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Actions for the Bosonic String with the Curved Worldsheet
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At first we introduce an action for the string, which leads to a worldsheet that always is curved. For this
action we study the Poincaré symmetry and the associated conserved currents. Then, a generalization of the
above action, which contains an arbitrary function of the two-dimensional scalar curvature, will be introduced.
An extra scalar field enables us to modify these actions to Weyl invariant models.
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I. INTRODUCTION

The two-dimensional models have widely been used in the
context of the two-dimensional gravity (e.g. see [1–4] and ref-
erences therein) and string theory. From the 2d-gravity point
of view, higher-dimensional gravity models, by dimensional
reduction reduce to the 2d-gravity [1–3]. From the string the-
ory point of view, the (1+1)-dimensional actions are funda-
mental tools of the theory. However, 2d-gravity and 2d- string
theory are closely related to each other.

The known sigma models for string, in the presence of the
dilaton field Φ(X), contain the two-dimensional scalar curva-
ture R(hab),

SΦ =
1

4π

∫
d2σ

√
hRΦ(X). (1)

In two dimensions the combination
√

hR is total derivative.
Thus, in the absence of the dilaton field, this action is a topo-
logical invariant that gives no dynamics to the worldsheet met-
ric hab.

In fact, in the action (1), the dilaton is not the only choice.
For example, replacing the dilaton field with the scalar cur-
vature R, leads to the R2-gravity [1, 4, 5]. In particular the
Polyakov action is replaced by a special combination of the
worldsheet fields, which include an overall factor R−1. Re-
moving the dilaton and replacing it with another quantities
motivated us to study a class of two-dimensional actions.
They are useful in the context of the non-critical strings with
curved worldsheet, and the 2-dimensional gravity.

Instead of the dilaton field, we introduce some combina-
tions of hab, R and the induced metric on the worldsheet, i.e.
γab, which give dynamics to hab. These non-linear combi-
nations can contain an arbitrary function f (R) of the scalar
curvature R. We observe that these dynamics lead to the con-
straint equation for hab, extracted from the Polyakov action.

For the flat spacetime, these models have the Poincaré sym-
metry. In addition, they are reparametrization invariant. How-
ever, for any function f (R), they do not have the Weyl sym-
metry. Therefore, the string worldsheet at most is conformally
flat. By introducing an extra scalar field in these actions, they
also find the Weyl symmetry. Note that a Weyl non-invariant
string theory has noncritical dimension, e.g. see [6].

This paper is organized as follows. In section 2, we intro-
duce a new action for the string in which the corresponding
worldsheet always is curved. In section 3, the Poincaré sym-
metry of this string model will be studied. In section 4, the
generalized form of the above action will be introduced and it
will be analyzed.

II. CURVED WORLDSHEET IN THE CURVED
SPACETIME

We consider the following action for the string, which prop-
agates in the curved spacetime

S =−T
∫

d2σ
√

hR
(

R− 1
2πα′

habγab

)
, (2)

where h =−dethab, and T is a dimensionless constant. In ad-
dition, R denotes the two-dimensional scalar curvature which
is made from hab. The string coordinates are {Xµ(σ,τ)}. The
induced metric on the worldsheet, i.e. γab, is also given by

γab = gµν(X)∂aXµ(σ,τ)∂bXν(σ,τ), (3)

where gµν(X) is the spacetime metric.
In two dimensions, the symmetries of the curvature tensor

imply the identity

Rab− 1
2

habR = 0. (4)

Therefore, the variation of the action (2) leads to the following
equation of motion for hab,

Rab− 1
2πα′

γab = 0. (5)

This implies that the energy-momentum tensor, extracted
from the action (2), vanishes.

Contraction of this equation by hab gives R = 1
2πα′ h

abγab.
Introducing this equation and the equation (5) into (4) leads to

T (Polyakov)
ab ≡ γab− 1

2
hab(ha′b′γa′b′) = 0. (6)

This is the constraint equation, extracted from the Polyakov
action. Note that the energy-momentum tensor, due to the
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action (2), is proportional to the left-hand-side of the equation
(5). Thus, it is different from (6).

The equation of motion of the string coordinate Xµ(σ,τ)
also is

∂a(
√

hRhab∂bXµ)+
√

hRhabΓµ
νλ∂aXν∂bXλ = 0. (7)

Presence of the scalar curvature R distinguishes this equation
from its analog, extracted from the Polyakov action.

Now consider those solutions of the equations of motion (5)
and (7), which admit constant scalar curvature R. For these
solutions, the equation (7) reduces to the equation of motion
of the string coordinates, extracted from the Polyakov action
with the curved background. However, for general solutions
the scalar curvature R depends on the worldsheet coordinates
σ and τ, and hence this coincidence does not occur.

A. The model in the conformal gauge

Under reparametrization of σ and τ, the action (2) is invari-
ant. That is, in two dimensions the general coordinate trans-
formations σ→ σ′(σ,τ) and τ→ τ′(σ,τ), depend on two free
functions, namely the new coordinates σ′ and τ′. By means of
such transformations any two of the three independent com-
ponents of hab can be eliminated. A standard choice is a para-
metrization of the worldsheet such that

hab = eφ(σ,τ)ηab, (8)

where ηab = diag(−1,1), and eφ(σ,τ) is an unknown conformal
factor. The choice (8) is called the conformal gauge. Since the
action (2) does not have the Weyl symmetry (a local rescal-
ing of the worldsheet metric hab) we cannot choose the gauge
hab = ηab.

The scalar curvature corresponding to the metric (8) is

R =−e−φ∂2φ, (9)

where ∂2 = ηab∂a∂b. Thus, the action (2) reduces to

S′ =−T
∫

d2σe−φ∂2φ
(

∂2φ+
1

2πα′
ηabγab

)
. (10)

According to the gauge (8), this action describes a confor-
mally flat worldsheet.

III. POINCARÉ SYMMETRY OF THE MODEL

In this section we consider flat Minkowski space, i.e.
gµν(X) = ηµν. Therefore, the equations of motion are sim-
plified to

Rab− 1
2πα′

ηµν∂aXµ∂bXν = 0, (11)

∂a(
√

hRhab∂bXµ) = 0. (12)

The Poincaré symmetry reflects the symmetry of the back-
ground in which the string is propagating. It is described by
the transformations

δXµ = aµ
νXν +bµ,

δhab = 0, (13)

where aµ
ν and bµ are independent of the worldsheet coordi-

nates σ and τ, and aµν = ηµλaλ
ν is antisymmetric. Thus, from

the worldsheet point of view, these transformations are global
symmetries. Under these transformations the action (2) is in-
variant.

A. The conserved currents

The Poincaré invariance of the action (2) is associated to
the following Noether currents

J µνa =
T

2πα′
√

hRhab(Xµ∂bXν−Xν∂bXµ),

P µa =
T

2πα′
√

hRhab∂bXµ, (14)

where the current P µa is corresponding to the translation in-
variance and J µνa is the current associated to the Lorentz sym-
metry. According to the equation of motion (12) these are
conserved currents

∂aJ µνa = 0,

∂aP µa = 0. (15)

B. The covariantly conserved currents

It is possible to construct two other currents from (14), in
which they be covariantly conserved. For this, there is the
useful formula

∇aKa =
1√
h

∂a(
√

hKa), (16)

where Ka is a worldsheet vector. Therefore, we define the
currents Jµνa and Pµa as in the following

Jµνa =
1√
h

J µνa,

Pµa =
1√
h

P µa. (17)

According to the equations (15) and (16), these are covariantly
conserved currents, i.e.,

∇aJµνa = ∇aPµa = 0. (18)

The currents (17) can also be written as

Jµν
a =

T
2πα′

R(Xµ∂aXν−Xν∂aXµ),

Pµ
a =

T
2πα′

R∂aXµ. (19)

Since there is ∇ahbc = 0, the conservation laws (18) also imply
the covariantly conservation of the currents (19).
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IV. GENERALIZATION OF THE MODEL

The generalized form of the action (2) is

I =−T
∫

d2σ
√

hR
(

f (R)− 1
2πα′

habγab

)
, (20)

where f (R) is an arbitrary differentiable function of the scalar
curvature R. The set {Xµ(σ,τ)} describes a string worldsheet
in the spacetime. These string coordinates appeared in the
induced metric γab through the equation (3). Thus, (20) is a
model for the string action.

The equation of motion of Xµ is as previous, i.e. (7). Van-
ishing the variation of this action with respect to the world-
sheet metric hab, gives the equation of motion of hab,

Rab
d f (R)

dR
− 1

2πα′
γab = 0. (21)

The trace of this equation is

R
d f (R)

dR
− 1

2πα′
habγab = 0. (22)

Combining the equations (4), (21) and (22) again leads to the
equation (6).

As an example, consider the function f (R) = α lnR + β.
Thus, the field equation (21) implies that the intrinsic metric

hab becomes proportional to the induced metric γab, that is
hab = 1

παα′ γab.
Since the Poincaré transformations contain δhab = 0, the

generalized action (20) for the flat background metric gµν =
ηµν, also has the Poincaré invariance. This leads to the previ-
ous conserved currents, i.e. (14) and (19).

A. Weyl invariance in the presence of a new scalar field

The action (20) under the reparametrization transforma-
tions is symmetric. The Weyl transformation is also defined
by

hab −→ h′ab = eρ(σ,τ)hab. (23)

Thus, the scalar curvature transforms as

R−→ R′ = e−ρ(R−∇2ρ), (24)

where ∇2ρ = 1√
h
∂a(
√

hhab∂bρ). The equations (23) and (24)
imply that the action (20), for any function f (R), is Weyl non-
invariant.

Introducing (23) and (24) into the action (20) gives a new
action which contains the field ρ(σ,τ),

I′ =−T
∫

d2σ
√

h(R−∇2ρ)
(

f [e−ρ(R−∇2ρ)]− 1
2πα′

e−ρhabγab

)
. (25)

We can ignore the origin of this action. In other words, it is
another model for string. However, under the Weyl transfor-
mations

hab −→ eu(σ,τ)hab,

ρ−→ ρ−u, (26)

the action I′, for any function f , is symmetric. Note that
according to the definition of ∇2 there is the transformation
∇2 → e−u∇2.

V. CONCLUSIONS

We considered some string actions which give dynamics to
the worldsheet metric hab. Due to the absence of the Weyl

invariance, these models admit at most conformally flat (but
not flat) worldsheet. We observed that the constraint equation
on the metric, extracted from the Polyakov action, is a spe-
cial result of the field equations of our string models. Obtain-
ing this constraint equation admits us to introduce an arbitrary
function of the scalar curvature to the action. For the case
f (R) = α lnR+β, the metric hab becomes proportional to the
induced metric of the worldsheet.

By introducing a new degree of freedom we obtained a
string action, in which for any function f is Weyl invariant.

Our string models with arbitrary f (R), in the flat back-
ground have the Poincaré symmetry. The associated con-
served currents are proportional to the scalar curvature R. We
also constructed the covariantly conserved currents from the
Poincaré currents.
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