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Effect of Potential Shape on the Density of the Impurity States in Nanotube
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We analyze the effect of the potential shape on the ground state energy of the off-axis neutral donor in
GaAs/Ga1−xAlxAs cylindrical nanotube in the presence of the uniform magnetic field applied along the sym-
metry axis. To take into account the mixing of the low lying subbands we express the wave function as a
product of combination of 1s and 2px,y wave functions with an unknown envelope function that depends only
on electron-ion separation. By using variational principle and the functional derivative procedure we derive a
one-dimensional differential equation for the envelope function, which we solve numerically by using of the
trigonometric sweep method. Results of calculation of the ground state binding energy dependencies on the
distance from the donor position to the axis and on the strength of the external magnetic field for square-well,
soft-edge-barrier and parabolic bottom potentials are presented. It is shown that the additional peaks in the
curves of the density of impurity states appear due to the presence of the repulsive core is nanotube.
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I. INTRODUCTION

In the last two decades, there has been an increasing inter-
est in the study of the peculiar physical properties of QWWs
(Quantum Well Wires). The study of bound impurity states
in such Q1D (One dimensional) structures is therefore con-
sidered to be a subject of fundamental interest and a signifi-
cant attention [1]. Extensive theoretical investigation on the
behavior of shallow impurities in QWW has been developed
using the Bastard type trial function. In nanotubes, which are
QWWs with a repulsive core around the wire axis, the con-
fining potential along cross section through the axis of the
nanotube is similar to one of a symmetric double quantum
well. As it has been demonstrated previously, the inclusion of
the subband mixing plays an important role in correctly deter-
mining off-center donor binding energies in double quantum
well [2]. In our previous work we show that the low lying
1s and 2px,y subbands of the free electron in nanotube, sim-
ilarly to the case of a double quantum well, become almost
degenerated as the width of the repulsive core grows and the
mixing of these subbands in the presence of the off-axis donor
no longer should be depreciated [3]. In this work we analyze
the ground state energy of the off-axis neutral donor and the
density of the impurity states in GaAs/Ga1−xAlxAs cylindrical
nanotube with different potential shapes in the presence of the
uniform magnetic field applied along the symmetry axis. The
trial function of the donor is taken as a product of combina-
tion of 1s and 2px,y subband wave functions with an unknown
envelope function that depends only on electron-ion separa-
tion. Using the fractal dimension method [4] we find the one-
dimensional differential equation for the envelope function,
which we solve numerically.

II. THEORY

Using the effective Bohr radius, a0∗ and the Rydberg, Ry*
as a units of length and energy, respectively, and neglecting

differences between material parameters in the barrier and in
the well, the dielectric constant ε and the electron effective
mass m∗, the dimensionless Hamiltonian for a neutral donor
impurity in a cylindrical nanotube in the presence of an ap-

plied uniform magnetic field ~B = B
∧
z in the effective mass ap-

proximation, can be written as:

H = H0− 2∣∣∣~r−~ξ
∣∣∣
;H0 =−∇2 +V (ρ)+

1
4

γ2ρ2− iγ
∂

∂ϕ
, (1)

where~r and~ξ are used to designate the electron and ion posi-
tions, respectively. V (ρ) is the confinement potential with ax-
ial symmetry and with a repulsive core around the axis of the
nanotube and γ = e~B/2m∗cRy∗ is the magnetic field strength
corresponding to the first Landau level expressed in Ry*.

To calculate the donor ground state energy, we choose a
trial function as a product of the linear combination of the
waves functions of the electron ground, s and the first ex-
cited, 2px,y states, with an unknown one-dimensional function

Φ
(∣∣∣∣~r−

⇀

ξ
∣∣∣∣
)

:

ψ(~r) =
[
α f1s +

√
1−α2 f2p

]
Φ

(∣∣∣~r−~ζ
∣∣∣
)

, (2)

where α is a variational parameter (−1 < α < 1) which gives
the grade of the mixing of the subbands [3]. One can see that
in the particular case as α = 1, there are not subband mix-
ing and the trial function (2) becomes similar to the simple
Bastard-type trial function. In general case, the mixing pro-
vided a decrease of the parameter α. Greater the mixing the
smaller is the parameter α. In our calculations the parameter
α decrease at to 0.8.

For our model the wave equation for the free electron
Ho f (~r) = E0 f (~r) is separable and the electron wave function
can be written as follows:

f (~r) = eikzeimϕg(ρ), (3)
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where m = 0,±1,±2, . . . is the angular momentum in z-
direction, k is the wave number corresponding to a free motion
in z-direction (−π < k < π) and the function g(ρ) is the solu-
tion of the one-dimensional boundary value problem:

g′′(ρ)+ 1
ρ g′(ρ)+U (ρ)g(ρ) = 0; g′(0) = 0; g(∞) = 0

U (ρ) = E0− γm− k2−V (ρ)− γ2ρ2

4 − m2

ρ2

(4)
The differential equation (4) is solved numerically using the

trigonometric sweep method [5]. In our calculations we use
the confinement potential modelling a nanotube given by the
following expression:

V (ρ) = Viθ(−ρ,−Ri,W )+Veθ(ρ,Re,W ), (5)

where:

θ(z,z0,W ) =





0 z < z0−W[
(z− z0)/W 2−1

]2 z−W ≤ z < z0
1 z≥ z0

(6)

is soft-edge version of the Heaviside function, Ri, Vi and Re,
Ve represent the radii and heights of the repulsive core and the
barrier, respectively; W is a parameter related to the width of
the transition region (see Fig. 1). In the particular case, as
Ri = 0, the potential (5) describes a cylindrical QWW.

FIG. 1: Confinement Potential in cylindrical Nanotube.

The solutions of the boundary value problem (4) corre-
sponding to the bottom of the subbands (k = 0) with radial
quantum numbers n = 0,1,2, ... and the angular momentum
m. We denote as gn,m(ρ) and therefore in our notations the
electron wave function, fn,m(~r) and the energy E0(n,m) de-
pend on two quantum numbers (n,m).

If we assume that the off-center donor is located on the axis
x, then it modifies the free electron wave functions in such
way that it becomes more asymmetric in the x direction. It is
reason why in the trial function (2) should be chosen the elec-
tron wave functions which gives contribution in the mixing as

f1s(~r) = g0,0(ρ) for the 1s state, and f2p(~r) = g0,1(ρ)cosϕ for
2px state. Starting from the variational principle and using the
method described in the papers [6] one can obtain the follow-
ing Euler-Lagrange equation for the correlation function:

− 1
J(r)

d
dr

[
J(r)

dΦ(r)
dr

]
+

[
Ẽ(r)− 2

r

]
Φ = E(D0)Φ (7a)

Where E(D0) represents the energy of the neutral donor,
J(r) is radial part of the Jacobian and Ẽ(r) is the averaged free
electron local energy, given by the followings expressions:

J(r) = r2 ∑
i,k=0,1

α2−i−k (
1−α2)(i+k)/2

Pik(r) (7b)

Ẽ(r) = r2 ∑
i,k=0,1

α2−i−k (
1−α2)(i+k)/2

E0(0, i)Pik(r)/J(r)

(7c)

Pik(r) =
2πR
0

πR
0

g2−i−k
0,0 (ρ̃)g i+k

0,1 (ρ̃)λ i+k sinθdθdϕ ; i,k = 0,1

λ = 1− r2 sin2 θsin2 ϕ/ρ̃2

ρ̃ =
(

r2 sin2 θ+ξ2
ρ +2rξρ sinθcosϕ

)1/2

(7d)
In these relations ξρ is the distance from the donor position

to axis. Once the functions g0,0(r) and g0,1(r) are found, the
functions Pi,k(r), (i,k = 0,1) and J(r) may then be calculated
in straightforward way through (7b) and (7d). Finally, to de-
fine the donor energy we solve the wave Eq. 6(a) by using the
trigonometric sweep method [5]. To calculate the density of
the impurity states we assume that the circular cross section of
the nanotube is not too small in order that we might treat the
impurity positions as a continuous random variable. In this
case the density of the impurity states g(E) in a cylindrical
nanotube is given by the following relation [4]:

g(Eb) = 2πξρ(Eb)
∣∣dEb(ξρ)/dξρ

∣∣−1 (8)

In our calculations we use the material parameters for
GaAs/Ga07Al0.3As heterostructures given in Refs. [2].

In Fig. 2 we display the results of calculation of the density
impurity state in the cylindrical QWW (the repulsive core ra-
dius is equal to zero) of the radius 3a0∗. In the inset we show
the dependence of the donor binding energy on the distance
from its position to the axis. Different curves in this figure
correspond to different magnetic field strength from γ = 0 to
γ = 3. In all cases the maximum of the binding energy cor-
responds to the donor location at the axis of the QWW (see
inset). It is seen that the value of the maximum binding en-
ergy in the inset rises with increasing of the magnetic field
strength. This increase provides a significant displacement of
the right-side threshold in the curves of the density impurity
states to the region of the larger energies when the magnetic
field increases. Also one can observe in the inset the all curves
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intersect at the same point as the distance from the donor lo-
cation to the axis approach to the value about one Bohr radius
and when the separation between the donor and the axis in-
creases further the order of the curves is inverted. It is due to
the fact that the electron, under condition of the strong con-
finement in the radial direction is localized mostly nearly the
axis independently of the donor position. Therefore the larger
the distance from the donor position to the axis the greater
is the separation between the electron and the donor and the
smaller is the binding energy. In the presence of the exter-
nal magnetic field applied along the growth axis the electron
becomes more confined and the binding energies of donors
located nearly to the axis increase whereas they decrease for
peripheral donors. It is the reason why the curves in inset of
Fig. 2 intersect and the order of the curves is inverted with the
displacement the donor position toward the peripheral region.
Also it is seen that for donor positions with the distance from
the axis equal one Bohr radius the binding energy doesn’t de-
pend on the external magnetic field

FIG. 2: Density of the D0 impurity states as a function of the binding
energy in a QWW with rectangular confinement potential for several
values of the magnetic field B applied along the symmetry axis. Inset
shows the corresponding donor binding energies dependencies on the
distance from the axis.

One can see also in Fig. 2 that the density of the impurity
states for zero-magnetic-field case has a strongly pronounced
peak at the right side threshold point due to the existence of
the Van Hove-type singularity at the maximum of the dash-
dotted curve in the inset. As the strength of the magnetic field
increases the singularity in the curves of the binding energy
dependence on the donor position disappears, providing the
peak dropping and its displacement to the region of the larger
energies.

In Fig. 3, We present the D0 binding energy dependence
on the donor displacement from the center of the nantube for
different values of the magnetic field B applied parallel to the
axis. One can observe that in absence of the magnetic field
the electron cannot penetrate in the central region, it mostly
located in the middle between two barriers. If the donor is

FIG. 3: Density of the D0 impurity states as a function of the bind-
ing energy in a Nanotube for different values of the magnetic field
B applied parallel to the axis, Inset shows the corresponding donor
binding energies dependencies on the distance from the axis.

FIG. 4: D0 ground state binding energies as a function of the donor
displacement ξρ from the axis of the cylindrical nanotube for differ-
ent potential shapes.

situated in the same position the electron-donor separations
becomes very small. When a magnetic field is applied along
of axial direction one can observe a successive displacement
of the curve peaks position with increase of the strength mag-
netic field. This displacement is caused because the magnetic
field provides additional confinements that tend to move the
electron to the central region of the nanotube. Such behavior
of the donor binding energies is also reflected in the curves of
density of impurity states in nantube. It is seen from Fig. 3 that
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the repulsive core causes the appearance of the singularities
near the right-side and left-side threshold of the curves of the
density of the impurity states and it middle part. These singu-
larities are due to the existence of one minimum and one max-
imum in the binding energies dependence where the derivate
dE (ςρ)/dςρ is equal to zero.

In Fig. 4, we present the D0 binding energy dependence on
the donor displacement from the center of the nantube using
different potential shapes, from the square well potential to
parabolic bottom potential. The effect of the smoothing of
the confinement potential is similar to the increasing of the
magnetic field, but it is not as pronounced as in the case of the
magnetic field.

III. CONCLUSION

We have presented a simple method of calculation of the
binding energy for the lowest state of the off-axis D0 donors

in a nanotube with different potential shapes in the presence
of the magnetic field applied parallel to the axis, taking into
account the effect of the mixing s y px subbands. We found
that under external magnetic field applied parallel to the axis
the binding energies of donors located close to the axis in-
creases and located far from the axis decreases, whereas the
binding energies of donors distant from the interior barrier of
nanotube about one effective Bohr radius are almost insensi-
tive to the external magnetic field.

Also we analyze the density of the D0 impurity states in
quantum well wires for different magnetic fields
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