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Within the quasiclassical approximation we have studied the thermodynamics and the thermal conductivity in
the vortex state in nodal superconductors (sc). Recent angle dependent magnetothermal conductivity results
indicate a gap function∆(k) corresponding to f- wave sc in Sr2RuO4 and d- wave sc in CeCoIn5 and κ-
(ET)2Cu(NCS)2 respectively. More recently it is shown that∆(k) in both YNi2B2C and PrOs4Sb12 have point
nodes described by hybrid s+g wave gap function.

1 Introduction

The gap symmetry of superconductivity is the central issue
since the appearance of many unconventional and/or nodal
superconductors in heavy Fermion systems, organic super-
conductors, high Tc cuprate superconductors, Sr2RuO4 and
borocarbides YNi2B2C and LuNi2B2C . Following the qua-
siclassical approach introduced by Volovik [2] it is possible
to calculate both the thermodynamic and transport proper-
ties of the vortex state in nodal superconductors.

Especially in quasi 2D systems like high Tc cuprates,

Sr2RuO4 , CeCoIn5 and κ-ET2X with X=Cu(NCS)4,
Cu[N(CN)2]Br and Cu[N(CN)2]Cl the thermal conductivity
in a magnetic field within the conducting plane provides the
crucial insight on the nodal structure of∆(k) [3, 4]. Indeed
Izawa et al have shown f-wave sc in Sr2RuO4 [5], d-wave sc
in CeCoIn5 [6] andκ-(ET)2Cu(NCS)2 [7] through the angle
dependent magnetothermal conductivity. More recently gap
functions∆(k) in borocarbide YNi2B2C and skutterudite
PrOs4Sb12 are shown to have point nodes and described in
terms of s+g-wave sc [8-12]. We show|∆(k)| of these su-
perconductors in Fig. 1.
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Figure 1. Anisotropic gap functions for Sr2RuO4 , CeCoIn5 , PrOs4Sb12 (A- phase) and YNi2B2C .

2 The Volovik effect

For simplicity we shall consider four examples of nodal
∆(k) in quasi- two dimensional systems;∆(k) =∆f(k) with
f = cos(2φ), sin(2φ), e±iφ cos(ckz), e±iφ cos( c

2kz). They
are dx2−y2- wave, dxy- wave, f- wave and f’- wave. The
last one is introduced by Zhitomirsky and Rice [13] (i.e. the
multigap model) in order to account for the nodal supercon-

ductor seen in Sr2RuO4 through the specific heat [14] and
the magnetic penetration depth [15]. Indeed all four states
have the same quasiparticle density of states as d-wave su-
perconductors [16]. As we shall see later, however, the
multigap model is incompatible with the angle dependent
magnetothermal conductivity observed by Izawa et al [5]
and the universal heat conduction inκzz observed by Suzuki
et al [17] in Sr2RuO4 . On the other hand these thermal con-
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ductivity data are fully consistent with f-wave sc shown in
Fig. 1.

In the absence of a magnetic field the quasiparticle den-
sity of states (DOS) of these four superconductors is given
by [16]

g(x) =
N(E)
N0

=
{

2
π xK(x) for x = |E|

∆ < 1
2
π K(x−1) for x > 1

(1)

Where N0 is the the normal state DOS and K(x) is the
complete elliptic integral of the first kind. In particular for
|x| ¿1

g(E) ' |E|
∆

(2)

Now in a magnetic field H perpendicular to the conduct-
ing plane Eq. (2) is replaced by

g(E,H) '
〈 |E − v · q|

∆

〉
(3)

Wherev·q is the Doppler shift [18]; withv denoting the
Fermi velocity and 2q the pair momentum describing the
circulating superflow around vortices. Here〈...〉 means av-
erage over the Fermi surface and over the unit cell of the
vortex lattice. In the present configuration this is readily
done [2, 19]

g(0,H) =
4v

πd2∆

∫ π
2

0

dα cos α

∫ d

0

rdr

2r
=

2
π

v
√

eH

∆
(4)

where we have assumed a square vortex lattice [20]. Here
d=
√

eH. For a usual triangle lattice Eq. (4) will be multi-

plied by a factor
√√

3/2= 0.9306. . Then the specific heat,
the spin susceptibility and the superfluid density at low tem-
perature (i.e. T¿ v

√
eH ¿ ∆0) are given by [21]

Cs/γnT = χs/χn = g(0,H)
1− ρs(H)/ρs(H = 0) = g(0,H) (5)

T−1
1 /T−1

1n = g2(0, h)

This
√

H dependence of the specific heat has been seen
in YBCO[22, 23], LSCO[24] and Sr2RuO4 [21]. Further the√

H dependence ofχs and the H linear dependence of T−1
1

have been seen by NMR in a slightly underdoped Bi2212
[25]. Although the above expressions are obtained in the
absence of impurity scattering, the Eqs. (4),(5) still hold in
the superclean limit where(∆Γ)

1
2 ¿ v

√
eH with Γ de-

noting the quasiparticle scattering rate in the normal state
[3, 4]. There are only two energy scales in this limit, namely
v
√

eH and T. Therefore the thermodynamic functions obey
the scaling law as proposed by Simon and Lee [26] and
shown for a particular case by Kübert and Hirschfeld [19].

The thermal conductivity is treated similarly. In the ab-
sence of magnetic fieldκxx exhibits the universal heat con-
duction [27, 28] for all four superconductors.

κxx

T
=

2
3
π

n

∆m
(6)

This is also valid forκzz except for the f’- wave sc of
the multigap model where we have

κzz

T
=

16
3

π
Γn

∆2m
(7)

Thus for f’- waveκzz depends on the scattering rateΓ
and never reaches the universality limit contrary to [17].

In a magnetic fieldH ‖ c we obtain

κxx =
2
π2

v2(eH)
∆2

(8)

in the superclean limit for all four superconductors. The H
linear thermal conductivity has been seen in Sr2RuO4 [5].

3 Field angle dependent thermal con-
ductivity

When the magnetic field lies in the a-b plane the Doppler
shift generates the quasiparticles in the plane perpendicular
to the magnetic field. When the plane cuts the nodal di-
rections, there will be strong increase in the quasiparticle
density. Therefore the thermal conductivity takes the maxi-
mum value when the magnetic field is perpendicular to the
nodal directions [3, 4]. In particular in the superclean limit
we obtain

κxx

κn
=

2
π

ṽ2(eH)
∆2

Ii(φ) (9)

κxy

κn
= − 2

π

ṽ2(eH)
∆2

Ji(φ) (10)

for i= 1,2,3,4 which corresponds to dx2−y2- wave, dxy-
wave, f- wave and f’- wave superconductors respectively.
Here ṽ2 = vavc and φ is the azimuthal angle of H with
respect to the a axis. We obtain the following angular func-
tions Ii(φ) and Ji(φ):

I1(φ) ' 0.912 + 0.05 cos(4φ)
I2(φ) ' 0.925− 0.256 cos(2φ)

−0.042 cos(4φ) (11)

I3(φ) ' 1.479− 0.128 cos(2φ)
I4(φ) ' 0.439− 0.128 cos(2φ)
Ji(φ) ' −ai sin(2φ)

with a1 = 0.256, a2 = 0, a3 = 0.124 and a4 = 0.106. Their
angular dependence is shown in Fig. 2. As is readily seen
the φ- dependence of the thermal conductivity is adequate
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to identify one of four∆(k) gap functions we have consid-
ered sofar.
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Figure 2. Angular dependence of thermal conductivitiesκxx (Ii)
and thermal Hall coefficientκxy (Ji) according to Eq. (11) for the
various 2D gap functions i=1,2,3,4 (dx2−y2 -, dxy-, f- and f’- wave
respectively).

In this way∆(k) in Sr2RuO4 [5], CeCoIn5 [6] and κ-
(ET)2Cu(NCS)2 [7] are identified. On the other hand the
φ- dependence ofκxx andκxy in YBCO so far determined
[30, 32, 33] do not match the one for dx2−y2- wave. This
is because in the above analysis we have limited ourselves
for T¿ ṽ

√
eH, while the experiments have been done for

TÀ ṽ
√

eH [29].

4 Superconductivity in Borocarbides
YNi 2B2C and LuNi 2B2C

So far we limit ourselves to the quasi- 2D systems. In 3D
systems it is more expedient to consider the thermal con-
ductivity as function of bothθ andφ, which are the polar
coordinates defining the field direction. In this respect the
superconductivity in YNi2B2C and LuNi2B2C is of great
interest in part due to their relatively high transition tem-
perature 15.5 K and 16.5 K resepectively [34]. Although
the dominance of s-wave component in∆(k) has been es-
tablished by substituting Ni by a small amount of Pt and
subsequent opening of the energy gap [35, 36], the super-
conductivity exhibits many characteristics of nodal super-
conductors like T3 behaviour of T−1

1 and the
√

H- depen-
dence of the specific heat[38]. Due to their tetragonal space
groupI4/mmm the borocarbides have fourfold rotational
symmetry within the a-b plane. The simplest∆(k) which
satisfies these constraints appears to be s+g-wave supercon-
ductor [8, 9]

∆(k) =
1
2
∆(1− sin4 ϑ cos(4ϕ)) (12)

whereϑ andϕ are polar coordinates describingk. We show
the quasiparticle DOS in Fig. 3. For|E|/∆ ¿ 1, we obtain

 0

 0.5

 1

 1.5

 2

 0  1

N
(ω

)/
N

0

ω/∆

Γ/∆
Γ/∆
Γ/∆
Γ/∆
Γ/∆

=0.01

1.5

=0.1
=0.5
=1

=0

0.5

Figure 3. Normalised quasiparticle DOS for s+g wave gap in
pure YNi2B2C (Γ/∆=0 or x = 0) and for various doping induced
nonzeroΓ.

g(E) =
N(E)
N0

=
π

4
|E|
∆

(13)

Also there are similarity and difference between d-wave
superconductors as seen in [39]. In a magnetic field with
orientation defined by (θ, φ) the quasiparticle DOS is given
by [10]

g(0,H) =
ṽ
√

eH

2∆
I(θ, φ)

I(θ, φ) =
1
2
(
Is(θ, φ) + Ic(θ, φ)

)

Is(θ, φ) = (1− sin2 θ sin2 φ)
1
2 (14)

Ic(θ, φ) = (1− sin2 θ cos2 φ)
1
2

Then the specific heat, the spin susceptibility and the su-
perfluid density for T¿ ∆0 are given by

Cs/γsT = g(0,H)
χs/χN = g(0,H) (15)

1− ρab
s (0,H)/ρab

s (0, 0) =
3
2
g(0,H)

We show in Fig. 4 theφ dependence of I(θ, φ) for var-
ious polar field anglesθ. In particular forθ = π

2 , I(θ, φ)
develops cusps atφ=0 andπ

2 etc. They are a characteristic
signature of the point nodes. We note that a recent specific
heat measurement on YNi2B2C has excactly found these
cusps[40].

In order to calculate the thermal conductivity an analysis
of impurity scattering is necessary. Unlike in other nodal su-
perconductors we find the Born limit and the unitarity limit
gives practically the same result. There is no resonance scat-
tering in s+g- wave superconductors [41]. Secondly the en-
ergy gap opens up immediately in the presence of impurity
scattering. The quasiparticle DOS in the presence of impu-
rity scattering is also shown in Fig. 3 for severalΓ/∆. In the
absence of magnetic field the related equations are given by
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Figure 4. Angular function I(θ, φ) which determinesκzz(θ, φ) for
s+g wave gap function in Eq. (18).

ω̃n = ωn + Γ
〈 ω̃n√

ω̃2
n + (∆̃− 1

2∆f)2

〉
(16)

∆̃ =
1
2
∆ + Γ

〈 (∆̃− 1
2∆f)√

ω̃2
n + (∆̃− 1

2∆f)2

〉
(17)

where f=1
2 sin4 ϑ cos(4ϕ). Then forω → 0, we findω̃ → 0

and∆̃ → 1
2∆ + Γ. In other words the energy gap opens up

immediately withΓ. The energy gapωg(Γ) visible in Fig. 3
is well approximated byωg(Γ) = Γ/(1 + 2Γ

∆ ).
This immediate opening of the energy gap is very dif-

ferent from the case of s+d- wave superconductors as dis-
cussed in [36]. This has immediate consequences: There
are no nodal excitations for T< Γ. In this limit both the
specific heat and the thermal conductivity decrease expo-
nentially. Also there will be no universal heat conduction
[27, 28] in sharp contrast to usual nodal superconductors.
From this we expect that also the thermal conductivity in
the vortex state of the s+g wave superconductor will be quite
different from the case of usual nodal superconductors. It is
now given by

κzz

κn
=

x

ln
(

2
x

) (1− y2)
3
2 θH(1− y)

κxx

κn
=

3
2 ln

(
2
x

)(x′

x

)2(cos−1 y + y′
√

1− y′2

+
1
6
x(1− y′2)

3
2
)
θH(1− y′) (18)

x =
2
π

ṽ
√

eH

∆
I(θ, φ) x′ =

1
π

ṽ
√

eH

∆
Ic(θ, φ)

y =
Γ

∆x
y′ =

Γ
∆x′

Here θH is the Heaviside step function. Furthermore
κn refers to the normal state,̃v =

√
vavc and we have as-

sumedΓ,T ¿ ṽ
√

eH ¿ ∆. In the other limitṽ
√

eH < Γ
there will be no nodal excitations. We note that first of all
the angular dependence ofκzz is given by I(θ, φ) which is
fully confirmed in [8]. The details of the above expressions
are different from those given previously [9, 10] due to the

present more realistic treatment of the impurity scattering in
the s+g wave case. On the other hand the conclusion that a
gapωg ' Γ opens immediately for s+g wave order parame-
ter makes it now hard to understand the H linear dependence
of thermal conductivity at lowest temperatures reported in
[42].
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Figure 5. Cusp-like fourfold oscillations inκzz(
π
2
, φ) of

YNi2B2C are destroyed by 5% Pt- substitution [43].

As is readily seen from Eq. (18) we predict thatκzz in-
creases like

√
H while the dominant term inκxx is indepen-

dent of H. Indeed the
√

H dependence ofκzz is consistent
with the experimental data in [8]. More recently the anglular
dependence of the thermal conductivity in a single crystal of
Y(Ni1−xPtx)2B2C with x = 0.05 has been studied[43]. It is
shown in Fig. 5 in comparison to the pure YNi2B2C (x=0).
Clearly no fourfold oscillation inκ(π

2 , φ) survives in the 5%
Pt- doped compound. From Tc = 13.1 K of the 5% Pt- sub-
stituted crystal and Tc = 15.5 K for YNi2B2C (x=0) we can
estimateΓ using

− ln(
Tc

Tc0
) =

〈f2〉
1 + 〈f〉2 [ψ(

1
2

+
Γ

2πTc
)− ψ(

1
2
)] (19)

whereψ(z) is the di-gamma function, f =sin4 θ cos(4φ) and
〈f2〉 = 0.203. The resultingΓ = 23.8 K > Tc shows that
we are already close to the limit l=~ṽ/Γ ' ξ0. Clearly the
largeΓ has eliminated the nodal excitations. Therefore it is
of great interest to study the thermal conductivity of the Pt-
substituted crystals with x< 0.05. It is also necessary to
study theoretically the extremely dilute limit where eventu-
ally the gap induced by impurity scattering should become
inhomogeneous and a crossover to a new regime should set
in.

5 Skutterudite PrOs4Sb12

Skutterudites with rare earth atoms may exhibit Heavy
Fermion behaviour and in addition magnetic, quadrupo-
lar and superconducting phase transitions. Among them
PrOs4Sb12 is a rather unique case [44, 45, 46]. Again the
angular dependent thermal conductivity data [12, 11] sug-
gest i) the presence oftwo phases denoted A and B and ii)
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a gap∆(k) with planar symmetry in A while one with axial
symmetry in B phase (see Fig. 6). Also, the singlet pairing
in this system is very likely though not confirmed sofar. In
order to describe the angular dependent thermal conductiv-
ity we have proposed [12, 11] the hybrid gap functions
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Figure 6. B-T phase diagram of PrOs4Sb12 with different nodal
structures of A- and B- phases as obtained fromκzz(θ, φ) depen-
dence [11].

(A-phase)∆(k) = ∆(1− k4
x − k4

y)

(B-phase)∆(k) = ∆(1− k4
y) (20)

Where the A- phase again corresponds to a (tetragonal)
s+g wave gap. A and B- phases have point nodes in x,y
and y directions respectively. We assume here the absence
of nodes along the z- direction since they have not been
confirmed sofar. Their corresponding quasiparticle DOS is
shown in Fig. 7 In zero field these phases exhibit characteris-
tics of nodal superconductors like those in YNi2B2C . Again
impurity scattering immediately opens a gap. Also as before
there is no resonance scattering and universal low tempera-
ture heat conduction since it vanishes likeexp(−Γ/T ). In
the presence of a magnetic field the residual quasiparticle
DOS is given by (v = va,c)
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Figure 7. Quasiparticle DOS for A- phase (full line) and B- phase
(dashed line) of PrOs4Sb12 .

g(0,H) =
2
π

v
√

eH

∆
Ii(θ, φ) (21)

whith angular functions given by

IA(θ, φ) =
1
2
[(1− sin2 θ sin2 φ)

1
2 + (1− sin2 θ cos2 φ)

1
2 ]

IB(θ, φ) =
1
4
(1− sin2 θ sin2 φ)

1
2 (22)

We note that IA(θ, φ) ≡ I(θ, φ) given in Eq. (14). De-
spite the different functional form of|∆(k)| these s+g wave
sc phases have the same quasiparticle DOS. As discussed in
Sect.(4) this expression is valid whenv

√
eH À Γ. Also

the effect of a smallΓ may be incorporated by changing
v
√

eHIi(θ, φ) → v
√

eHIi(θ, φ)-Γ. The specific heat etc.
are expressed in terms of g(0,H) as before. Like the residual
quasiparticle DOS the thermal conductivityκzz(θ, φ) for the
A- phase is given by the same expression Eq. (18) as for the
YNi2B2C s+g- wave gap with I(θ, φ) → Ii(θ, φ) (i=A,B).
Its angular dependence is completely determined by Ii(θ, φ)
and agrees with the experimentally observed fourfold and
twofold oscillations observed in the A- and B- phases re-
spectively in PrOs4Sb12 below T = 0.5 K. However experi-
mental results at lower temperatures are highly desirable. At
this preliminary stage the microscopic origin of the symme-
try breaking into planar and axial symmetry seen in A and
B- phases is not yet clear.

6 Concluding remarks

First we have reviewed our earlier work on the magnetother-
mal conductivity in quasi 2D nodal superconductors. These
superconductors are described in the BCS context by Cooper
pairs having non- zero angular momomentum. The effect of
a magnetic field is incorporated within the quasiclassical ap-
proximation in the vortex phase as first done by Volovik[2].
In nodal superconductors it represents a simple and accu-
rate description of quasiparticle excitations. The associ-
ated magnetothermal conductivity provides a unique win-
dow to investigate nodal structures of∆(k) . In this way
Izawa et al have succeeded in identifying the gap symme-
try of Sr2RuO4 , CeCoIn5 andκ- (ET)2Cu(NCS)2 [5, 6, 7].
More recently the magnetothermal conductivity data from
YNi2B2C and PrOs4Sb12 has revealed the presence of point
nodes in∆(k) [8, 11]. These order parameters are described
in terms of s+g wave gap functions[9, 10, 12]. This is the
first time such hybrid gap functions consisting of a superpo-
sition of representations have been found. In addition, due
to the presence of an s- wave component in∆(k) , the effect
of impurities is very different[41] from that in usual nodal
superconductors whose gap functions have sign change and
belong to a single nontrivial representation. For example
there is no resonance scattering due to nonmagnetic impuri-
ties. Also the energy gap opens up immediately due to im-
purity scattering[41] which is completely different from the
p- or d- wave superconductors. Therefore the hybrid nodal
superconductors YNi2B2C and PrOs4Sb12 appear to open
completely new vista in the rich field of unconventional su-
perconductors.
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