p2). It is clear that the channels K0(p1)K0(p2)
and K̄0(p1)K̄0(p2) yield the constructive interference pattern
for any combination of the detected pairs of K0

S - and K0
L-

mesons. It is interesting that also the channels K0(p1)K̄0(p2)
and K̄0(p1)K0(p2) now yield the interference effect which can
be both constructive and destructive. Indeed, since there are
two indistinguishable amplitudes contributing to final state,
the symmetrized amplitude has the form [44]:

T sym
AB (K0

i (p1),K0
j (p2))

= 〈K0
i |K0〉〈K0

j |K̄0〉〈p1|ψA(K0)〉〈p2|ψB(K̄0)〉
+〈K0

j |K0〉〈K0
i |K̄0〉〈p2|ψA(K0)〉〈p1|ψB(K̄0)〉, (9)

where the sign ”+” corresponds to Bose statistics of neutral
kaons. One may see that the corresponding interference pat-
tern is constructive for K0

S K0
S - and K0

LK0
L-pairs while it is de-

structive for K0
S K0

L-pairs.

B. Simple parameterizations

A characteristic feature of the QS correlation function of
two identical bosons (fermions) is the presence of the inter-
ference maximum (minimum) at small components of the rel-
ative four-momentum q with the width reflecting the inverse
space-time extent of the effective production region. For ex-
ample, assuming that for a fraction λ of pion pairs, the pi-
ons are emitted independently according to one–particle am-
plitudes of a Gaussian form characterized by the space–time
dispersions r2

0 and τ2
0, while the remaining fraction (1 − λ)

relates to very long–lived emitters (η, η′, K0
s , Λ, . . . ). Since

the relative distances r∗ between the emitters in this remaining
fraction in the pair c.m. system are extremely large, one has

R (p1, p2) = 1+λexp
(−r2

0q2 − τ2
0q2

0
)

= 1+λexp
(−r2

0q2
T − (r2

0 + v2τ2
0)q

2
L
)
, (10)

where qT and qL are the transverse and longitudinal compo-
nents of the three–momentum difference q with respect to the
direction of the pair velocity v = P/P0. One may see that, due
to the on-shell constraint [3] q0 = vq ≡ vqL (following from
the equality qP = 0), strongly correlating the energy differ-
ence q0 with the longitudinal momentum difference qL, the
correlation function at vτ0 > r0 substantially depends on the
direction of the vector q, even in the case of a spherically sym-
metric spatial form of the production region.

Note that the on-shell constraint makes the q-dependence
of the correlation function essentially three–dimensional and
thus makes it impossible to find a unique Fourier recon-
struction of the space–time characteristics of the emission
process. Particularly, in the pair c.m. system, q = {0,2k∗},
∆x = {t∗,r∗}) and the scalar product q∆x = −2k∗r∗ is inde-
pendent of the time difference t∗. However, within realistic
models, the directional and velocity dependence of the corre-
lation function can be used to determine both the duration of
the emission and the form of the emission region [3], as well
as - to reveal the details of the production dynamics (such as
collective flows; see, e.g., [45, 46] and the reviews [47, 48]).
For this, the correlation functions can be analyzed in terms of
the out (x), side (y) and longitudinal (z) components of the rel-
ative momentum vector q = {qx,qy,qz} [49, 50]; the out and
side denote the transverse, with respect to the reaction axis,
components of the vector q, the out direction is parallel to
the transverse component of the pair three–momentum. The
corresponding correlation widths are usually parameterized in
terms of the Gaussian correlation radii Ri,

R (p1, p2) = 1+λexp(−R2
xq2

x −R2
yq2

y −R2
z q2

z −R2
xzqxqz)

(11)
and their dependence on pair rapidity and transverse momen-
tum is studied. The form of Eq. (11) assumes azimuthal sym-
metry of the production process [47, 49]. Generally, e.g., in
case of the correlation analysis with respect to the reaction
plane, all three cross terms qiq j contribute [51].

It is well known that particle correlations at high energies
usually measure only a small part of the space-time emission
volume, being only slightly sensitive to the fast longitudinal
motion of particle emitters. In fact, due to limited emitter
decay momenta of few hundred MeV/c, the correlated par-
ticles with nearby velocities are emitted by almost comoving
emitters and so - at nearby space–time points. The dynam-
ical examples are resonances, color strings or hydrodynamic
expansion. To substantially eliminate the effect of the longitu-
dinal motion, the correlations can be analyzed in terms of the
invariant variable Q = (−q2)1/2 = 2k∗ and the components of
the momentum difference in pair c.m. system (q∗ ≡ Q = 2k∗)
or in the longitudinally comoving system (LCMS) [52]. In the
LCMS each pair is emitted transverse to the reaction axis so
that the relative momentum q coincides with q∗ except for the
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component qx = γtq∗x , where γt is the LCMS Lorentz factor of
the pair.

Particularly, in the case of one–dimensional boost invariant
expansion, the longitudinal correlation radius in the LCMS
reads [46] Rz ≈ (T/mt)1/2τ, where T is the freeze-out temper-
ature, τ is the proper freeze-out time and mt is the transverse
particle mass. In this model, the side radius measures the
transverse radius of the system while, similarly to Eq. (10),
the square of the out radius gets an additional contribution
(pt/mt)2∆τ2 due to the finite emission duration ∆τ. The ad-
ditional transverse expansion leads to a slight modification of
the pt–dependence of the longitudinal radius and - to a no-
ticeable decrease of the side radius and the spatial part of the
out radius with pt . Since the freeze-out temperature and the
transverse flow also determine the shapes of the mt -spectra,
the simultaneous analysis of correlations and single particle
spectra for various particle species allows one to disentangle
all the freeze-out characteristics [47].

III. SPECTROSCOPIC QS CORRELATIONS

To help in understanding the analogy and difference of QS
space-time (spectroscopic) and momentum (femtoscopic) cor-
relations, we briefly present the formalism of QS correla-
tion spectroscopy within the KP model of independent single-
particle emitters. In spectroscopic correlation measurements
the particles are supposed to be emitted by a distant object
with large space-time dimensions and detected by two detec-
tors at space-time points x1 and x2. It is assumed that the dis-
tance between the detectors is much smaller than the size of
the emitting object and that this size is negligible compared
with the distance between the object and detectors. Then,
the four-momentum of a photon emitted by the emitter A
and detected by any of the two detectors can be written as
pA = ωA{1, p̂A}, where p̂A is the unit vector in the direction
from the emitter A to the detectors. The four-dimensional in-
tegral in the single-photon probability amplitude in Eq. (1)
then reduces to the one-dimensional one:

〈x|ψA〉 = (2π)−1
∫

dωA uA(ωA)exp[ipA(x− xA)]θ(t − tA),

(12)
where uA(ωA) ∝ (ωA −ω0A − iΓA)−1, i.e. the emitter decay
is treated quantum-mechanically and parameterized by the en-
ergy ω0A and width ΓA of the emission line. In accordance
with the comment after Eq. (1), xA now denotes the excitation
four-coordinate of the emitter and the condition t > tA is intro-
duced by the theta-function. Since the time tA is distributed in
a very wide interval, the sum ∑A exp[−i(ωA −ω′

A)tA] yields
the delta-function δ(ωA −ω′

A) so that the single-photon prob-
ability is merely proportional to the integral of the spectral
function:

∑
A
|〈x|ψA〉|2 ∝ ∑

A

∫
dωA |uA(ωA)|2. (13)

The probability amplitude of two photons with the same and
complete polarization should be symmetrized similar to Eq.

(3):

T sym
AB (x1,x2) = [〈x1|ψA〉〈x2|ψB〉+ 〈x2|ψA〉〈x1|ψB〉]/

√
2.
(14)

For photons with polarization P, the symmetrized amplitude
(14) describes only the fraction 1

2 (1+P2) of the photon pairs.
As a result, the correlation function R (x1,x2), defined as a
number of two-photon counts normalized to unity at a large
space-time separation of the detected photons, becomes

R (x1,x2) = 1+
1+P2

2
·

·∑AB
∫

dωAdωB|uA(ωA)|2|uB(ωB)|2 cos(qAB∆x)
∑AB

∫
dωAdωB|uA(ωA)|2|uB(ωB)|2

= 1+
1+P2

2
〈cos(qAB∆x)〉, (15)

where qAB = pA − pB, ∆x = x1 − x2.
It should be noted that the HBT technique is not based on

counting separate quanta. Instead, it overcomes this diffi-
cult problem by the measurement of the product of fluctuat-
ing parts of the electric currents from the two detectors (the
low-frequency part is filtered out) integrated and read in time
intervals of the order of minutes. To get rid of the uncertainties
in the detector gains the measured quantity is the ratio of the
product mean to root-mean-square deviation. It can be shown
that the correlation coefficient defined as this ratio normalized
to unity at zero distance between the detectors, equals to

〈cos(qAB∆x)〉 ≈ [2J1(ρ)/ρ]2. (16)

The approximate equality is valid for a uniformly radiating
disk with the normal directed to the detectors (or, for a spher-
ical surface radiating according to Lambert’s law) emitting
light of a small band width; the argument of Bessel function
J1 is ρ = ω̄θd, where ω̄ is the mean angular frequency (mean
energy of the detected photons), d is the distance between the
detectors perpendicular to the direction to the distant emitting
object and θ is the object angular radius. Measuring the cor-
relation coefficient as a function of the distance d, one thus
determines the transverse spread ω̄θ of the wave vectors of
the detected light (the spread of the transverse photon mo-
menta). Obviously, the HBT correlation effect is insensitive
to the actual space-time extent of the source. At most, one
can determine the source angular radius θ performing the ad-
ditional spectral measurements of the mean angular frequency
ω̄.

It is interesting to note that Eq. (16) follows also from the
superposition principle applied to classical electromagnetic
fields and so the HBT intensity correlation effect would sur-
vive even in the case of vanishing Planck constant when the
QS correlations become unobservable.

Comparing the QS space-time correlation function in Eq.
(15) with the QS momentum correlation function in Eq. (4),
one may see a peculiar symmetry: one is transformed to the
other by the interchange of the emitters and detectors [8].
Thus the space-time correlations yield the momentum picture
of the source while the momentum correlations provide infor-
mation about the source’s space-time characteristics.
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Some historical remarks are appropriate here. The analogy
of QS momentum correlations with HBT space-time correla-
tions was first mentioned in paper [2]. However, not stressing
the differences, this paper triggered a number of misleading
statements, such as [6]: ”The interest to correlations of identi-
cal quanta is due to the fact that their magnitude is connected
with the space and time structure of the source of quanta.
This idea originates from radio astronomy and is the basis
of Hanbury-Brown and Twiss method of the measurement of
star radii”. To clarify the situation, Kopylov and Podgoretsky
wrote a special paper [8] in which they clearly stressed the
difference between the momentum and space-time QS corre-
lation measurements. Particularly, they pointed out: ”when
any of the time parameters characterizing radiating system
becomes very large, the possibility to measure the system di-
mensions practically vanishes since the interference effect re-
mains only in the unobservable small region of the energy dif-
ference q0. On the other hand, in astronomy, it appears to be
possible to measure angular dimensions of stars despite their
lifetimes can be considered infinitely large”. Unfortunately,
this clarifying paper missed the attention of a number of ex-
perts in the field of interference correlations. Thus even in
reviews on the subject one can meet the incorrect statement
that there is no principle difference between QS correlations
in particle physics and astronomy, that both are momentum
correlations allowing one to determine spatial dimensions of
the emitting object. An example of such incorrect view of QS
correlations in astronomy is given in Fig. 1 [53]. Another ex-
ample of this widespread error is chapter 1.1 in a review [54].

correla-
tion

d

star
b

p1

p2

1

a

2

q

FIG. 1: An example of the incorrect view of spectroscopic QS
correlations in astronomy [53]. Neither the extremely small three-
momentum difference q between the photons from the same emitter
(a negligible part of the photon pairs) nor the one between the pho-
tons from different emitters can directly be measured in astronomy.
In fact, this figure would be a correct view of femtoscopic QS corre-
lations if a distant star were substituted by a nearby object emitting
identical particles at a characteristic space-time distance of the order
of femtometer.

IV. FEMTOSCOPIC FSI CORRELATIONS

It can be shown [14, 15, 55] that the effect of FSI man-
ifests itself in the fact that the role of a functional basis,
which the asymptotic two-particle state is projected onto,
is transferred from plane waves exp(−ip1x1 − ip2x2) to the
Bethe-Salpeter amplitudes Ψ(−)

p1 p2(x1,x2) = Ψ(+)∗
p1 p2(x1,x2) =

exp(−iPX)ψ(+)∗
q̃ (∆x), where ∆x ≡ x1 −x2 = {t,r} is the rela-

tive four-coordinate, q̃ = q−P(qP)/P2 is the generalized rel-
ative four-momentum, P = p1 + p2 and qP = m1

2 −m2
2.

To simplify the calculation of the FSI effect, the Bethe-
Salpeter amplitude describing two particles emitted at space-
time points xi = {ti,ri} and detected with four-momenta pi
is usually calculated at equal emission times in the pair c.m.
system; i.e. the reduced non-symmetrized Bethe-Salpeter am-
plitude ψ(+)

q̃ (∆x) is substituted in the two-particle c.m. sys-
tem, where P = 0, q̃ = {0,2k∗} and ∆x = {t∗,r∗}), by a sta-
tionary solution ψ(+)

−k∗(r
∗) of the scattering problem having at

large distances r∗ the asymptotic form of a superposition of
the plane and outgoing spherical waves (the minus sign of the
vector k∗ corresponds to the reverse in time direction of the
emission process). This equal time approximation is valid for
conditions [15, 55] |t∗| 	 m2,1r∗2. These conditions are usu-
ally satisfied for heavy particles like kaons or nucleons. But
even for pions, the t∗ = 0 approximation merely leads to a
slight overestimation (typically < 5%) of the strong FSI ef-
fect (see Fig. 2 and [55]), and it doesn’t influence the leading
zero–distance (r∗ 	 |a|) effect of the Coulomb FSI.

Note that for small k∗, the case we are interested in, the
short-range interaction is dominated by central forces and
s-waves so that, neglecting a weak spin dependence of the
Coulomb interaction, the spin dependence of the two-particle
amplitude enters only through the total spin S.

On the assumptions (i)-(iv), the two-particle correlation
function then reduces to the square of the two-particle wave
function averaged over the distance r∗ of the emitters in the
two-particle c.m. system and the total spin S of the pair:

R (p1, p2)
.= 〈|ψ(+)

−k∗(r
∗)|2〉. (17)

For identical particles, the amplitude in Eq. (17) enters in a
symmetrized form:

ψ(+)
−k∗(r

∗) → [ψ(+)
−k∗(r

∗)+(−1)Sψ(+)
k∗ (r∗)]/

√
2. (18)

The two-particle approximation in (i) combined with FSI
factorization in the Bethe-Salpeter amplitudes of the elastic
transitions 1 + 2 → 1 + 2 implies a long FSI time as com-
pared with the characteristic production time, i.e. the channel
momentum k∗ much less than typical production momentum
transfer of hundreds MeV/c. In fact, the long-time FSI can
also be factorized in the inelastic transitions, 1 + 2 → 3 + 4,
characterized by a slow relative motion in both entrance and
exit channels [55, 56]. The necessary condition is an approx-
imate equality of the sums of particle masses in the channels
1 + 2 and 3 + 4. In the presence of such transitions the two-
channel scattering problem has to be solved and both elastic
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FIG. 2: The FSI contribution to the π0π0 correlation function calcu-
lated for the pair velocity v = 0.3,0.5,0.7,0.9 c in a model of inde-
pendent single–particle emitters distributed according to a Gaussian
law with the spatial and time width parameters r0 = 2 fm and τ0 = 2
fm/c. The exact results (solid curves) are compared with those ob-
tained in the equal–time approximation (dash curves).

and inelastic transition amplitudes should be taken into ac-
count in the averaging in Eq. (17). In practice, the particles
1,3 and 2,4 are members of the same isomultiplets (as, e.g.,
in the transition π−p → π0n or K+K− → K0K̄0) so that one
can assume the same weights and same r∗-distributions for the
channels 1+2 and 3+4.

In heavy ion collisions, the effective radius r0 of the emis-
sion region can be considered much larger than the range of
the strong interaction potential. The short range FSI contribu-
tion to the correlation function is then independent of the ac-
tual potential form [15, 57]. At small Q = 2k∗, it is determined
by the s-wave scattering amplitudes f S(k∗) at a given total
spin S scaled by the radius r0 [15]. For two-nucleon systems,
the scattering lengths f S(0) are large (up to ∼ 20 fm) and this
contribution often dominates over the effect of QS. For two-
meson or meson-baryon systems, the scattering amplitudes
are usually quite small (< 0.2 fm) and the short range FSI
contribution (including the contribution of the coupled chan-
nel which is quadratic in the amplitude of the corresponding
inelastic transition) can be often neglected. This contribution

cannot be however neglected for the KK̄-system due to rather
large s-wave KK̄ scattering length dominated by the imagi-
nary part of ∼1 fm generated by near-threshold resonances
f0(980) and a0(980) [15]. It has been recently shown that the
neglect of the FSI contribution in the analysis of the two-K0

S
correlation function in Au+Au collisions at

√
sNN = 200 GeV

would lead to a noticeable (∼ 25%) overestimation of the cor-
relation radius [58].

V. FEMTOSCOPIC CORRELATIONS IN BETA-DECAY

Let us now consider beta-decay of a nucleus with charge
number Z0, four-momentum p0, helicity λ0 to a nucleus with
charge number Z, four-momentum p, helicity λ, an electron
(positron) with four-momentum pe, helicity λe and an antineu-
trino (neutrino) with four-momentum pν, helicity λν. Taking
into account the point-like character of the weak interaction,
the equal emission times of the decay particles and the fact
that the c.m. system of the electron and final nucleus practi-
cally coincides with the rest frame of the initial nucleus (i.e.
xZ

.= xZ0 = 0 and k∗ .= pe), one can write the differential decay
rate in the form:

d5w .= ∑λ′s
∫

d3pd3ped3pνδ4(p0 − p− pe − pν)·
·
∣∣∣∫ d3x T (x;λ′s)exp(ipνx)ψ(+)∗

−k∗ (x)
∣∣∣2

.= ∑λ′s
∫

d3k∗d3pνδ(ω0 −ω−ωe −ων)
∫

d3xd3x′·
·T (x;λ′s)T ∗(x′;λ′s)exp[ipν(x−x′)]ψ(+)∗

−k∗ (x)ψ(+)
−k∗(x

′), (19)

where the amplitude T (x;λ′s) is basically determined by the
distribution of the decaying neutron (proton) within the nu-
cleus.

It is instructive to consider the hypothetical situation when
the energy release in the decay is large and additional particles
are emitted. Then one could neglect energy-momentum con-
servation and get, after the integration over the neutrino three-
momentum (leading to delta-function δ3(x−x′)), a similar re-
sult as in the case of multiparticle production using conditions
(i)-(iv):

d3w
d3k∗ ∝

∫
d3x∑

λ′s

∣∣∣T (x;λ′s)ψ(+)∗
−k∗ (x)

∣∣∣2
∝

〈∣∣∣ψ(+)
−k∗(x)

∣∣∣2
〉

.

(20)
The actual energy release in beta-decay is however very small
so that the integration over the neutrino three-momentum does
not lead to the diagonalization of the spatial density matrix
∑λ′s T (x;λ′s)T ∗(x′;λ′s). In fact, in so-called allowed decays,
the neutrino plane wave exp(ipνx) can be even substituted by
unity. Nevertheless, similar results as in Eq. (20) have been
obtained by Fermi [34] due to the fact that the relativistic
Coulomb wave function ψ(+)∗

−k∗ (x) of the electron (positron)-
nucleus system changes very little within the nucleus and can
be taken out of the integral in a form of the so-called Fermi
function F(k∗,Z,R). Neglecting the neutrino mass and the
nucleus recoil energy (i.e. putting ων = |pν| and ω = M), one
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FIG. 3: The Fermi function F(k∗,Z,R) for beta-decay to a final
nucleus of charge Z = 83 as a function of the electron (decreasing
curves) or positron momentum k∗ and the nucleus radius R = 2,4,8
fm (in decreasing order).

can write in the nucleus rest frame (ω0 = M0):

d3w
d3k∗

.= 4πF(k∗,Z,R)(M0 −M−ωe)2 ∑
λ′s

∣∣∣∣
∫

d3x T (x;λ′s)
∣∣∣∣2

,

(21)
where

F(k∗,Z,R) .= 〈|ψ(+)
−k∗(r

∗)|2〉 .= |ψ(+)
−k∗(R)|2

.= (2k∗R)2σ 2σ+4
[Γ(2σ+3)]2

exp(−πη)|Γ(σ+1− iη)|2,(22)

η .= ∓Ze2ωe/k∗ for electrons (positrons), σ = (1 −
Ze2)1/2 − 1. The substitution of the separation r∗ by the nu-
cleus radius R in the second equality in Eq. (22) is justified
due to a weak r∗-dependence of the wave function within the
nucleus [34]; the third equality neglects the screening effect
of the atomic electrons.

One may see that the nucleus radius enters in the Fermi
function through the factor (2k∗R)2σ which is essentially dif-
ferent from unity only for sufficiently large charge numbers Z.
At small Z-values, σ .= 0 and the Fermi function reduces to the

Coulomb penetration (Gamow) factor Ac(η) = |ψ(+)
−k∗(0)|2 =

2πη[exp(2πη)−1]−1. The sensitivity of the Fermi function to
the nucleus radius is demonstrated in Fig. 3.

VI. CONCLUSIONS

We have considered femtoscopic QS and FSI momentum
correlations in multiparticle production and beta-decay, as
well as spectroscopic QS space-time correlations in the de-
tected radiation from a distant source. We have demonstrated
the orthogonal character of the femtoscopic and spectroscopic
correlations, earlier pointed out by Kopylov and Podgoretsky
[8]. We have shown that the same functional form of the two-
particle correlation function in multiparticle production and
Fermi function in beta-decay (both being equal to the aver-
age square of the two-particle wave function) is due to differ-
ent reasons. In the former case, this result is valid in the ap-
proximation of independent classical quasi-point-like particle
emitters and sufficiently small freeze-out phase space density,
while in the latter case it follows from a weak variation of the
electron (positron)-nucleus wave function within the nucleus
volume and a point-like character of beta-decay. It should be
stressed that a small space-time extent of the emitters alone
does not guarantee the validity of the approximation of classi-
cal emitters (the diagonalization of the space-time density ma-
trix). This approximation may naturally be justified in high-
energy multiparticle processes due to the minor importance of
conservation laws in this case.
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