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Obtaining Femtoscopy Results in Models with Resonances

Adam Kisiel
Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland

Received on 23 November, 2006; revised version received on 16 March, 2007

We present femtoscopic results from models in which the resonance contribution is taken into account. The
Therminator program, which implements a single freeze-out model and takes into account propagation and
decay of all known resonances, was used. We test methods of determining the femtoscopic size of the system,
or the “HBT radii”. We show that the best one is the two-particle method combined with the exact calculation
of the two-pion wave function including the wave-function symmetrization and Coulomb effects. We compare
it to other methods and comment on their validity and applicability.
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I. FEMTOSCOPIC DEFINITIONS

The femtoscopy measurements have been extensively used
to study the heavy-ion collisions. For recent review of theo-
retical and experimental results please see [1]. Femtoscopic
correlation function is normally constructed as:

C(~q, ~K) =
PC

2 (~q, ~K)
P0

2 (~q, ~K)
(1)

where PC
2 is the probability to observe two femtoscopically

correlated particles at relative momentum ~q. P0
2 is such prob-

ability where the correlation between particles does not have
the femtoscopic component. ~K is the average momentum of
the pair. In heavy-ion experiments the PC

2 is usually con-
structed from pairs coming from the same event; P0

2 from pairs
where each particle comes from different event, but the events
are as close to each other in global characteristics as possible.

In theoretical models one should, in principle, generate par-
ticles in such a way that they are already correlated due to
their mutual and many-particle interactions. That is however
usually computationally not possible. One then makes an as-
sumption that the interaction between particles can be sep-
arated from their generation and we write the most general
form of the correlation function that can be used by models:

C(~q, ~K) =
∫

S(r∗,~q, ~K) |Ψ(~q,r∗)|2 d4r∗∫
S(r∗,~q, ~K)d4r∗

(2)

where r∗ is the pair separation in the pair rest frame (PRF) and
S(r∗,~q, ~K) is the pair separation distribution constructed as:

S(r∗,~q, ~K)=
∫

S1(x1,~p1)S2(r∗−x2,~p2)δ(r∗−x1 +x2)d4x1d4x2

(3)
and S(x,~p) is the single-particle emission function provided
by the model. For identical particles S1 ≡ S2 and S(r∗) is
symmetric by definition, for non-identical particles S(r∗) is
usually asymmetric. In this work we only consider identical
particles, more specifically charged pions. If one takes into
account the proper symmetrization of the wave function only:

∣∣Ψ(~q,r∗)Q∣∣2
= 1+ cos(~q~r∗) (4)

one obtains a quantum-statistics only correlation function CQ

which has a simple form and is useful in model studies. One
can also consider Coulomb interaction:

∣∣Ψ(~q,r∗)QC∣∣2
= |

√
AC√
2

[exp(−i~k∗~r∗)F(−iη,1, iξ+) (5)

+ exp(i~k∗~r∗)F(−iη,1, iξ−)]|2 (6)

where k∗ is half of pair relative momentum in PRF, AC is the
Gamow factor, F is the confluent hypergeometric function,
η = 1/k∗ac, ac is the pair Bohr radius and ξ± = k∗r∗±~k∗~r∗.
Then one obtains the full correlation function that can be com-
pared to data.

It is possible to use Eq. 2 to get the model correlation func-
tion. However it is often difficult to perform the complete in-
tegration, so various approximations are used, which will be
presented in the next sections. Another possibility is to per-
form the integral numerically. One needs to generate particles
according to the single-particle emission function. Then one
combines the particles into pairs and creates two histograms -
in one of them the squared wave-function of the pair is stored,
in the other: unity for each pair. The result of the division of
the two histograms is the average pair wave function in each
bin, which is the correlation function per Eq. (2).

II. OBTAINING HBT RADII

Femtoscopic analysis provides information about the size
of the system in terms of the “HBT radii”. It is also possi-
ble to obtain information about the separation distribution in a
model independent way using the “imaging” technique [2, 3].
The size of the system can be determined separately in three
directions: “out” - along the pair momentum, “long” - along
the beam axis and “side” - perpendicular to the other two. All
analysis are performed in LCMS system, which is defined as
the one in which pair momentum along the beam axis van-
ishes. The radii are obtained under the following assumptions.
The emission function is static (does not depend on particle’s
momentum) and is a 3d sphere with gaussian density profile:

S(r)≈ exp

(
−r2

out

4R2
out

+
−r2

side

4R2
side

+
−r2

long

4R2
long

)
(7)
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The correlation function is then:

C(~q) = 1+λexp(−R2
outq

2
out −R2

sideq2
side−R2

longq2
long) (8)

and can be easily fit to the experimental one to obtain the
“HBT radii” Rout , Rside and Rlong.

Two other methods of obtaining the radii have been tested.
They involve more assumptions, but are simpler to perform
analytically. We will test their validity.

The distribution in Eq. (7) is a convolution of two single-
particle distributions (see Eq. (3)). It can approximated by the
square of them:

S(r)≈ S(~x,~p)2 (9)

where ~p is substituted for ~K. This is rigorously true only if
S(x, p) is a static Gaussian. For any realistic S it is only an
approximation, the validity of which is under study. Using
Eq. (9) and Eq. (4) one can write the following approximate
formula for the correlation function, known as the “Wigner
formalism”:

C(~q) =

∣∣∫ S(~x,~p)ei~q~xd3x
∣∣2

|∫ S(~x,~p)d3x|2
(10)

This function can again be fit by Eq. (8) to obtain the “HBT
radii”. The advantage of this procedure is that it can be per-
formed analytically using only the single-particle emission
function. An example of the correlation function calculated
in this way is shown in Fig. 1, together with the reference
function from the two-particle method.

An even simpler procedure is to analyze the emission func-
tion S directly. One can either obtain its Gaussian width or
calculate the relevant RMS’es. One can do it to single particle
emission function S(~x), which is easier to do, but involves ad-
ditional approximation, or to the two particle emission func-
tion S(~r). For the exact formulas used in the calculation of
RMS’es of S(~x) please consult [4]. Again these methods will
give results identical to the previous ones only if the emission
functions are Gaussian. The validity of the approximations
was tested, the results are discussed in the next paragraph.

III. METHOD OF TESTING

We test and compare various methods to obtain the “HBT
radii”. We treat the two-particle method with the wave-
function calculation as the reference, or the method which
most closely resembles the experimental one, to which it
should be compared.

The input data were the events generated with the THER-
MINATOR [5] which takes into account all the resonances
from the PDG [6]. It uses the Blast-wave-like model with
parameters fit to RHIC central data and a freeze-out hyper-
surface with negative slope in ρ− t plane (outside-in freeze-
out). The two-particle method, described in detail in [7], was
used to get the reference radii. The correlation functions ac-
cording to (10) were calculated using the same events and a
Monte-Carlo integration on a 3-dimensional mesh in ~q space.
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FIG. 1: Examples of projections of 3D correlation functions. From
top to bottom: C(qout), C(qside) and C(qlong), with other components
of q integrated over the range of 10 MeV . Black squares are the cor-
relation function from the reference two-particle method. Red circles
are the correlation function calculated using the Wigner formalism.

The corresponding variances were also calculated, according
to formulas given for HBT radii in [4].

In order to test the validity of each method the following
test was done. Therminator model generates all particles at
the freeze-out hypersurface. The unstable ones then decay
strongly in cascades until only stable particles remain. In-
clusion of resonances is known to produce long-range, non-
gaussian tails in the separation distributions. Such situation
is expected to occur in measured events, and therefore is also
a very good “real-world” test of the approximate HBT radii
determination methods, which rely on the gaussianness of the
distributions. Long-range (r > 50 f m) tails are not expected
to significantly influence the radius parameter obtained in the
femtoscopic analysis. They influence lambda parameter only.
One can determine the “HBT radii” as a function of the cut-off
of the emission time of the particles taken into account. It is
a test of the stability of the method. The expected behavior is
that above some limiting cut-off value the radii should remain
stable and only the λ parameter should change.
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FIG. 2: “HBT radii” as a function of the maximum emission time
cut-off. From top to bottom: rout , rside and rlong. Black filled cir-
cles are the reference two-particle method. Filled yellow squares -
RMS of S(~r), blue triangles - σ of Gaussian fit to S(~r), open green
squares - RMS of S(~x), open red circles: “HBT radii” from the fit to
single particle (calculated using the Wigner formalism) correlation
function.

IV. RESULTS AND DISCUSSION

The main result of this study is shown in Fig. 2. Several
conclusions can be drawn. First, any measure based on the
RMS of S(~x) or S(~r) is not a good approximation of the “HBT
radii”. Including strongly decaying resonances makes them
go to very large values. It is to be expected as the particles

which decay later, travel some distance before their decay, cre-
ating long-range tail in the distributions, to which RMS’es are
extremely sensitive. This sensitivity to tails is not present in
the radii obtained from the correlation function, and therefore
is the weakness of the RMS method.

The next method is the Gaussian σ of S(~r). It has the de-
sired stability versus the time cut-off. However it still can
differ from the reference method by up to 30%. Moreover
the fitted radius is dependent on the fit range taken. Also this
method does not give any reasonable estimate of the λ value.
Therefore it can be used only as a crude estimate of the fem-
toscopic radii.

The last method compared is the fit to the correlation func-
tion calculated using the Wigner formalism (10). It is stable
versus the time cut-off. It shows very good agreement with
the reference method for the “out” radius, but the other two
can differ up to 10%. It does not permit to calculate the cor-
relation function in an arbitrary reference frame, as the two-
particle method does. The Coulomb interaction cannot be in-
troduced at all, as it can be done only for a pair of particles.
A direct comparison of the correlation functions calculated in
this way to the reference is shown in Fig. 1. The widths of the
functions are comparable, which is also reflected in the radii.
However the two-particle function shows lower intercept pa-
rameter. In other words the λ is overestimated in the Wigner
method. The reason is the following. Particles at large r are
effectively uncorrelated, and thus lower the λ. So for single-
particle emission function we have:

λ =
Ns

Nl +Ns
=

1−Nl

Nl +Ns
(11)

where Nl is the number of particles at large r and Ns are the
particles at small r (in the source). But a pair is uncorrelated
even if only one particle in it is from large r, therefore λ is:

λ =
N2

s

(Nl +Ns)2 =
1−N2

l −2NlNs

(Nl +Ns)2 (12)

which is smaller than (11) and is the correct value. Therefore
the Wigner method can be used when the accuracy of 10%
in the radii is acceptable. Also it cannot be used in more ad-
vances studies, for example in the direct comparisons of the
correlation functions between theory and experiment.
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