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The quality of supernova data will dramatically increase in the next few years by new experiments that will
add high-redshift supernova to the currently known ones. In order to use this new data to discriminate between
different dark energy models, the statefinder diagnostic was suggested [1] and investigated by Alamet al.[3] in
the light of the proposed SuperNova Acceleration Probe (SNAP) satellite. By making use of the same procedure
presented by these authors, we compare their analyzes with ours, which shows a more realistic supernovae
redshift distribution and do not assume that the intercept is known. We also analyzed the behavior of the
statefinder pair{r,s} and the alternative pair{s,q} in the presence of offset errors.

Introduction

Recent observations from type Ia supernovae measure-
ments, cosmic microwave background radiation and gravita-
tional clustering suggest the expansion of the universe is ac-
celerated.

In order to explain this cosmic acceleration a form of
negative-pressure matter calleddark energywas suggested.
The simplest and most popular candidate is Einstein’s cosmo-
logical constant. Many others candidates for dark energy have
been proposed, including scalar fields with a time dependent
equation of state, quartessence, modified gravity, branes, etc.
Confrontation between these models and currently observa-
tional data doesn’t say much [2], mainly because most of them
haveΛCDM as a limiting case in the redshift range already
observed. The SNAP (SuperNovae Acceleration Probe) satel-
lite is expected to observe∼ 2000supernovae per year with
redshift up toz= 1.7. To differentiate models using the new
available data, Sahniet al. [1] introduced thestatefinderdi-
agnostic, that is based on the dimensionless parameters{r,s},
which are constructed with the scale factor and its time deriv-
atives.

In this work we applied the statefinder to a SNAP-like su-
pernovae distribution and analyzed its behavior in the pres-
ence of systematic and random systematic, beyond statistical
errors.

I. DARK ENERGY MODELS

Assuming a Friedman-Robertson-Walker (FRW) metric,
the Einstein’s equations reduce to:

H2 =
8πG

3 ∑
i

ρi − kc2

a2 (1)

ä
a

= −4πG
3 ∑

i
(ρi +3

pi

c2 ) (2)

wherea is the scale factor of the FRW metric,H is the Hubble
parameter, and the sum is over all the components present in
the scenario in study.

In the following we assume that the matter content of the
universe is given by dark matter (pm = 0) and dark energy
with an equation of state in the formpx = px(ρx). We also
takec = 1 and consider a flat universe (k = 0).

The focus of our discussion will be in the four models listed
below:

1. Cosmological Constant(wx = px/ρx =−1)
The cosmological constant model represents a constant
energy density. In this model, the Hubble parameter has
the form:

H(z) = H0[ Ωm0(1+z)3 +1−Ωm0]
1
2 (3)

2. Quiessence( −1/3 > wx = px/ρx = cte>−1)
This is the next simplest example of dark energy model,
and gives rise to a Hubble parameter like:

H(z) = H0[ Ωm0(1+z)3 +ΩX0(1+z)3(1+w)]
1
2 (4)

3. Quintessence( w = w ( t ) )
Representing a self-interacting scalar field minimally
coupled to gravity. In this model, we have:

ρφ =
1
2

φ̇(z)2 +V(φ(z)) (5)

pφ =
1
2

φ̇(z)2−V(φ(z)) (6)

We shall focus on a special kind of quintessence model
that has atracker like solution, with the following po-
tential: V(φ) = φ(z)−α(α > 0). In this case, it can be
shown that the present energy density of the dark en-
ergy is almost independent of initial conditions.

4. Chaplygin Gas
A different kind of solution is provided by the Chap-
lygin gas model. In this model, the Hubble parameter
takes the form:

H(z) = H0

[
Ωm0(1+z)3 +

Ωmo

κ

√
A
B

+(1+z)6

] 1
2

(7)

where

κ =
ρmo

ρch0
(8)

The Chaplygin gas behaves like a cosmological con-
stant for small z (late times) and like pressureless dust
for large z (early times).
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TABLE I: Redshift distribution. The value of z represent the upper edge of each bin [4]

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
N(z) 0 35 64 95 124 150 171 183 179 170 155 142 130 119 107 94 80

It is important to note that for all models presented previ-
ously, the luminosity distance is :

DL(z)
1+z

=
Z z

0

dz′

H(z′)
(9)

with H(z) given by the model dependent expressions pre-
sented before.

II. THE STATEFINDER

The properties of dark energy, as we have seen, are very
model dependent. In order to differentiate between the pre-
sented models, Sanhiet al.[1], proposed the statefinder diag-
nostic. The parameters,{r,s}, are a complement to the al-
ready known deceleration parameter, and help the discrimina-
tion when the later contains degeneracies. By definition:

q =− ä
aH2 ≡

1
2
(1+3wΩX) (10)

r ≡ ä
aH3 = 1+

9w
2

ΩX(1+w)− 3
2

ΩX
ẇ
H

(11)

s≡ r−1

3(q− 1
2)

= 1+w− 1
3

ẇ
wH

(12)

III. DARK ENERGY FROM SNAP DATA

Type Ia supernovae are considered standard candles, used
to map the expansion history, and its observations lead to the
behavior of the scale factor with time. In order to study the
data in a model independent way, we use a parametrization
for the dark energy density, presented by Sahniet al. [1]. We
express the energy density as a power series up to second order
in z: ρDE = ρc0(A1 + A2x+ A3x2), wherex = 1+ z. For this
Ansatz, the Hubble parameter takes the form:

H(x) = H0(Ωm0x3 +A1 +A2x+A3x2)
1
2 (13)

equation (13) together with equation (9) provides an expres-
sion for the luminosity distance, which we shall investigate,
using the statefinder parameters, in the light of a SNAP-like
experiment simulation.

To simulate the data, we use a binned approach for a SNAP
distribution shown in the Table I. We also include300 su-
pernovae in the first bin. These low redshift supernovae are
expected from the SNFactory (Nearby Supernovae Factory)
experiment and are important in reducing the systematic er-
rors. The SNFactory proposal is to provide data to calibrate
high redshift experiments, like the SNAP, and then reduce the
errors involved.

The luminosity distance of equation (9) is measured in
terms of the apparent magnitude, which can be written as:

m(z) = 5logDL(z)+
[M +25−5log(H0/(100km/s/Mpc))] (14)

where M is the absolute magnitude of the supernova and the
expression in brackets is calledintercept.

Following what was done by Kimet al. [4], we consider a
random irreducible systematic error of0.04∗ (zmed/1.7) (here
zmed is the redshift in the middle of each bin), added in quadra-
ture to a constant statistical error of0.15magand study the
behavior of the statefinder parameter with this synthetic data.
We performed a Monte Carlo simulation considering the in-
tercept exactly known and totally unknown. As a second step,
we study the situation where offset errors are present, and its
consequences in the statefinder.

IV. RESULTS

In the figures 1 to 9 we present the results from simulated
data. According to SNAP’s specifications, we generated500
data sets havingΛCDM as a fiducial model. For each of this
experiments we calculated the best fitting parametersA1 and
A2 for equation (13) and reconstructed the statefindersr(z) e
s(z). The figures below show the mean value of the parame-
ters, which were calculated as:

< (r) > =
1

500

500

∑
i=1

r i(z) (15)

< (s) > =
1

500

500

∑
i=1

si(z) (16)

< (q) > =
1

500

500

∑
i=1

qi(z) (17)

Next, we investigated the integrated averaged of the cos-
mological parameters, as suggested by Alamet al. [3]. For
the cosmological constant model, the parameters are constant,
but for many dark energy models the statefinder evolves (as it
is clear in the figures presented previously), the integration of
this quantities may then reduce the noise in the original data.
The integration was done as follows:
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FIG. 1: Shows< r > as a function of redshift. The dark black contour represent1σ and the full line2σ confidence levels, in the presence of statistical
errors with a known intercept.The line< r >= 1 (gray line) represents theΛCDM fiducial model. The dashed lines above theΛCDM are Chaplygin gas with
parametersk = 1 andk = 2. The dotted lines below it are quiessence models withw =−0.6 andw =−0.8, and the dotted-dashed lines are quintessence models
with α = 2 andα = 4.
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FIG. 2: Analog to figure 1, but here in the presence of random systematic and statistical errors, with an unknown intercept.
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FIG. 3: Shows< r > as a function of redshift. Again, the dark and full contours are1σ and2σ confidence levels, in these we considered a known intercept in
the presence of statistical error and a systematic error of+0.03mag.The dotted, dot-dashed and dashed lines are the same as in figure 1.
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FIG. 4: Shows< s> as a function of redshift in the presence of statistical error. The dark, full, dotted and dot-dashed lines represent the same models as in
figure 1.
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FIG. 5: Analog to figure II, but here in the presence of random systematic and statistical errors, with an unknown intercept.

0.25 0.5 0.75 1 1.25 1.5
z

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

<
s
>

k= 1 k= 2

w=-0.6

w=-0.8

Α=4

Α=2

CHAPLYGIN GAS

FIG. 6: Shows< s> as a function of redshift. Again, the dark and full contours are1σand2σ confidence levels, in this we considered a known intercept in the
presence of statistical error and a systematical errors of+0.03mag.The dotted, dot-dashed and dashed lines are the same as in figure 1.
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FIG. 7: Shows< q > as a function of redshift. The dark contour represent1σ and the full lines2σ confidence levels. The dashed lines are Chaplygin gas with
parametersk = 1 andk = 2. The dotted-dashed lines are quintessence models withα = 2 andα = 4.
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FIG. 8: Analog to figure 7, but here in the presence of random systematic and statistical errors, with an unknown intercept.
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FIG. 9: Shows< q > as a function of redshift. Again, the dark contour and full line are1σ and2σ confidence levels, in these we considered a known intercept
in the presence of statistical error and a systematical error of+0.03mag.The dot-dashed and dashed lines are the same as in figure 7.
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FIG. 10: Shows the variation of̄r with s̄ , in the presence of statistical error when the intercept is known. The black circle is theΛCDM fiducial model.
The points marked with ”X” above theΛCDM are quiessence models withw = 0.0,−0.3,(−0.5),−0.7 and0.9 respectively, from top to bottom. The points
represented by ”+” below ΛCDM are Chapligyn gas withk = (3/7),1,2,6,15, from bottom to top.
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FIG. 11:This is analogous to figure 10, although here we considered an intercept not known and included statistical and random systematic errors.
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FIG. 12:Show the variation of̄r with s̄ when the intercept is known, in the presence of statistical error and systematic error of+0.03mag. The circle, ”X” and
”+” represent the same models as in figure 10.
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FIG. 13: Shows the variation of̄s with q̄, in the presence of statistical error when the intercept is known. The circle is theΛCDM fiducial model. The ”X”
points above theΛCDM are quiessence models withw = 0.0,−0.3,(−0.5),−0.7 and0.9 respectively, from top to bottom. The ”+” points belowΛCDM are
Chapligyn gas withk = (3/7),1,2,6,15, from bottom to top.
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FIG. 14:This is analogous to figure 13, although here we considered an intercept not known and included statistical and random systematic errors.
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FIG. 15:Show the variation of̄s with q̄ when the intercept is known, in the presence of statistical and systematic error of+0.03mag. The circle, ”X” and ”+”
points are the same as in figure 13.
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r̄ =
1

zmax

Z zmax

0
r(z)dz (18)

s̄ =
1

zmax

Z zmax

0
s(z)dz (19)

q̄ =
1

zmax

Z zmax

0
q(z)dz (20)

wherezmax= 1.7 . The expressions forr, s andq were calcu-
lated using equations 13, 11 and the first part of equation 12
for each experiment. The500 points obtained are plotted in
figures 10 to 15.

V. DISCUSSION

Our results suggest that the statefinder is a good diagnostic
for dark energy models, although some care must be taken
in applying it to data. As expected, the presence of random
systematic error and an unknown intercept just added more
possible models than those allowed by statistical errors only.
There is little problem in this, once the fiducial model is at
least within the2σ contours (Figures 2, 5 and 8).

The presence of offset errors had different outcomes. For a
positive offset, the parametersr ands suffered a small reduc-
tion in relation to the fiducial model, but in different redshift
ranges (r for small and s for high redshift). A consequence

of this arises when we compare the integrated averages of the
pair {r,s}. In Figure 12 the points are shifted to the negative
direction of both axes of the ellipse, resulting a data set where
the fiducial model (red point) is on the edge of the distribution.
The same kind of shift is observed for a negative offset, but in
this case to the positive direction of the axes. So, in order to
use the statefinder as a diagnostic, we must be able to control
the offset error below0.03mag.

It is interesting to observe the behavior of the decelera-
tion parameter when systematic errors were involved. It does
present a very small reduction (positive offset) at high red-
shift, but it is irrelevant in front of that suffered byr or s.
Comparing figures 10 and 13 we could say, as suggested by
Alam et al. [3], that the pair{q,s} is even a better diagnostic
than{r,s}, once it restricts the area of the phase space filled
by the data. However, if there is a systematic error present,
the points will be shifted to the negative direction of theq axis
only (figure 15), letting the distance between the data and the
fiducial model bigger than those in figure 12.

Therefore, we concluded that the statefinder pair{r,s} is a
better diagnostic than the pair{s,q}, when the involved sys-
tematic errors are not random.
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