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Yang-Mills Effective Action from QCD at Finite Chemical Potential
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We present a construction of an effective Yang-Mills action for QCD, from the expansion of the fermionic
determinant in terms of powers of the chemical potential at high temperature for the case of massless quarks.
We analyze this expansion in the perturbative region and find that it gives extra spurious information. We pro-
pose for the non-perturbative sector a simplified effective action which, in principle, contains only the relevant
information.
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There has been an increasing interest in the last few years in
the sign problem or phase problem in QCD. For finite chem-
ical potential, the fermion determinant matrix is non-positive
definite, so it is not possible to perform Monte-Carlo simula-
tions [1, 2]. The Glasgow method [3] and sampling techniques
[4] have made great advances in the description of phase tran-
sitions on the lattice, considering a set of parameters near the
transition line. However, the problem is still far from being
solved.

There is special interest in the region of high temperature
and low chemical potential, since it corresponds to the high-
energy heavy-ion collision scenario. In this regime it is pos-
sible to expand the fermion determinant in powers of µ/T [5–
7]. This kind of expansion is what we are interested in in-
vestigating. As one performs this expansion, some questions
arise: what order is enough to cut the expansion? which is its
range of validity? how to distinguish between real and com-
plex terms? Differently from what is done in the previously
mentioned papers, we keep the expanded series as a functional
of the gauge fields, giving rise to an effective non-local Yang-
Mills action.

I. BASIC IDEA OF THE EXPANSION

For simplicity, consider one-flavor massless quarks. The QCD
generating functional at finite chemical potential in euclidean
space is defined as

Z =
∫

DGdet(−i /D+ iµγ4)e−SYM[G], (1)

where G are the gluon fields, also present in the covariant
derivative D, and SYM is the Yang-Mills action. We can expand
the fermion determinant in powers of the chemical potential
assuming that µ < Λ∼ T :

det(−i /D+ iµγ4) = det(−i /D)exp

{
−

∞

∑
s=1

(iµ)s

s

∫

Y1···Ys

Tr γ4S(Y2,Y1)γ4S(Y3,Y2) . . .γ4S(Y1,Yn)

}
, (2)

where S(Yb,Ya) is the dressed fermion propagator, which can
be expressed as a series in powers of the gauge field and the
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FIG. 1: General diagram for the construction of the effective vertices.
The small circles correspond to chemical potential insertions.

free fermion propagator. The expansion, then, will contribute
to additional terms in the Yang-Mills effective action

Seff
YM = SYM +

∞

∑
n=0

∫

X1···Xn

Γ(n)µ1...µn
a1...an(Xi) Ga1

µ1
(X1) . . .Gan

µn(Xn),

(3)
where the vertices Γ(n) are series in powers of the chemical
potential: Γ(n) = ∑s≥1 Γ(n,s), with Γ(n,s) ∼ µs. In this way we
have a positive-definite fermion determinant and the contribu-
tion from the chemical potential will be part of an effective
Yang-Mills action. The problem now is to find criteria to cut
this infinite series in terms of the chemical potential and gauge
fields.

II. FEYNMAN DIAGRAMS

The Feynman rules to calculate the different effective ver-
tices are almost the same as the usual ones in momentum
space, except that all the operators between chemical poten-
tial insertions must be transposed in order. Figure 1 shows a
general diagram with chemical potential and gluon insertions.
The rules are:

• Draw the topologically different Feynman diagrams.
Multiply by −γµitai for any gluon insertion, by −iµγ4
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FIG. 2: Chemical potential insertions.

for any chemical potential insertion and divide by the
symmetry factor s, the number of chemical potential in-
sertions shown in (2).

• Between chemical potential insertions, the order of the
operator must be transposed considering momentum
conservation. An example is shown in Fig. 2.

This piece of the effective vertex integrand must be
written as

(−iµγ4)
[
S̃F(K)(−ta1 γµ1)S̃F(K +P1) . . .

. . .(−tar γµr)S̃F(K +P1 + · · ·+Pr)
](t)(−iµγ4),

where the exponent (t) in the brackets indicate to trans-
pose the order of the operators: [O1O2 . . .O j−1O j](t) =
O jO j−1 . . .O2O1.

• Take the trace over gamma matrices and color group
representation, integrate over internal momentum and
multiply by (2π)4δ(∑Pi) (momentum conservation).
The summation of the internal Matsubara frequencies
are over Fermi-Dirac modes.

The sum of all diagrams will produce the effective vertices
Γ(n,s) which will be invariant under any cyclic change in the
set of indices µi, ai, Pi (or Xi in the case of configuration
space). It is important that the effective vertices preserve ex-
plicitly this cyclic feature at the moment of expanding in the
HTL approximation, although some diagrams are the same
when contracted with the gluon fields in the action because
they are invariant under interchange of any set of indices as
can be seen in (3).

III. PERTURBATIVE QCD

To test the expansion, we study it firstly in the perturbative
sector. Setting G → gG, we find naturally the way to cut the
gauge field series, which is given by the order of perturbative
corrections. For one-loop corrections, we just need the effec-
tive action up to order g2, so

Seff
YM = SYM +Γ(0) +g2

∫

XY
Γ(2)ab

µν(X ,Y )Ga
µ(X)Gb

ν(Y ). (4)

where this effective action is gauge invariant. If we calcu-
late the pressure up to order g2, considering the expansion on
chemical potential up to order µ4, we surprisingly obtain the
same result as in the usual perturbative QCD calculation with
the chemical potential included in the quark propagator [8].

However, the next terms in the chemical potential series are
non-zero. In particular, the next vacuum contribution for the
pressure is

P(6)
0 =−Γ(0,6)

βV
≈ 0.9334Nc

µ6

π2T 2 , (5)

which is negligible only for µ¿Λ. More than establishing the
range of validity, this result shows that this kind of expansion
contains some spurious information, at least for the massless
case, and in principle the only indication on where to cut the
series is the dimension of the desired observable.

IV. NON-PERTURBATIVE QCD

For the non-perturbative regime, we need another criterion
to cut the series. The most appropriate is the Weinberg power
counting [9], i.e. considering the external momentum as a
small parameter, p < Λ, and also assuming that the chemi-
cal potential and the expectation value of the fields are of the
same order, µ∼G∼ p. This gives a low-energy theory where
the effective Lagrangian can be expanded in soft modes. In
our case, we need that the chemical potential and the gluon
field fluctuation be less than the external momentum. We are
interested in not so low energies; if not, it is not possible to
expand the fermion determinant. Since we want to see what
will Weinberg criterion in this case is modified for not so low
momentum as µ∼ G < p < Λ.

In the case of Yang-Mills theories, this soft-mode expan-
sions for high temperatures correspond to the Hard Thermal
Loop (HTL) approximation [10, 11]. The minimal action
must be of order p4. So, applying the power counting, the
minimal effective action is

Smin
YM[G,µ] = SYM[G]+S(0,2)[µ]+S(0,4)[µ]

+S(2,2)
LO [G,µ]+S(3,1)

LO [G,µ] , (6)

where the indices (n,s) denote powers of n in the gauge field
and s in the chemical potential, and LO means leading order
in the HTL approximation. In this case, the appearance of
imaginary terms will happen for S(3,1)

LO .
The whole series of gauge fields is gauge invariant in every

order in the µ expansion, i.e. ∑n S(n,s) is gauge invariant for
all s as can be seen directly from (2). The terms in the sum
over chemical potential powers are traces containing dressed
propagators, which are gauge invariant; so, every term in the
sum is gauge invariant.

The minimal effective vertices we need satisfy the Ward
identities p ·Γ(2,2) = 0 and p ·Γ(3,1) = 0. For the case of Γ(2,2)

it was expected, since it basically reproduces the same result
as that of performing radiative corrections to the gluon propa-
gator with finite a density fermion propagator. For the case of
Γ(3,1) it is not so obvious, since usually the contraction of the
three gluon vertex with the external momentum gives a com-
bination of the self-energy in the HTL approximation. How-
ever, there is no Γ(2,1), so necessarily, in a infinitesimal gauge
shift δG = ∂α+[G,α] on Γ(3,1), the contribution to Γ(2,1) com-
ing from ∂α must give zero. HTL preserves gauge invariance



Brazilian Journal of Physics, vol. 37, no. 1, March, 2007 25

by changing derivatives on the vertex operators to covariant
derivatives.

The minimal vertices we consider with the power counting
used will be functions of p/p4 in the HTL approximation at
leading order. It is easy to see because there are Γ(2,2) µ2G2

and Γ(3,1) µG3, both of dimension 4, so the corresponding ef-
fective vertices, without the chemical potential dependence,
are dimensionless. The next-to-leading-order terms will be
powers of p/T . This allows us to make another approxima-
tion. Since p4 = 2nπT , then

p/p4 →
{

∞ for n = 0
0 for n 6= 0 (7)

We can separate the fields then from the zero order of the Mat-
subara frequencies G(X) = T G0(x)+ T ∑n6=0 ei2nπT x4 Gn(x).
giving an intermediate step before the Dimensional Reduction
(DR) approximation [12–14]. .

This non-perturbative effective action is under construction
and must be tested, but in principle it could provide rich infor-

mation on the confinement-deconfinement transition line. The
low-energy effective action proposed here as compared to the
one obtained by DR [15] is that it allows for an analysis of
lower temperatures, above and under where the region where
the phase transition is supposed to happen. DR considers tem-
peratures higher than the expected critical temperature.

The fact that contributions up to order g2 in the expansion
gives the same result for one-loop perturbative corrections to
the pressure, and the next terms are non-zero, as can be seen
in (5), indicates that next contributions are perturbations of
the zero, and not necessarily will be negligible, so these ef-
fective actions are necessary in order to exclude such spurious
information.
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