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Within the quasiclassical approximation we have studied the thermodynamics and the thermal conductivity in
the vortex state in nodal superconductors (sc). Recent angle dependent magnetothermal conductivity results
indicate a gap functiom\ (k) corresponding to f- wave sc in SRuO; and d- wave sc in CeCojnand x-
(ET)2Cu(NCS} respectively. More recently it is shown tha(k) in both YNi;B2C and PrOgSh,, have point

nodes described by hybrid s+g wave gap function.

1 Introduction SLRUO, , CeColy and x-ET,X with X=Cu(NCS),,
Cu[N(CN)]Br and Cu[N(CN}]ClI the thermal conductivity
The gap symmetry of superconductivity is the central issue in a magnetic field within the conducting plane provides the
since the appearance of many unconventional and/or nodatrucial insight on the nodal structure &fk) [3, 4]. Indeed
superconductors in heavy Fermion systems, organic superizawa et al have shown f-wave sc in,BuO; [5], d-wave sc
conductors, high Tcuprate superconductors,,8uQ, and in CeColn [6] andx-(ET)2 Cu(NCS} [7] through the angle
borocarbides YNiB,C and LUNyB-C . Following the qua-  dependent magnetothermal conductivity. More recently gap
siclassical approach introduced by Volovik [2] it is possible functions A(k) in borocarbide YNiB,C and skutterudite
to calculate both the thermodynamic and transport proper-PrOs,Sh;, are shown to have point nodes and described in
ties of the vortex state in nodal superconductors. terms of s+g-wave sc [8-12]. We shaw (k)| of these su-
Especially in quasi 2D systems like high Tuprates,  perconductors in Fig. 1.

s +g- wave

d- wave

Figure 1. Anisotropic gap functions for SRu0O, , CeColn, , PrOsShi» (A- phase) and YNiB>C .

2 The Volovik effect ductor seen in SRuQy through the specific heat [14] and
the magnetic penetration depth [15]. Indeed all four states
For simplicity we shall consider four examples of nodal have the same quasiparticle density of states as d-wave su-
A(k) in quasi- two dimensional system&fk) =Af(k) with perconductors [16]. As we shall see later, however, the
= cos(2¢), sin(2¢), € cos(ck.), €' cos(%k.). They multigap model is incompatible with the angle dependent
are d»_,- wave, d,- wave, f- wave and f’- wave. The magnetothermal conductivity observed by Izawa et al [5]
last one is introduced by Zhitomirsky and Rice [13] (i.e. the and the universal heat conductionxip. observed by Suzuki
multigap model) in order to account for the nodal supercon- etal [17] in S;RuQ; . On the other hand these thermal con-
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ductivity data are fully consistent with f-wave sc shown in

Fig. 1. . 2 n
In the absence of a magnetic field the quasiparticle den- T = (6)

sity of states (DOS) of these four superconductors is given T 3°Am

by [16] This is also valid forx., except for the f'- wave sc of

the multigap model where we have

_ N(E) 22K (z) forz = £ <1
9(x) = No _{ 2K(z71) forz > . @
Kas 16 I'n
Where N is the the normal state DOS and K(x) is the T ~ 3" AZm, ™
complete elliptic integral of the first kind. In particular for )
2] <1 Thus for f'- wavek,, dgpend_s on t_he scattering rdte
and never reaches the universality limit contrary to [17].
5 In a magnetic fieldH || c we obtain
o(m)~ 2 @
. . ) 2 v%(eH)
Now in a magnetic field H perpendicular to the conduct- Kaw = —5 73 (8)
ing plane Eq. (2) is replaced by
in the superclean limit for all four superconductors. The H
linear thermal conductivity has been seen ipR8rO; [5].
g(E, H) ~ <M> ©)
’ A
Wherev-q is the Doppler shift [18]; withv denoting the 3 Field angle dependent thermal con-
Fermi velocity and 8 the pair momentum describing the ductivity

circulating superflow around vortices. Hefe) means av-

erage over the Fermi surface and over the unit cell of the\when the magnetic field lies in the a-b plane the Doppler
vortex lattice. In the present configuration this is readily shift generates the quasiparticles in the plane perpendicular

done [2, 19] to the magnetic field. When the plane cuts the nodal di-
rections, there will be strong increase in the quasiparticle
ks density. Therefore the thermal conductivity takes the maxi-
4 2 Crdr  2vVeH e i
g(0,H) = —U/ dacos a rer _ 2uve 4) mum value when the magnetic field is perpendicular to the

nodal directions [3, 4]. In particular in the superclean limit
where we have assumed a square vortex lattice [20]. Herewe obtain
d=veH. For a usual triangle lattice Eq. (4) will be multi-

plied by a factor,/+/3/2= 0.9306. . Then the specific heat, K 2 9%(eH)
the spin susceptibility and the superfluid density at low tem- kn o1 A2 i(9) ©)
perature (i.e. K vveH < Ag) are given by [21] Ky 2 5%(eH) ) (10)
Cs/'}/nT = Xs/Xn:g(OvH) Fon T A l
1—ps(H)/ps(H=0) = g¢(0,H) 5) for i= 1,2,3,4 which corresponds to,d ,-- wave, d,-
Tfl/Tfnl = ¢2(0,h) wave, f- wave and f'- wave superconductors respectively.

Here 9?2 = v,v. and ¢ is the azimuthal angle of H with
This vH dependence of the specific heat has been seemespect to the a axis. We obtain the following angular func-
in YBCO[22, 23], LSCO[24] and SRuO; [21]. Furtherthe  tions I;(¢) and J(¢):
v H dependence of, and the H linear dependence of T
have been seen by NMR in a slightly underdoped Bi2212
[25]. Although the above expressions are obtained in the Li(¢) =~ 0.912+ 0.05cos(49)
absence of impurity scattering,lthe Egs. (4),(5) still hold in L(¢) =~ 0.925—0.256 cos(2¢)
the superclean limit wheréAT'): < vveH with T' de- 0,042 cos(46) (11)
noting the quasiparticle scattering rate in the normal state

[3, 4]. There are only two energy scales in this limit, namely I3(¢) =~ 1.479 —0.128cos(2¢)
vveH and T. Therefore the thermodynamic functions obey Ii(¢) =~ 0.439 — 0.128 cos(2¢)
the scaling law as proposed by Simon and Lee [26] and Ji(p) ~ —a;sin(2¢)

shown for a particular case byilKert and Hirschfeld [19].

The thermal conductivity is treated similarly. In the ab- with & = 0.256, a =0, & = 0.124 and a= 0.106. Their
sence of magnetic field,., exhibits the universal heat con- angular dependence is shown in Fig. 2. As is readily seen
duction [27, 28] for all four superconductors. the ¢- dependence of the thermal conductivity is adequate



Brazilian Journal of Physics, vol. 33, no. 4, December, 2003

to identify one of fourA (k) gap functions we have consid-
ered sofar.
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Figure 2. Angular dependence of thermal conductivitigs (1)
and thermal Hall coefficient,, (J;) according to Eq. (11) for the
various 2D gap functions i=1,2,3,4 (¢ _,2-, d.-, f- and f’- wave
respectively).

In this way A(k) in SrRuUQ; [5], CeColry [6] and -
(ET)2Cu(NCS}) [7] are identified. On the other hand the
¢- dependence of,, andx,, in YBCO so far determined
[30, 32, 33] do not match the one fogd .- wave. This
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Figure 3. Normalised quasiparticle DOS for s+g wave gap in
pure YNiB2C (I'/A=0 or x = 0) and for various doping induced
nonzeral.
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9(E) = = 1A

(13)

Also there are similarity and difference between d-wave
superconductors as seen in [39]. In a magnetic field with
orientation defined by#( ¢) the quasiparticle DOS is given
by [10]

is because in the above analysis we have limited ourselves

for T« 9veH, while the experiments have been done for

T> oveH [29].

4 Superconductivity in Borocarbides
YNIQBQC and LUNiQBQC

So far we limit ourselves to the quasi- 2D systems. In 3D

systems it is more expedient to consider the thermal con-

ductivity as function of bottd and ¢, which are the polar
coordinates defining the field direction. In this respect the
superconductivity in YNiB>,C and LuNiyB,C is of great
interest in part due to their relatively high transition tem-
perature 15.5 K and 16.5 K resepectively [34]. Although
the dominance of s-wave componentAifk) has been es-
tablished by substituting Ni by a small amount of Pt and

subsequent opening of the energy gap [35, 36], the superious polar field angle$.

conductivity exhibits many charactenstlcs of nodal super-
conductors like ¥ behaviour of T and thev/H- depen-

s0.1) = g

I1(0,¢) = %(15(9,¢)+Ic(97¢))

I,(0,4) = (1—sin?0sin®¢)? (14)
I.(0,6) = (1—sin®@cos®¢)?

Then the specific heat, the spin susceptibility and the su-
perfluid density for T« A are given by

CS/'YST = 9(07H)
xs/xv = ¢(0,H) (15)
3
pi"(0,H)/pi*(0,0) = Zg(0,H)
We show in Fig. 4 theb dependence of(#, qb) for var-
In particular ford = 1(6, )

develops cusps at=0 and7 etc. They are a characterlstlc
signature of the point nodes We note that a recent specific

dence of the specific heat[38]. Due to their tetragonal spaceheat measurement on YMB,C has excactly found these

group I4/mmm the borocarbides have fourfold rotational
symmetry within the a-b plane. The simplestk) which

cusps[40].
In order to calculate the thermal conductivity an analysis

satisfies these constraints appears to be s+g-wave supercoif impurity scattering is necessary. Unlike in other nodal su-

ductor [8, 9]

A(k) = %A(l —sin 9 cos(4¢)) (12)

whered andy are polar coordinates describikgWe show
the quasiparticle DOS in Fig. 3. FoF|/A < 1, we obtain

perconductors we find the Born limit and the unitarity limit
gives practically the same result. There is no resonance scat-
tering in s+g- wave superconductors [41]. Secondly the en-
ergy gap opens up immediately in the presence of impurity
scattering. The quasiparticle DOS in the presence of impu-
rity scattering is also shown in Fig. 3 for sevefdlA. In the
absence of magnetic field the related equations are given by
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Figure 4. Angular function H, ¢) which determines. . (6, ¢) for
s+g wave gap function in Eq. (18).
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(——)
Va2 + (A - 1ap)y?
( (A-3Af)
V@i + (A 5an2
where =} sin® ¥ cos(4¢). Then forw — 0, we find — 0
andA — %A + I'. In other words the energy gap opens up
immediately withl'. The energy gap,(I") visible in Fig. 3
is well approximated by, (I') =T'/(1 + &).
This immediate opening of the energy gap is very dif-

wp +T (16)

)@

1
-A+T
5 +
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present more realistic treatment of the impurity scattering in
the s+g wave case. On the other hand the conclusion that ¢
gapw, ~ I' opens immediately for s+g wave order parame-
ter makes it now hard to understand the H linear dependence
of thermal conductivity at lowest temperatures reported in
[42].
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Figure 5. Cusp-like fourfold oscillations inc..(%,¢) of
YNi3B2C are destroyed by 5% Pt- substitution [43].
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As is readily seen from Eq. (18) we predict that in-
creases lika/H while the dominant term ir,,, is indepen-
dent of H. Indeed the/H dependence of. . is consistent
with the experimental data in [8]. More recently the anglular
dependence of the thermal conductivity in a single crystal of
Y (Ni;—.Pt,)2B>C with x = 0.05 has been studied[43]. Itis

ferent from the case of s+d- wave superconductors as disSNOWn in Fig. 5 in comparison to:he pure ¥B,LC (x=0).
cussed in [36]. This has immediate consequences: Theré-learly no fourfold oscillation im( 7, ¢) survives in the 5%

are no nodal excitations for ¥ I'. In this limit both the

Pt- doped compound. From.F 13.1 K of the 5% Pt- sub-

specific heat and the thermal conductivity decrease expo-Stituted crystal and I=15.5 K for YNi;BoC (x=0) we can

nentially. Also there will be no universal heat conduction

estimatd’ using

[27, 28] in sharp contrast to usual nodal superconductors.
From this we expect that also the thermal conductivity in

the vortex state of the s+g wave superconductor will be quite
different from the case of usual nodal superconductors. It is

.. (% 1 T
(7o) =1 ()2 WG+ 5

)-w(y)]  (9)

now given by

K X 3
2 = 1—y?)20(1—
Fin ln(%)( y) H( y)
Kaa 3 '\ 2 1
- - (= / /17 /2
Kn 2111(%)(30) (cos™"y +y 4
1 12\ 3 /
52l =y")%)0n(l —y) (18)
2 0vVeH 1 9veH
e = N0, o = =210, 0)
T A T A
_r ,_7T
vy = Az y A

Here 6y is the Heaviside step function. Furthermore
ky, refers to the normal stateé, = ,/v,v. and we have as-
sumedl’,T < 9VeH < A. In the other limitoveH < T’
there will be no nodal excitations. We note that first of all
the angular dependence ©f, is given by 10, ¢) which is

wheres)(z) is the di-gamma function, fsin* § cos(4¢) and

(f?) = 0.203. The resulting’ = 23.8 K> T. shows that

we are already close to the limitAg /T ~ &,. Clearly the
largeI” has eliminated the nodal excitations. Therefore it is
of great interest to study the thermal conductivity of the Pt-
substituted crystals with x. 0.05. It is also necessary to
study theoretically the extremely dilute limit where eventu-
ally the gap induced by impurity scattering should become
inhomogeneous and a crossover to a new regime should se
in.

5 Skutterudite PrOs,Sb;,

Skutterudites with rare earth atoms may exhibit Heavy
Fermion behaviour and in addition magnetic, quadrupo-
lar and superconducting phase transitions. Among them
PrOsSby, is a rather unique case [44, 45, 46]. Again the

fully confirmed in [8]. The details of the above expressions angular dependent thermal conductivity data [12, 11] sug-
are different from those given previously [9, 10] due to the gest i) the presence tfvo phases denoted A and B and ii)
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a gapA(k) with planar symmetry in A while one with axial
symmetry in B phase (see Fig. 6). Also, the singlet pairing
in this system is very likely though not confirmed sofar. In

order to describe the angular dependent thermal conductiv-

ity we have proposed [12, 11] the hybrid gap functions
I I I
20 - n
—~ 15 [ B
|_
T
10 - -
05 n
| | |
0.0 0.5 1.0 15 2.0
T(K)

Figure 6. B-T phase diagram of PrCBb» with different nodal
structures of A- and B- phases as obtained from(6, ¢) depen-
dence [11].

(A-phase)A(k)
(B-phase)A (k)

A(L = ky — k)
Al — k)

(20)
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whith angular functions given by

IA(Hv ¢)

IB (07 (rb)

1 1 1
5[(1 — sin? 0 sin? 9)2 +(1-— sin? 6 cos? })?]

1
it sin® 0 sin? ¢) 2 (22)

We note that } (0, ¢) = 1(0, ¢) given in Eq. (14). De-
spite the different functional form dfA (k)| these s+g wave
sc phases have the same quasiparticle DOS. As discussed in
Sect.(4) this expression is valid whern/eH > I'. Also
the effect of a small’ may be incorporated by changing
vVeHI;(0,) — vVeHI;(0,¢)-T. The specific heat etc.
are expressed in terms of gf),as before. Like the residual
quasiparticle DOS the thermal conductivity, (0, ¢) for the
A- phase is given by the same expression Eq. (18) as for the
YNi;B,C s+g- wave gap with(b, ¢) — 1,(0, ¢) (i=A,B).
Its angular dependence is completely determined gy ¢)
and agrees with the experimentally observed fourfold and
twofold oscillations observed in the A- and B- phases re-
spectively in PrOgSh;; below T = 0.5 K. However experi-
mental results at lower temperatures are highly desirable. At
this preliminary stage the microscopic origin of the symme-
try breaking into planar and axial symmetry seen in A and
B- phases is not yet clear.

6 Concluding remarks

Where the A- phase again corresponds to a (tetragonal)

s+g wave gap. A and B- phases have point nodes in X,y First we have reviewed our earlier work on the magnetother-
and y directions respectively. We assume here the absencga| conductivity in quasi 2D nodal superconductors. These
of nodes along the z- direction since they have not beengyperconductors are described in the BCS context by Cooper
confirmed sofar. Their corresponding quasiparticle DOS is pajrs having non- zero angular momomentum. The effect of
shownin Fig. 7 In zero field these phases exhibit characteris-3 magnetic field is incorporated within the quasiclassical ap-
tics of nodal superconductors like those in YBLC . Again  proximation in the vortex phase as first done by Volovik[2].
impurity scattering immediately opens a gap. Also as before |n nodal superconductors it represents a simple and accu-
there is no resonance scattering and universal low temperarate description of quasiparticle excitations. The associ-
ture heat conduction since it vanishes likep(—I'/T). In ated magnetothermal conductivity provides a unique win-
the presence of a magnetic field the residual quasiparticleggy to investigate nodal structures Afk) . In this way
DOS is given by ¢ = vq,c) Izawa et al have succeeded in identifying the gap symme-
T try of SLRuQy , CeColry andx- (ET):Cu(NCS} [5, 6, 7].
More recently the magnetothermal conductivity data from
[ YNi,B,>C and PrOgSh; s has revealed the presence of point
nodes inA(k) [8, 11]. These order parameters are described
\ in terms of s+g wave gap functions[9, 10, 12]. This is the
first time such hybrid gap functions consisting of a superpo-
1 ! Tooo- oo sition of representations have been found. In addition, due
/ to the presence of an s- wave componeniik) , the effect

of impurities is very different[41] from that in usual nodal
g superconductors whose gap functions have sign change and
belong to a single nontrivial representation. For example
there is no resonance scattering due to nonmagnetic impuri-
ties. Also the energy gap opens up immediately due to im-
purity scattering[41] which is completely different from the
p- or d- wave superconductors. Therefore the hybrid nodal
superconductors YNB>,C and PrOgSh;, appear to open
completely new vista in the rich field of unconventional su-
perconductors.

g NoOa

NEIN
H

E/A
Figure 7. Quasiparticle DOS for A- phase (full line) and B- phase
(dashed line) of PrOsh; 5 .
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A

™

9(0,H) (21)
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