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We consider the time evolution of a squeezed vacuum cavity �eld interacting with an initially
excited two-level atom via the Jaynes-Cummings model in the Rotating Wave approxima-
tion. For large enough initial squeezing, we recognize a new partial revival phenomenon
in terms of the quadrature variance product. We show the time evolution of the �eld
quasiprobability Q-function, which provides a quadrature space picture of the partial re-
vival phenomenon. An interpretation of the phenomenon in terms of a certain kind of �rst
momentum of the photon distribution function is given.

I Introduction

Since the seminal paper by Jaynes and Cummings

[1], the so-called Jaynes-Cummings model (JCM) has

been extensively studied in quantum optics in a variety

of situations. Even though it is a simple model (allow-

ing for exact analytical solutions), it has been a labora-

tory for investigations of many interesting non-classical

features of light, such as squeezing [2] [3] [4] [5], an-

tibunching [6], reversible spontaneous emission [7] [8],

Rabi oscillations collapses [9] [10], and revivals [11] in

the atomic transition probability. Here, we will be es-

pecially concerned with this latter phenomenon. The

revival in the transition probability is a signature of the

quantization of the electromagnetic �eld, and recently

observations of such a phenomenon by using Rydberg

atoms interacting with the radiation in a high-Q cavity

have been reported [8] [12]. It is known that revivals or

rephasings are determined by the initial photon num-

ber probability distribution, which we will call P (1)(n),

and they happen whenever P (1) has well-de�ned peaks

around some mean photon numbers. This phenomenon

has been thoroughly investigated in the case of coher-

ent states [11] and strongly squeezed coherent states [4]

[5] with �nite mean number of photons where there are

very clear revivals and accordingly the P (1) distribution

presents well-de�ned peaks.

In the case of squeezed vacuum states, there is no

clear peak in P (1), and so there is no visible revival in

the transition probability (nor in related quantities), re-

sembling the case of initially chaotic �eld [10]. However,

we will show that there is at least a partial revival in an-

other quantity, namely the product of variances of the

two �eld quadratures. This quantity is not governed by

the photon number probability distribution P (1), but

by a distribution we have called P (2)(n), a kind of �rst

momentum of P (1). Unlike P (1), P (2) happens to have

a better de�ned peak for the strongly squeezed vacuum

state, and this is what allows us to see such a partial

revival in the variance product, as it will become clear

along the paper. We will illustrate this with speci�c

cases of initial squeezed �elds (the atom being initially

in the excited state). Also, the Q-function will be used

to have a phase-space (or quadrature-space) image of

what is happening to the �eld as the system evolves

in time. We will show that the partial revival in the

variance product has a natural interpretation in terms

of such a phase-space visualization.

This paper is organized as follows. In Section II, a

very brief review of the JCM and the vacuum squeezed

states is given. After settling the appropriate nota-

tion, we de�ne the P (2) distribution. Then, the time
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evolution of the variance product is studied and we

establish the conditions under which a partial revival

phenomenon for this quantity occurs. In Section III,

the Q-function is investigated at several times for a

given initial squeezed-vacuum �eld. The purpose of this

study is to analyse its behaviour according to that of

the variance product, particularly in the region where

the partial revival occurs. Some concluding remarks are

given in Section IV.

II The Time Evolution of the

Variance Product and the

Partial Revival

We are going to study the time evolution of a sys-

tem consisting of a single-mode radiation �eld within

a perfectly non-dissipative cavity (which is initially in

a squeezed vacuum state), and a single two-level atom

(initially in the excited state). To describe the atom-

�eld interaction, we will use the JCM in the rotating-

wave approximation in the resonant regime, where the

atom's transition frequency is equal to the mode's

eigenfrequency !. The Hamiltonian is:

H = ~!aya+
1

2
~!�z + ~g(ay�� + a�+); (1)

where a and ay are the photon annihilation and cre-

ation operators; �+ and �� are the atom's excitation

and de-excitation operators; �z is the diagonal Pauli's

operator in the basis fjei; jgig (the excited and ground

states of the atom, respectively); and g is the coupling

constant between the atom and the �eld.

The Hamiltonian (1) is exactly diagonalizable. Its

eigenstates are:

j	�n i =
1p
2
(jn; ei � jn+ 1; gi) ; (2)

j	0i = j0; gi; (3)

where jn; �i = jni
j�i (� = e or g) are atom-�eld prod-

uct states. The corresponding eigenenergies are (except

for a factor of ~):

!�n = !(n +
1

2
)� g

p
n+ 1; (4)

!0 = �!

2
: (5)

For the initially coherent radiation �eld with an ini-

tially excited atom, Meystre and Zubairy [3] found sub-

sequent squeezing. Also, the phase-dependent �eld 
uc-

tuations in the JCM for an atom interacting with a vac-

uum �eld has been studied by Knight [13], and it has

been shown that the vacuum 
uctuation level are aug-

in the excited state. Here, we are going to show that

for the �eld initially in a squeezed vacuum, such a peri-

odicity cannot be manifested and the partial rephasing

for a quasi-revival depends on the distribution P (2)(n).

The squeezed vacuum state of the cavity mode is

de�ned by the action of the squeezing operator:

j0is = Ŝ(s)j0i; (6)

where

Ŝ(s) = exp

�
1

2
s�a2 � 1

2
s(ay)2

�
;

and s is a complex parameter. In terms of the Fock

state basis, the squeezed vacuum state is written as:

j0is =
1X
n=0

cnjni; (7)

where

cn =

(
0 n odd

(�1)n2 (tanh s)n2
q

(n�1)!!
n!! c0 n even

(8)

and c0 is a normalization constant.

Next, we introduce the �eld quadrature operators

a1 and a2:

a1 =
1

2
(a+ ay); (9)

a2 =
1

2i
(a� ay): (10)

They are Hermitean conjugate operators, and satisfy

the corresponding commutation relation:

[a1; a2] =
i

2
;

which implies the following uncertainty relation be-

tween them:

h(�a1)
2ih(�a2)

2i � 1

16
: (11)

The squeezed vacuum state j0is has minimum un-

certainty for real or purely imaginary s, but as opposed

to the vacuum state, the quadrature variances are un-

equal:

h(�a1)
2ih(�a2)

2i = 1

16
;

h(�a1)
2i = 1

4
e�2s;

h(�a2)
2i = 1

4
e2s:

What we are interested in here is the time evolution

of the quadrature variances (and their product). Using

eqs.(9,10), we can write the variances as functions of
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c

h(�a1)
2i = 1

2
hayai + 1

4

�h(ay)2i + ha2i�� 1

4
hay + ai2 + 1

4
; (12)

h(�a2)
2i = 1

2
hayai � 1

4

�h(ay)2i+ ha2i� + 1

4
hay + ai2 + 1

4
: (13)

To evaluate the mean values appearing above, we need to �gure out the time evolution of the system. The initial

state is:

j	(0)i = jei 
 j0is: (14)

Using equations (2-5), and switching to the interaction picture, we �nd that the state at a time t is:

j	(t)i =
X
n

cn
�
cos(

p
n+ 1gt)jn; ei � isin(

p
n+ 1gt)jn+ 1; gi� : (15)

Now we can calculate the mean values involved in the variances (12,13):

hai =
1X
n=1

cnc
�
n�1

�p
ncos(

p
ngt)cos(

p
n+ 1gt)+

p
n+ 1sin(

p
ngt)sin(

p
n+ 1gt)

�
; (16)

ha2i =
1X
n=2

cnc
�
n�2

hp
n(n� 1)cos(

p
n� 1gt)cos(

p
n+ 1gt) +

p
n(n + 1)sin(

p
n� 1gt)sin(

p
n+ 1gt)

i
; (17)

hayai = hni =
1X
n=0

jcnj2
�
n+ sin2(

p
n+ 1gt)

�
; (18)

hayi = hai�; (19)

h(ay)2i = ha2i�: (20)

d
Since the squeezed vacuum state has only even pho-

ton numbers in its expansion in the Fock state basis,

we easily see that:

hai = hayi = 0; (21)

for all times.

We can numerically calculate the product of the

variances (12) and (13) as a function of time, by using

eqs. (16-20). This is plotted in Fig.1a, for the initial

conditions given by (14) with s = 2. In this �gure we

can clearly see �rst an increase of the product until its

largest value around gt = 7:9, and then a tendency to

decrease, with a partial revival at gt � 18. After this, it

increases again and enters in a regime of small random

oscillations near the maximum value.



80 A.P.S. de Moura and K. Furuya

Figure 1a. Product of the quadrature variances as a func-
tion of the scaled time gt, for the atom initially in the ex-
cited state and the �eld in the squeezed vacuum state with
squeezing parameter s = 2.
Figure 1b. P (2)(n) distribution for the squeezed vacuum
state with s = 2.

To understand this phenomenon, let us look more

closely at the expressions (12,13) of the quadrature vari-

ances.

The mean value of the photon number operator is,

using eq.(18):

�n(t) = hayai(t) = �n0 +
1X
n=0

jcnj2sin2(
p
n + 1gt); (22)

where �n0 is the mean photon number for the initial

squeezed vacuum �eld, that is, �n0 = sinh2(s). Since we

are in the rotating-wave approximation, and the atom

was initially in the excited state, we have the selection

rule:

�n0 � �n(t) � �n0 + 1 (23)

Provided we have �n0 � 1, we see by eq.(23) that

�n(t) does not vary much in time, so that we can make

the approximation:

hayai � �n0 (24)

Substituting eqs. (24), (21), (19) and (20) into eqs.

(12,13), we have for the variances:

h(�a1)
2i � �n0

2
+

1

4
+

1

2
Refha2ig (25)

h(�a2)
2i � �n0

2
+

1

4
� 1

2
Refha2ig (26)

From the equations above, we notice that the time evo-

lution of the quadrature variances are dominated by the

term ha2i(t), given by eq.(17).

Suppose now we have a �eld state where the coe�-

cients cn for small values of n do not contribute much

for the total number of photons (such is the case for

the squeezed vacuum states with high s). In this case,

we can approximate the factors
p
n(n� 1) by n. We

obtain:

c

ha2i(t) �
1X
n=2

ncnc
�
n�2

�
cos(

p
n� 1gt)cos(

p
n+ 1gt)

+ sin(
p
n� 1gt)sin(

p
n+ 1gt)

�
(27)

d
We see from equation (27) that the oscillations in

the variances (and in their product) are determined by

the distribution P (2)(n):

P (2)(n) = ncnc
�
n�2 (28)

whereas those in the atomic transition probability are

governed by P (1)(n) = jcnj2. In particular, revival phe-

nomena occur whenever these distributions have well-

de�ned peaks. The P (1) distribution for the squeezed

vacuum state has no clearly de�ned peak, and accord-
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ingly the transition probability shows no revival.

The P (2) distribution, in its turn, shows a very clear

peak, as is shown in Fig.1b, even though this peak is

very much spread in the n coordinate. So, one should

expect a signature of revival in the variance product,

as can indeed be seen in Fig.1a. This partial revival

becomes more distinct as the squeezing parameter s is

higher. We have plotted the variance product and P (2)

for s = 3 in Figs. 2a and 2b; we notice at once that the

peak in P (2) is much more pronounced in this case, and

so is the quasi-revival in the variance product. The sub-

sequent evolution is similar to the previous case (though

not apparent in the time scale shown in the Fig.2a) in

the sense that after the �rst partial revival the vari-

ance product su�ers only small oscillations close to the

maximum value.

Figure 2. The same as in Fig:1a and 1b, but with s = 3.

III The Phase Space Represen-

tation

We are going to look now at the behaviour of

the quasiprobability Q-function [14] [15], de�ned in the

quadrature space of the �eld by:

Q(�; t) = h�j�F (t)j�i (29)

where j�i is the coherent state representing a point in

the phase space, and �F is the reduced density opera-

tor obtained by tracing over the atomic variables. With

the initial state given by eq.(14), and using eq.(15), by

straightforward calculation we �nd that:

c

�F (t) =
X
m;n

cnc
�
m �

�
sin(

p
n+ 1gt)sin(

p
m + 1gt)jn+ 1ihm + 1j+

cos(
p
n+ 1gt)cos(

p
m+ 1gt)jnihmj� (30)
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Substituting eq.(30) into eq.(29), we have an explicit expression for the Q-function:

Q(�; t) = e�j�j
2
X
m;n

cnc
�
m�

"

�m+1(��)n+1p
(m + 1)!(n+ 1)!

sin(
p
n + 1gt)sin(

p
m + 1gt) +

�m(��)np
m!n!

cos(
p
n + 1gt)cos(

p
m+ 1gt)

�
(31)

d

where the cn for the squeezed vacuum state are given

by eq.(8). Using eq.(31), we can calculate numerically

the Q-function for any given time t.

Now, let us analyse the evolution of the Q-function

for the initial state (14) with s = 2, comparing it with

the product of the variances as a function of time. The

original pure �eld state is represented by the elliptic

contour plots centered at the origin in Fig.3a, with the

minimum variance product of 1
16 . As time passes, this

initial peak splits into other peaks, as shown in Fig.3b

for the time gt = 5, where we have two clearly-de�ned

peaks centered along the a1 axis; this time corresponds

to a variance product of 40 (see Fig.1a). The variance

product reaches its maximum value at gt = 7:9, and

the Q-function for this time is accordingly very broadly

spread in phase space (Fig.3c), with two pairs of peaks

along the two quadratures.

After this �rst regime of monotonically increasing

variance product, we can see an oscillating reduction

of it until the peaks have collapsed in one at the ori-

gin around gt = 12:9 (Fig.3d). Then, after some small

oscillations added to a general tendency to decrease,

the variance product has a local small maximum at

gt = 17:2 where the split peaks in the a2 direction can

be seen in Fig.4e. Another collapse of the peak is seen

at gt � 18:8 (Fig.4f), where now the variance product

reaches a minimum, the smallest in this second regime;

this region is the one recognized as showing the partial

revival.

So, we see that the quasi-revival in the variance

product happens when all the peaks of the phase space

distribution, formed along the time evolution of the sys-

tem, collapse, and the distribution comes as near as

possible to reshaping the original elliptical form of the

initial squeezed state. Of course, the reshaping is far

from being perfect, and this is the reason why the vari-

ance product does not reach again its minimum of 1
16

in the revival region.

Passed over this partial revival region, the variance

product shows an oscillating increase before entering a

regime of irregular small oscillations close to the maxi-

mum value of � 50.

IV Conclusions

The time evolution of the product of variances of

the two quadratures of the squeezed vacuum �eld in-

teracting with a two-level atom has been studied. We

have shown that for strong enough squeezing, the newly

de�ned P (2)(n) (eq. 28) distribution determines the

time evolution of the quadrature variance product, and

that this distribution has a well-de�ned peak in the

case of strongly squeezed vacuum state, though not that

sharply around a given photon number. The existence

of such a peak causes a partial revival phenomenon in

the evolution of the variance product.
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Figure 3. Plots of Q-function in the quadrature space, for the same initial conditions as in Fig:1: 3a. Level contours of Q
for gt = 0:0 . 3b. Level contours of Q for gt = 5:0 . 3c. Level contours of Q for gt = 7:9 . 3d. Level contours of Q for
gt = 12:9. 3e. Level contours of Q for gt = 17:2. 3f. Level contours of Q for gt = 18:8.
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The signi�cance of this quasi-revival phenomenon

is visually captured by following the evolution of the

Q-function quasiprobability distribution. As the time

evolves, the initial pure �eld state with a squeezed dis-

tribution peaked at the origin (with minimum variance

product), splits into two peaks in the complex quadra-

ture plane, causing a rapid increase in the variance

product up to a certain maximumvalue. Next, we have

observed a partial revival regime where the variance

product decreases signi�cantly, and reaches a local min-

imum, suggesting a large superposition with the origi-

nal pure squeezed state. Along this process of splitting

and collapsing of the peaks the border of the distribu-

tion becomes more and more spread, losing the original

elliptic form. Finally, it reaches the regime where the

quadrature variance product remains close to its maxi-

mum value, showing only small oscillations around this

value.
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