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Bose Mott-Insulators as Closed Shells
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Properties of the ground-state, zero temperature ‘phase diagram’ of the Bose-Hubbard hamiltonian as under-
stood by Fisher et al. [5] are studied using simple tools in the case of finite systems. The results obtained
provide a transparent picture of the thermodynamic limit and reveal features reminiscent of shell structure in
many-fermion systems. Independent sites and many-site correlations appear in correspondence with indepen-
dent fermions and many-fermion correlations respectively. This paper is dedicated to Nicim Zagury, on the
occasion of his seventieth birthday.

1 Introduction
Perhaps the most satisfying justification of the simplicity of
dilute (gaseous), single species Bose-Einstein condensates
(BEC’s) has been provided not more than a couple of years
ago by Lieb and Seiringer[1], by proving that the ground
state of a finite many-boson system confined to an external
‘trap’ represented by a confining potential Vtrap(�r) is, in the
limit when the number of bosons N increases to infinity in

such a way that the product Na remains constant, a being
the (positive) scattering length associated with a two-boson,
purely repulsive interaction potential, is such that its exact
one body density matrix is of the form

ρ(�r, �r′) = Nφ0(�r)φ∗
0(�r

′).

The function φ0(�r) is the minimizer of the Gross-Pitaevski
functional

�

W [φ] ≡
∫

d3r φ∗(�r)
(−�

2∇2

2M
+ Vtrap(�r) +

λN

2
|φ(�r)|2

)
φ(�r).

�

and this limit is accordingly called the Gross-Pitaevski (G-
P) limit. The quantity λ ≡ 4π�

2a/M plays the role of the
strength of an effective, zero range two-body interaction.
Note that it is expressed in terms of the scattering length
a, and is thus an object possessing the hierarchy of the two-
body scattering amplitude, as e.g. in Brueckner theory[2].
The confined many-boson ground state becomes therefore
exactly a ‘single-mode’ state in this G-P limit. Even though
the size of the system remains finite as N goes to infinity
(since the mean field like contribution involving the product
Nλ remains constant, implying that the particle density ρ
also becomes infinite), the system is in fact extremely dilute
in the sense that the dimensionless quantity ρa3 goes to zero
as N−2. Now, at least qualitatively, this limit can be said to
be “close” to typical gaseous BECs now routinely produced
in many laboratories, even though the precise meaning of
being close (i.e., within the framework of ref.[1]) has still
to be worked out. These gases are such that they satisfy the
hierarchy of length scales

a � ρ−1/3 � (ρa)−1/2

i.e., the characteristic distance associated with the inter-
action much smaller than the mean interparticle spacing,
which is in turn much smaller than the so called ‘heal-
ing length’[3]. These inequalities are in fact equivalent to
ρa3 � 1.

In the real life gaseous BECs one has typically ρa3 ∼
10−6, so that corrections to the extreme single-mode, no de-
pletion picture for the condensate state are apt to be small.
The correction for the energy per particle first derived by
Lee and Yang in 1957[4] for a uniform system of particle
density ρ,
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Nλρ
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)

and the standard estimate for the depletion of the condensate
based on Bogoliubov theory (see e.g. ref.[3])
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8N

3
√
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√
ρa3

are consistent with the general picture of ref.[1] and may be
taken at least as heuristic estimates of the deviations from
the extreme single mode picture to be expected in the real
gaseous systems. Note that in the G-P limit ρa3 → 0 as
N−2. It should also be kept in mind that the actual two-body
interaction is not purely repulsive. As a result of this, the
minimizer of the Gross-Pitaevski functional in fact approx-
imates a state which is unstable against the so called three-
body recombination processes. A relative slowness of the
effects of such processes is therefore a crucial requirement
in the handling of these Bose-Einstein condensed states.

The single mode picture emerging in the G-P limit ap-
plies also to ground states in which the external trap poten-
tial consists of a periodic array of local minima separated by
quantum-mechanically permeable barriers. In this case, the
single mode picture entails full delocalization of the trapped
bosons. Note however that the mean occupation of any local
minimum diverges in the G-P limit, so that one is led to ask
what new physics gets deployed as one keeps short of it (i.e.,
finite, and possibly even small mean occupations of individ-
ual minima), in the case of such traps. In this case an heuris-
tic answer can be found in the context of the Bose-Hubbard
(B-H) model, analyzed from the point of view of statisti-
cal mechanics before the experimental achievement of di-
lute atomic Bose-Einstein condensates, notably by Fisher et
al.[5].

In fact, the Bose-Hubbard model can be seen as a many-
mode approximation to the cold dilute system of bosonic
atoms involving the states in the lowest band of the periodic
potential array[6]. By using site-localized (Wanier) combi-
nations of the lowest band modes as a single-boson basis,
and noting that i) matrix elements of the one-body part of
the effective hamiltonian are strongly dominated by nearest
neighbor matrix elements, and ii) matrix elements of the ef-
fective two-body interaction are strongly dominated by sin-
gle site two-body matrix elements, one is led immediately
to the Bose-Hubbard hamiltonian

HBH = −f
∑
〈m,n〉

(a†
man + a†

nam) +
J

2

∑
n

a†
na†

nanan (1)

where the creation-annihilation operators correspond to the
site localized single-boson states, the second sum runs over
all the different sites while the first sum runs over nearest
neighbor site pairs. The positive constants f and J stand for
the relevant one and two body matrix elements (a repulsive
effective two body interaction being assumed).

In what follows the heuristic derivation of the “zero tem-
perature phase diagram” of this model given by Fisher et
al.[5] will be implemented in the case of a finite number
M of sites and of small numbers of bosons per site. Many
relevant properties of such a finite system actually be ob-
tained analytically in a simple way, shedding revealing light

on some aspects of the corresponding thermodynamic limit,
which consists in letting M → ∞ with constant number
of bosons per site. Some heuristic contact with the differ-
ent G-P limit will also be provided. The finite B-H system
itself will be shown to admit an interpretation in terms of
the physics of quantum shell effects, familiar in fermionic
systems such as atoms and atomic nuclei. This paper is ded-
icated to Nicim Zagury, on the occasion of his seventieth
birthday.

2 Finite Bose-Hubbard ground states
In order to proceed with the analysis of properties of the
ground states of the hamiltonian (1), periodic boundary con-
ditions will be used for the one-dimensional array of M
sites, so that the nearest neighbors of site n = M are the
sites n = M −1 and n = 1. In this case the hopping term of
HBH becomes diagonal if one introduces an alternate rep-
resentation in terms of the “momentum” single boson states
defined as

Aq ≡ 1√
M

M∑
n=1

e
2πi
M nqan, q = 0, . . . ,M − 1. (2)

The hamiltonian (1) can then be rewritten as

HBH = −2f

M−1∑
q=0

cos
(

2πq

M

)
A†

qAq

+
∑
qj

δM (q1 + q2 − q3 − q4)A†
q3

A†
q4

Aq2Aq1 (3)

where the modular Kronecker delta δM (q) is equal to one if
q = 0,±M,±2M, . . . and zero otherwise. This shows
moreover that, in addition to the total number of bosons
N ≡ ∑

n a†
nan ≡ ∑

q A†
qAq , the total “momentum” is also

a (modular) constant of motion and can be used to label the
eigenstates of HBH .

2.1 Independent sites

Following the analysis given in ref. [5] consider first the
case f = 0. Here the representation in terms of the local-
ized orbitals diagonalizes the hamiltonian, as

HBH → J

2

∑
n

Nn(Nn − 1), Nn ≡ a†
nan.

Introducing the zero temperature grand potential Ω ≡
HBH − µN , where µ is the chemical potential, one has

Ω =
J

2

∑
n

(
Nn − µ

J
− 1

2

)2

− MJ

2

(
µ

J
+

1
2

)2
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so that, for the case of N = n0M + ν bosons, 0 ≤ ν ≤
M − 1, the value of Ω corresponding to the lowest eigen-
value of HBH is

Ω0(N)
J

=
M

2

(
n0 − µ

J
− 1

2

)2

+ν
(
n0 − µ

J

)
− M

2

(
µ

J
+

1
2

)2

.

The values of Ω0(N)/J for given µ/J and varying N lie
along a polygonal line with vertices at the “commensurate
filling” values n0M and with the nonzero values of ν along
the straight sides. The number of particles which minimizes
Ω0(N)/J is controlled by the chemical potential µ/J . This
number is unique and corresponds to a commensurate fill-
ing situation except when µ/J is an integer n0, in which
case the two commensurate fillings n0 and n0 + 1 together
with all the intermediate ν values correspond to the same
minimum value of Ω0(N)/J . This pattern is illustrated in
Fig. 1(a).
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Figure 1. (a)-values of Ω0(N)/J as a function of the number of
particles N for different values of the chemical potential µ. The
minima (indicated by slanted arrows) are unique for each value of
µ and correspond to a commensurate filling situations except when
µ/J has an integer value, in which case degeneracy occurs, as
shown; (b)-alternate representation giving the number(s) of bosons
which minimize(s) Ω0(N)/J along a µ/J axis.

The usual way to plot this result as part of a “zero tem-
perature phase diagram” consists in marking along an µ/J
axis the number of particles which minimizes the grand po-
tential. This is shown in Fig. 1(b). The minimizing number
N is clearly independent of µ/J in open intervals between
successive integer values. In these intervals one gets there-
fore the “incompressibility” relation

∂Nmin

∂µ
= 0, Nmin = n0M, n0 <

µ

J
< n0 + 1.

Note that an alternate way to describe this situation without
explicit reference to the grand potential consists in evaluat-
ing the f = 0 ground state eigenvalues for N = n0M + ν

E
(f=0)
0 (N) =

J

2
M

(
n0 − 1

2

)2

+ νJn0 − J

8

and evaluating the one boson addition energy in units of J

E
(f=0)
0 (N + 1) − E

(f=0)
0 (N)

J
= n0

which shows unit jumps at successive commensurate fill-
ings.

2.2 Perturbative effects of hopping
The ground states for commensurate fillings n0 in the limit
f = 0 are non-degenerate and easily written down in terms
of the localized creation operators a†

n as

|{n0}M 〉 =
M∏

n=1

(
a† n0

n√
n0!

)
|0〉. (4)

The lowest order perturbative correction to the energy of
these states due to hopping effects is clearly of order f2. The
f = 0 ground states for N = n0M ± 1, on the other hand,
are M -fold degenerate, allowing for non-vanishing first or-
der hopping corrections to their energies. They can be writ-
ten as

�

N = n0M + 1 :
1√

n0 + 1
a†

n|{n0}M 〉, n = 1, . . . ,M ;

N = n0M − 1 :
1√
n0

an|{n0}M 〉, n = 1, . . . , M.

The diagonalization of the hopping (first) term of the hamiltonian (1) or (3) within these degenerate subspaces can be
achieved in a straightforward way in terms of the momentum single boson states associated to the operators (2). In fact, direct
calculations give

− 2f

n0 + 1

∑
q

〈{n0}M |Ap1A
†
qAqA

†
p2
|{n0}M 〉 cos

(
2πq

M

)
= −2f (n0 + 1) cos

(
2πp1

M

)
δp1p2 ;

− 2f

n0 + 1

∑
q

〈{n0}M |A†
p1

A†
qAqAp2 |{n0}M 〉 cos

(
2πq

M

)
= −2f n0 cos

(
2πp1

M

)
δp1p2 ,
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so that the appropriate zeroth order eigenstates involve respectively the creation and the annihilation of one boson in a mo-
mentum state on the commensurate occupation state. The first order ground state energy shifts correspond to p1 = 0 in each
case, leading to the first order corrections to the addition energies

E(n0M + 1) − E(n0M)
J

= n0 − 2 (n0 + 1)
f

J
+ O(f2),

E(n0M) − E(n0M − 1)
J

= (n0 − 1) + 2 n0
f

J
+ O(f2).

�

If one adds to the graph of Fig. 1(b) an additional axis for
the scaled hopping parameter f/J , the linear terms define
respectively minimal and maximal slopes of curves branch-
ing out of the integer values of the µ/J axis. Note that when
one more boson is added to a state with commensurate fill-
ing n0, one obtains the minimal slope branching out of the
value of µ/J which constitutes the upper bound of the in-
compressibility domain of this commensurate filling state;
removal of one boson from the commensurate filling state
n0, on the other hand, gives the maximal slope branching
out of the lower incompressibility limit of this state. This is
shown on the left hand side of Fig. 2, where one sees that
the maximal and minimal slopes branching out of each in-
teger value n ≥ 1 on the µ/J axis are in fact equal except
for sign, and given by ±2(n + 1). These results are inde-
pendent of M , and therefore survive in the thermodynamic
limit M → ∞ with fixed n0.

M
1

J

f

µ
J

1

2

3

0.5 1.00

Figure 2. On the left hand side the calculated limiting slopes of
µ/J as a function of f/J at very small hopping are shown. On the
right hand side the calculated slopes and spacings of µ/J curves
for large values of f/J are shown for several consecutive values of
the total number of bosons N . The number of sites is M .

2.3 The limit of very strong hopping

The situation prevailing at the far right along the f/J axis
can also be easily worked out in closed form. Here the on
site effective two-body interaction can be handled pertur-
batively, the unperturbed, non-degenerate N boson ground
state being given as the “pure hopping” Perron-Frobenius
ground state

|Nhop〉 =
1√
N !

(
A†

0

)N

|0〉, (5)

for which the energy is, to first order in J (see eq. (3)),

E(N) = −2fN +
J

2M
N(N − 1).

The properly scaled addition energies are therefore

E(N + 1) − E(N)
J

=
1
M

N − 2
f

J
,

showing that all the staggering found in the small hopping
limit has disappeared, leading to a family of equally spaced
lines with slope −2, their spacing being M -dependent and
given by 1/M . They become therefore more dense as one
approaches the thermodynamic limit, where the spacing
eventually vanishes. Updating Fig. 2 with this additional
information leads to the picture shown, which now gives a
fairly clear image of the complete diagram.

While this cannot be obtained analytically, the smooth-
ness of the missing intermediate filling can be checked
within computer workable limits of M and N by means
of straight numerical diagonalization of the Bose-Hubbard
hamiltonian HBH . Note that the dimensionality of the ma-
trices that have to be handled can be significantly reduced
by taking into account the constants of motion of this hamil-
tonian. An example of the result of such numerical approach
is shown in Fig. 3. Salient features are the progressive short-
ening of the “incompressible lobes” in the f/J direction as
n0 becomes larger, which is already indicated by the val-
ues of the initial extremal slopes calculated in the f → 0
limit, and the closing of these lobes in the thermodynamic
limit where the uniform width 1/M of the various parallel
channels eventually shrinks to zero.
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Figure 3. Numerical zero temperature “phase diagram” for the
Bose-Hubbard hamiltonian with M = 5 and periodical boundary
conditions. The chemical potential is replaced by addition energies
in units of the on-site two-body interaction parameter J . The first
three Mott-insulator lobes are shown.

It may be noted at this point that the Gross-Pitaevski
limit of Lieb and Seiringer leads to an entirely different situ-
ation when compared with the thermodynamic limit as used
above. It corresponds in fact to letting J → 0 and N → ∞
in such a way as to preserve the Gross-Pitaevski functional,
implying therefore constant, non-vanishing f when the dif-
ferent sites are limited by barriers of finite height. The
Gross-Pitaevski domain therefore lies at the extreme upper
right region of the zero temperature phase diagram, where
the delocalization of the bosons is always complete. In this
region the ground state of the Bose-Hubbard model is essen-
tially a pure condensate in the delocalized state (2) of zero
“momentum” as written in eq. (5), in qualitative agreement
with the result of Lieb and Seiringer.

3 One-body features of correlated
eigenstates

Except in the extreme limits f → 0 (J �= 0) and J → 0
(f �= 0) the eigenstates of the Bose-Hubbard hamiltonian
for finite number of sites m and of bosons N contain non
obvious many boson correlations due to the combined ef-
fects of hopping and of on-site two body interactions. When
periodic boundary conditions are used, however, the avail-
able conserved quantities allow for a very simple general
characterization of the effects of such correlations for one-
body observables, in terms of properties of the reduced one-
body densities associated with the energy eigenstates. In
fact, from the conservation of total momentum (see eq. (3))
it follows that the energy eigenvectors can be chosen to be
also eigenvectors of the total momentum, |En, Ptot〉, with
Ptot = 0, . . . , M − 1. Consequently, the reduced one-body
density is diagonal in the momentum representation, i.e.

ρ(En,Ptot)
q1q2

= 〈En, Ptot|A†
q2

Aq1 |En, Ptot〉 = νq1δq1q2 .

In fact, the operators A†
q2

Aq1 with q2 �= q1 change the value
of the total momentum and therefore have vanishing expec-
tation value in states of good total momentum. The νq are
occupation numbers for the delocalized, momentum single
boson states associated with the operators (2), which are
therefore the natural orbitals of the reduced one body den-
sity. The occupation numbers satisfy the usual trace relation
for the one body density

M−1∑
q=0

νq = N.

A first, trivial example of this is the one body density
associated with the commensurate ground state in the f = 0
limit, eq. (4), for which one easily obtains

〈{n0}M |A†
q2

Aq1 |{n0}M 〉 = n0δq1q2,

showing that the reduced one body density is in fact a mul-
tiple of the unit matrix in this case (and therefore diagonal
in any representation). Slightly less trivial cases are the nor-
malized, commensurate filling states plus an added particle
(or “hole”) with momentum q,

|{n0}M , q〉 ≡ 1√
n0 + 1

A†
q|{n0}M 〉

and
|{n0}M , q̄〉 ≡ 1√

n0
Aq|{n0}M 〉.

The small f , perturbative ground states considered in sec-
tion 2.2 are states of this type with q = 0. The correspond-
ing one-body densities can also be evaluated analytically in
a straightforward manner with the results
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〈{n0}M , q|A†
q2

Aq1 |{n0}M , q〉 =
[
n0 − n0

M
+ (n0 + 1) δq1q

]
δq1q2 ,

〈{n0}M , q̄|A†
q2

Aq1 |{n0}M , q̄〉 =
[
n0 − n0 + 1

M
+ n0 δq2q

]
δq1q2 .

�
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Figure 4. Natural orbital occupation numbers # plotted against f/J
for the ground states of the Bose-Hubbard model with M = 5 and
the indicated total number of bosons N . Thus N = 10 corre-
sponds to commensurate filling with n0 = 2. In each case, the
upper branch corresponds to the zero “momentum” natural orbital,
while the two lower branches are doubly degenerate corresponding
to natural orbitals with “momenta” q = 1, 4 and 2, 3 respectively,
and must be counted twice to obtain the total number of bosons.

In both cases one gets for the one body density expressions
which consist of the sum of a multiple of the identity matrix
plus an additional pure density associated with the momen-
tum state of the additional (or missing) particle. This addi-
tional component is enhanced by the corresponding bosonic
factors (respectively n0 + 1 and n0), while the multiple of
identity is correspondingly depleted, in order to make up for
the required trace property.

The interest of these simple results consists in that they
reveal the nature of the coherence properties of the states

which can be probed by one body observables. From the
fact that the momentum states are the natural orbitals it fol-
lows, in fact, that they will be related in general to the as-
sociated, delocalized single particle states. For states such
as the commensurate filling states the coherence properties
are in fact rendered invisible by occupation degeneracy. On
the other hand, the stationary states, at very small hopping,
resulting from the addition (or removal) of a single particle
from these states, will sustain coherence properties of the
momentum single particle states enhanced by bosonic fac-
tors, superimposed to an incoherent background associated
with the “residual” component with degenerate occupancy.

It is a simple matter to evaluate reduced one-body den-
sities numerically for stationary states involving a small
enough number of sites and/or particles. Some sample re-
sults for the ground states of a system with number of sites
M = 5 and with N = 9, 10 and 11 respectively are given in
Fig. 4 for sequences of values of the relative strength of the
hopping parameter, f/J . In the extreme f/J = 0 the com-
mensurate filling case with N = 10 shows a fully degener-
ate occupancy, while the cases n = 9 and N = 11 clearly
show the bosonic enhancement in the occupation number of
the zero “momentum” natural orbital. Increasing the relative
hopping parameter leads in all cases to strong dominance of
zero momentum occupancy in the one-body density leading
to near saturation for values of f/J in the range correspond-
ing to the “closing” of the corresponding incompressibility
lobe in the ground state phase diagram (see Fig. 3).

4 Alternate picture of the zero tem-
perature diagram related to “shell
effects”

An amusing alternate way of displaying the above results
consists in plotting the addition energies in units of J ,
[E(N + 1) − E(N)]/J against the number of bosons per
site N/M for various values of the relative hopping para-
meter f/J . In the extreme case when f/J = 0 one gets
the staircase diagram shown as Fig. 5(a). This behavior is
replaced by a smooth linear ramp in the other extreme case
when f/J becomes very large. In intermediate cases the
steps become progressively ‘worn’ as the value of f/J is in-
creased and also for the larger values of N/M . The last two
cases are illustrated in Fig. 5(c) and (b) respectively. This
is of course reminiscent of the standard pattern which is as-
sociated with fermionic systems displaying shell effects[7].
Fig. 5(a) corresponds to a very strong shell effect which is
progressively obliterated as f/J and N/M increase.
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Figure 5. Plots of addition energies ∆E/∆N = E(N + 1)−E(N) in units of J against the number of bosons per site N/M for f/J = 0

(a), f/J small (b) and f/J large (c). The top graphs in (d) and (e) show the “shell effect” corresponding to (a) and (b) respectively, obtained
by subtracting the smoothened addition energies. The lower graphs in (d) and (e) show the qualitative behavior of the shell correction to the
total energy, obtained by integrating the shell effect over N/M .

The “shell effect” can be extracted by plotting the dif-
ference between the staggered addition energies and their
smoothened average displaying simple ramp behavior. The
“shell correction”, reflecting deviations of the total energy
from the value obtained from the averaged addition energies
is then obtained by integrating the shell effect with respect
to N/M . An integration constant is chosen so that the shell
correction has zero average. The behavior of these quanti-
ties is illustrated in Fig. 5(d) and (e). The values of N/M
for which the shell correction is most negative correspond to
“magic numbers”, which here correspond to commensurate
filling situations (integer N/M ), and hence to the incom-
pressible Mott insulator phase.

We are thus led to a picture in which the incompress-
ible lobes of the zero temperature phase diagram of Fisher
correspond to the magic numbers of a many-boson system
displaying shell effects to the extent that they occupy many
independent (or nearly independent) sites. This, in particu-
lar, provides the degeneracies (or near degeneracies) which
generate the magic numbers. Increasing the relative hopping
parameter reduces the independence of the sites by promot-
ing many-site correlations eventually obliterating the shell
structure. In contrast, shell effects in many fermion sys-
tems signal independent (or nearly independent) particles,
the magic numbers resulting from single particle level de-
generacies (or near degeneracies). Increasing many-particle
correlations tends to obliterate the fermionic shell effects.

5 Concluding remarks

The Bose-Hubbard model for finite number of sites and of
bosons is soluble, in the usual sense that exact solutions can
be obtained by diagonalizing finite matrices. Numerical re-
sults obtained by such means can be rendered quite transpar-
ent by using elementary analytical perturbative techniques
in the extreme domains in which one has either f � J or,
conversely, J � f , since the ’unperturbed’ problem admits
simple analytical solutions in each of these two cases.

The results one obtains analyzing in this way the zero
temperature phase diagram, discussed by Fisher et al. [5]
in the thermodynamic limit in which both the number of
sites M and the number of bosons N increase to infinity at
constant ’density’ N/M , provide for a “blown up” version
of the behaviors prevailing in each of the various parame-
ter domains. From these results one can in particular form
suggestive pictures of the closing of the incompressibility
lobes corresponding in the thermodynamic limit to the Mott-
insulator phase and also of the penetration down to the zero
hopping limit of a “superconducting” phase, in the case of
incommensurate occupations. A suggestive ingredient in the
latter case is the bosonic enhancement effect of added or re-
moved bosons from the commensurate occupation situation.

Finally, an interpretation in terms of “shell effects” sug-
gests itself in terms of which the commensurate filling
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cases for not too large values of f/J correspond to “closed
shells”. This shell structure is related to nearly indepen-
dent sites and is obliterated by increasing the relative hop-
ping parameter, so that the corresponding magic numbers
are dictated by the number of sites. This is in correspon-
dence with shell stricture in fermionic systems, related to
the near validity of an independent particle picture which is
obliterated by correlations induced by interparticle interac-
tions, the magic numbers being dictated by energy bunching
of single-fermion states.
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