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We develop four identities concerning parameter di�erentiation of fractional powers of operators
appearing in the Tsallis ensembles of quantum statistical mechanics of nonextensive systems. In
the appropriate limit these reduce to the corresponding di�erentiation identities of exponential
operators of the Gibbs ensembles of extensive systems derived by Wilcox.

I Introduction

Wilcox [1] in 1967 published a seminal paper entitled

\Exponential Operators and Parameter Di�erentiation

in Quantum Physics". This paper was centered around

the following remarkable identity:

If Ĥ(�) is an operator depending on a parameter �,

then

c

@

@�
Q̂(�; �) = �

Z �

0
duQ̂(�; �)Q̂�1(�; u)

@Ĥ(�)

@�
Q̂(�; u) ; (1)

where

Q̂(�; u) = exp�uĤ(�) :

d

From this he went on to obtain several other identities

in elegant ways which are all central in the develop-

ment of quantum time evolution, Gibbsian ensembles

in equilibrium quantum statistical mechanics, pertur-

bation expansions, inequalities concerning correlation

functions etc., all of which depend on the appearance

of the exponential operator of the form introduced in

Eq.(1). For a comprehensive account of the rami�-

cations of this identity, see Appendix A in Vol. I of

Grandy's Textbook on Statistical Mechanics [2]. In Ap-

pendix D of the Vol.II of his text, he uses this identity

to establish inequalities of various covariance functions

which are just the quantum mechanical variances and

covariances of quantities of interest. It is useful to re-

call that the exponential form in the Gibbsian ensem-

ble arises from the principle of maximumvon Neumann

entropy, S1 = �Tr�̂ ln �̂; with Tr�̂ = 1, subject to the

given mean energy of the system, E = Tr�̂Ĥ, as ex-

plained in [2], for example.

In 1988, Tsallis [3] introduced a di�erent ensemble

for describing a large variety of nonextensive systems

for which the exponential form of the operator is re-

placed by a monomial fractional power of the form

Q̂T (�; �) =
h
1� (1� q)�Ĥ(�)

iq=(1�q)
; (2)

where q speci�es the system nonextensivity. Nonexten-

sivity comes about in systems with long-range interac-

tions between constituent particles of the system. This

goes over to the Gibbsian form given in Eq.(1) when

q is set equal to unity, which is appropriate whenever
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the system consists of particles which are either non-

interacting or interacting with short-range forces. The

operator in Eq.(2) replaces the exponential operator in

Eq.(1) when statistical expectation values of quantities

of interest are to be calculated in the Tsallis formalism.

Here the Tsallis entropy Sq = �Tr(�̂ � �̂q)=(1 � q),

is maximized subject to the given q-expectation value

(a di�erent form of the q-expectation value to be de-

�ned later is sometimes preferred) of the Hamiltonian,

Eq = Tr�̂qĤ, besides the usual normalization,Tr�̂ = 1.

It is in this form (as well as the di�erent form alluded

to above) that the formal structure of Statistical Me-

chanics is preserved namely - Legendre transform na-

ture of the free energy. This ensemble has now been

used to develop [4] a Green function theory of many-

particle nonextensive systems in much the same way as

the Gibbsian ensemble is used in the Green function

theory of the corresponding extensive systems. With

this development, the program of statistical mechanics

of nonextensive systems is achieved in a manner that

is formally complete in parallel to the conventional sta-

tistical mechanics of extensive systems.

It may be important to give the reader some com-

pelling reasons for setting up another ensemble dif-

ferent from the traditional Boltzmann-Gibbs ensemble

for dealing with nonextensive systems. We �rst recall

that among the statistical distributions, the exponen-

tial - class played very important role in the analysis

of many phenomena. (see E. T. Jaynes [5] for a dis-

cussion of these aspects). These can all be derived

from a maximum entropy principle subject to some

constraints in which the entropy functional is chosen

to be the Gibbs-von Neumann form, S1 = �Tr�̂ ln �̂.

There are many other probability distributions possess-

ing long tails such as Pareto, Levy, etc. which are of

the monomial - class, not related to the exponential

class. These are not derivable from the maximum en-

tropy principle with the Gibbs-von Neumann form for

the entropy functional. These cover many phenomena

which do not come under the rubric of \extensive" class

of systems which were traditionally treated in physical

and other sciences. It is this important gap that the

Tsallis ensembles cover. As far as we are aware, there

is no mathematical or physical argument to rule out the

applicability of the Tsallis ensemble nor do we know any

demonstration that the exponential-class covers every

conceivable situation in physical and other sciences so

that the universality of the Boltzmann{Gibbs ensemble

may be considered as the only one paramount form. In

discussing sensitivity to initial conditions of nonlinear

dynamical systems, similar \exponential"and \power"

law sensitivities have been discussed recently [6,7] in

the context of the use of von Neumann (Kolmogorov

and Sinai) and Tsallis entropies in their quanti�cation.

The Tsallis ensemble with q 6= 1 deals with Hamiltoni-

ans of systems with long-range interactions which may

exhibit nontrivial anomalies in their ergodicity and mix-

ing properties. For systems which are noninteracting

or interacting systems with short-range forces, one cer-

tainly has q = 1 (Boltzman-Gibbs class).

II Four theorems

In this paper, we �rst obtain the counterpart of the

Wilcox theorem, Eq.(1), for the Tsallis formof the oper-

ator, and then deduce three others. It is not out of place

here to mention that some of these have been recently

stated without derivation [8] in developing the dynamic

linear response of a nonextensive system based on Tsal-

lis framework. It is worth pointing out that every one of

these theorems has its counterpart in the exponential

version, derived by Kubo, Karplus and Schwinger in

di�erent physical situations of the respective authors'

interests. Wilcox's theorem uni�es all of these in a sin-

gle, elegant form, from which all others follow.

c

THEOREM I:

@

@�
Q̂T (�; �) = �q

Z �

0

duQ̂T (�; �)Q̂
�1
T (�; u)

@ ~̂H(�; u)

@�
Q̂T (�; u) ;
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(3)

where
@ ~̂H(�; u)

@�
=
�
1� u(1� q)Ĥ(�)

�
�1 @Ĥ(�)

@�

�
1� u(1� q)Ĥ(�)

�
�1

:

(4)

Prof: Let

F̂T (�; �) =
@Q̂T (�; �)

@�
: (5)

Then di�erentiating with respect to �, interchanging the order of di�erentiation, using the de�nition (4), and using

the de�nition (3) given above, we obtain the di�erential equation

@F̂T (�; �)

@�
+ q

h
1� �(1 � q)Ĥ(�)

i
�1

Ĥ(�)F̂T (�; �)

(6)

= �q
@ ~̂H(�; �)

@�
Q̂T (�; �) :

Using the explicit form given in Eq.(2), and de�ning the inverse operator, Q̂�1
T (�; �), in the usual way, we recast

Eq.(6) in the form

Q̂T (�; �)
@

@�

h
Q̂�1
T (�; �)F̂T (�; �)

i
= �q

@ ~̂H(�; �)

@�
Q̂T (�; �) : (7)

From this expression the theorem I is established upon integration of both sides of Eq.(7), because Q̂T (�; � = 0) = 1

and F̂T (�; � = 0) = 0.

The above Theorem reduces to the Wilcox theorem [1] when q is set equal to unity.

This derivation is more direct than the one used in Ref.[1,2] for the Gibbsian ensemble. This is our central theorem.

From this, we deduce the following theorem by applying Theorem I using a similarity transformation to generate

the �-dependence of Ĥ(�).

THEOREM II:

If Â is an arbitrary operator, then the commutator
h
Â; Q̂T (�; �)

i
is given by

h
Â; Q̂T (�)

i
= qQ̂T (�)

Z �

0

duQ̂�1
T (u)

h
Ĥ; �̂A(u)

i
Q̂T (u)

where

Q̂T (�) =
h
1� �(1 � q)Ĥ

iq=(1�q)
;

�̂A(u) =
h
1� u(1� q)Ĥ

i
�1

Â
h
1� u(1� q)Ĥ

i
�1

: (8)

Proof: We deduce this theorem by taking Ĥ(�) in Theorem I as a similarity transformation of the following form

Ĥ(�) = (exp�Â) Ĥ (exp��Â) : (9)

Then it follows that

Q̂(�; �) = (exp�Â) Q̂T (�)(exp��Â) ; (10)

where we used the de�nition in Eq.(8). Then, we obtain the following expressions that appear in Eq.(3)

@Q̂T (�)

@�
= exp�Â

h
Â; Q̂T (�)

i
exp��Â ;

and (11)

@ ~̂H(�)

@�
= exp�Â

h
�̂A(u); Ĥ

i
exp��Â
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which in Theorem I lead to the result in Eq.(8). In the limit when q = 1, this goes to the well-known Kubo identity

[2] which was of much use in his theory of irreversible processes.

We now employ Theorem I to deduce another important result concerning the parametric derivative of an Tsallis-

expectation value of an arbitrary operator, often useful in computing the linear response function of a Tsallis-mean

value of a quantity of interest. We must remark here that this de�nition of the mean value di�ers from the de�nition

�rst proposed in [3] and has the advantage of having the property that the mean value of a scalar constant, C,

is C itself, which was not the case in its original formulation. While this entails some changes in the formalism

it does not change the basic Legendre structure of the statistical mechanical principles. For a discussion of the

implications and rami�cations of these aspects, one may refer to [9]. For q = 1 this goes over to the result for the

usual thermodynamic average [2].

THEOREM III:

De�ne the Tsallis-expectation value of an arbitrary operator B̂ [9] as

hB̂iT = TrB̂Q̂T (�; �)
.
TrQ̂T (�; �) (12)

Then

@
D
B̂
E
T

@�
= �q

Z �

0
du

nD
Â(�; u)B̂

E
T
�
D
Â(�; u)

E
T

D
B̂
E
T

o

= �q

Z �

0

du
nD�

�Â(�; y)
��

�B̂
�E

T

o
; where (13)

�Â = Â�
D
Â
E
;A(�; u) = Q̂�1

T (�; u)
@ ~̂H(�; u)

@�
Q̂T (�; u) :

Proof: This follows upon di�erentiation of the de�ning expression in Eq.(12) and subsequently using Theorem I

directly. Quite often, one uses this expression when Ĥ(�) = Ĥ0 + �V̂ , and evaluates the expression in Eq.(13) for

� = 0 to obtain the correlation function of interest.

Finally, we develop a Karplus-Schwinger perturbation type theory for the Tsallis ensemble in the next Theorem.

This theorem is not in the form of Theorem I but its proof involves steps similar to the one used in Theorem I and

hence its inclusion here.

THEOREM IV:

If Ĥ = Ĥ0 + �Ĥ1, then

Q̂T

�
�; Ĥ0 + �Ĥ1

�
= Q̂

(0)
T (�; Ĥ0) � qQ̂

(0)
T (�; Ĥ0) � �

Z �

0

du

Q̂
(0)�1
R (�; Ĥ)

�
1� u(1� q)

�
Ĥ0 + �Ĥ1

��
�1 �

1� u(1� q)(Ĥ0)
�
~̂H1(u)Q̂T (u; Ĥ0+ �Ĥ1) ;

where ~̂H1(u) =
�
1� u(1� q)Ĥ0

�
�1

Ĥ1

�
1� u(1� q)Ĥ0

�
�1

: (14)

Here

Q̂T (�; Ĥ0 + �Ĥ1) =
�
1� �(1 � q)(Ĥ0 + �Ĥ1)

�q=(1�q)
; (15)

Q̂
(0)
T (�; Ĥ0) =

�
1� �(1 � q)Ĥ0

�q=(1�q)
:
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Proof: Consider

@

@�

n
Q̂�1
T (�; Ĥ0)Q̂T (�; Ĥ0 + �Ĥ1)

o
=

@

@�

n
Q̂�1
T (�; Ĥ0)

o
Q̂T (�; Ĥ0 + �Ĥ1) +

Q̂�1
T (�; Ĥ0)

@

@�

n
Q̂T (�; Ĥ0 + �Ĥ1)

o
: (16)

Performing the indicated di�erentiations, and after some algebra we �nd

@

@�

n
Q�1
T (�; Ĥ0)Q̂T (�; Ĥ0 + �Ĥ1)

o
= �qQ̂�1

T (�; Ĥ0)

�
�
1� �(1� q)(Ĥ0 + �Ĥ)

�
�1

Ĥ1

�
1� �(1 � q)Ĥ0

�
�1

Q̂T (�; Ĥ0 + �Ĥ1) (17)

d

Introducing the notation given in Eq.(14), upon inte-

gration of both sides of Eq.(17) with respect to �, from

0 to �, and using Q̂T (� =; 0Ĥ) = 1, we obtain the

result stated in Theorem IV above.

III Summary

In summary, we have here deduced a set of four theo-

rems on parametric di�erentiation of the operator de�n-

ing the Tsallis ensemble, which we hope are of use in the

same way as the Wilcox theorems were for the operator

de�ning the Gibbsian ensemble.

Several versions of this paper were read by Profes-

sor Tsallis. Thanks are due to him for making valuable

suggestions to improve the presentation. This work is

supported in part by the O�ce of Naval Research.
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