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We study the electronic properties (density of states, conductivity and thermopower) of some nearly-free-
electron systems: the liquid alkali metals and two liquid alloys, Li-Na and Na-K. The study has been per-
formed within the self-consistent second order Renormalized Propagator Perturbation Expansion (RPE) for the
self-energy. The input ionic pseudopotentials and static correlation functions are derived from the neutral pseu-
doatom method and the modified hypernetted chain theory of liquids, respectively. Reasonable agreement with
experiment is found for Na, K, Rb and Na-K, whereas for Li and Cs and Li-Na the agreement is less satisfactory.

I Introduction

The introduction of the diffraction model [1] together with
the development of the pseudopotential concept, marked the
beginning of extensive calculations of structural and elec-
tronic properties of liquid metals [2,3]. Based on this con-
cept one can justify the use of simple second-order perturba-
tion theory for weak scattering systems like the alkalis. The
most used expression in this Nearly-Free Electron (NFE)
model is the well-known Ziman formula for the resistivity.
Two key ingredients appear in it, namely the static structure
factor S(q) and the screened pseudopotentialw(q). These
two quantities are not independent, since the pseudopoten-
tial determines the forces between the ions, which ultimately
determine the structure of the liquid. ThereforeS(q) should
be obtained fromw(q) and the result used in the evalua-
tion of the electronic properties, and from the new electronic
density one should again derive a new pseudopotential. This
is what we call aself-consistentcalculation of the electronic
properties of a liquid metal.

Most of the calculations up to date are, with the ex-
ception ofab-initio Molecular Dynamics simulations, not
self-consistent, i.e. forS(q) one takes either one from an
analysis of the experimental structure factor data, or one ob-
tained from a model for the interatomic interactions, like
hard spheres, with parameters fitted to experimental data.
This model is then used as input either in an approximate
scheme to solve the Ornstein-Zernike equations like the
Percus-Yevick or (Modified) HyperNetted Chain, or in a
liquid structure computer simulation. Then a pseudopo-
tential is chosen and the electronic properties, for exam-
ple the electronic density of states (EDOS), are calculated.
There have been some attempts to study the properties in a

self-consistent way in a more restricted sense, that is, us-
ing the same pseudopotential for the structure factor, ther-
modynamic properties and conductivity. However up to the
present day such a scheme has failed: it leads to disagree-
ment with either the electronic properties, or with the atomic
properties.

There are at least two important exceptions in the previ-
ous works, which do make the calculations within the spirit
of self-consistency. One is the work of Jank and Hafner
[5], where molecular dynamics are performed with effec-
tive pair potentials derived from a given pseudopotential,
and then some ionic configuration is selected to perform a
Linearized-Muffin-Tin-Orbitals electronic calculation.

The other calculations, which are self-consistent, are the
modernab-initio molecular dynamics (AIMD) simulations.
Using this method, we are only aware, in the case of alkali
metals, of EDOS and conductivity calculations for Na and
Rb at several temperatures [7,8].

In this work, we propose a completely different method,
which does not rely on simulations, to obtain within a
self-consistent scheme, the ionic structure and electronic
properties of the liquid metal. Moreover, the theory for
the calculations of the electronic properties which is the
second-order Renormalized Propagator Perturbation Expan-
sion (RPE) [3,4], satisfies the so-called Generalized Opti-
cal Theorem (GOT), which provides a second level of self-
consistency in the theory, namely between the EDOS on
the one hand and the conductivity on the other hand. This
method is much faster and much less demanding than AIMD
simulations, but, as we will show below, achieves the same
level of agreement with experiment for weak scattering sys-
tems, like the alkali metals, when pseudopotentials of simi-
lar quality are used.
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A similar RPE-type scheme to calculate the electronic
structure has been applied before but only in a non self-
consistent way (see for a discussion [2,3,4]): the integral
equation for the self-energy was approximated by neglect-
ing the self-energy in the right hand side of eq. 2.3 below.

The bare pseudopotentials used in this work were con-
structed from first principles using the Neutral Pseudo Atom
(NPA) method: one solves a system of one alkali atom im-
mersed in an electron jellium in the Local Density Approx-
imation (LDA). Linear Response Theory (LRT) was then
applied to obtain the screened pseudopotentialw(q) on the
one hand and the effective pair potential on the other hand;
for details see [13,14]. The structure factorS(q) was ob-
tained from the pair potential using the Modified HyperNet-
ted Chain (MHNC) theory of liquids. This combination has
already been applied successfully to the study of the static
and dynamic structure factors of the liquid alkalis as well
as the Na-K and Li-Na liquid alloys [13, 14], the systems
studied in this paper.

II Theory

We give here the essentials of the theory, further details can
be found in [4]. Atomic units with2m = 1, ~ = 1, e2 = 1
are used throughout.

We consider a system ofN ions with their correspond-
ing valence electrons in a volumeΩ. Each valence elec-
tron moves in a self-consistent potential due to the ion cores
and the other valence electrons. Therefore, we can write the
single-particle Hamiltonian as:H = H0 − ν, whereH0 is
the kinetic energy operator andν(r) = Σiw(|r−Ri|) is ef-
fective one-electron potential which is taken to be the sum of
spherically symmetric screened local pseudopotentials cen-
tered on each ion. The central quantity in this study is the
one-electron Green function,G(k, E). The EDOS per atom,
imit energy and unit volume is given by

n(E) = − 1
π

∫
d

(2π)3
ImG(k, E) (2.1)

Moreover in terms of the so-called self-energy,Σ(k, E), the
Green function can also be expressed as

G(k, E) = (E − k2 − Σ(k, E))−1 (2.2)

Within the second-order RPE [4], the self-energy is approx-
imated by

Σ(k, E) = ρ

∫
dk′

(2π)3
w2(|k− k′|)S(|k− k′|)G(k′, E),

(2.3)
where a constant termρw(q = 0) has been dropped using
it as the energy origin, andρ denotes the atomic number
density. This expression for the self-energy is easily ex-
tended to liquid alloys by the substitution ofw2(q)S(q) by
Σi,j(xixj)1/2wit(q)wj(q)Sij(q), wherexi and stands for

the concentration andwi(q) for the screened pseudopoten-
tial of the ith-component, whereasSij(q) are the Ashcroft-
Langreth partial static structure factors.

Substituting the relation (2.2) into (2.3), an integral
equation is obtained for the self-energy, which is solved for
each energy, obtainingΣ(k, E), G(k, E), andn(E) for that
energy from equation (2.1).

The static electrical conductivity is given by the Kubo-
Greenwood equation

σ =
∫

dE(−∂fFD(E)/∂E)σ(E) (2.4)

wherefFD(E) is the Fermi-Dirac distribution function and
σ(E) is the contribution of the electrons of energyE to the
conductivity, which is given by

σ(E) =
8
3π

∫
dk

(2π)3

(
K(k, E)− 1

2
k∆kReG(k, E)

)
,

(2.5)
whereK(k, E) obeys the following integral equation [6]

K(k, E)
|G(k, E)|2 = k2 +

∫
dk′

(2π)3
Λ(k,k′, E)

kk̇′

k′2
K(k′, E)

(2.6)
The vertex function,Λ(k,k′, E), has still to be specified. A
self-consistent calculation of the EDOS and the conductivity
requires the self-energy and the vertex function to be related
by the generalized optical theorem (GOT)

ImΣ(k, E) =
∫

dk′

(2π)3
Λ(k,k′, E)ImG(k′, E) (2.7)

We have chosen

Λ(k,k′, E) = ρw2(|k− k′|)S(|k− k′|) (2.8)

which clearly satisfies the GOT when the second-order RPE
expansion is made for the self-energy 2.3.

Finally, onceσ(E) has been obtained, the thermopower,
S, can be calculated as a function of energy from the Mott
relation

S = −π2k2
BT

3|e|
d log σ(E)

d E
(2.9)

III Numerical details

For the calculation of the self-energy we used a linear mesh
of about 400 points with a cut-off of the pseudopotential at
4kF . Results of the various electronic properties are well
converged because a twice as high cut-off does give results
which differ only by about .1%. That such a cut-off is suffi-
cient also follows from the observation that the second con-
tribution to the conductivity is nearly independent of the en-
ergy.
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The rather singular integrand appearing in the expres-
sions for the self-energy and the conductivity was calcu-
lated using a rational expansion up to second order inq in
each interval of theq-mesh, and were evaluated analytically.
Checks using various integration schemes showed that this
scheme gives a very reliable approximation of theseq inte-
grals, with an estimated error of .1% or less.

The iteration was started from the bottom of the band.
Convergence of the self-energy was obtained within 10 iter-
ations - irrespective of its initialization. No mixing scheme
was used. The convergence of the integral equation for the
conductivity was rather slow near the bottom of the band,
requiring some 20 to 50 iterations. For the DOS as a func-
tion of the energy from the bottom of the band to about2EF

we used about 50 to 100 energy points. The solution of the
integral equation for the conductivity showed oscillations as
a function of energy when theq-mesh is taken too coarse.

IV Results and discussion

The preceding formalism has been applied to liquid alkali
metals at thermodynamic conditions near the melting point
as well as to liquid Li-Na and Na-K alloys at the tempera-
turesT = 725 K andT = 373 K respectively. Calculations
were also performed for the thermodynamic states consid-
ered by Silvestrelliet al. [7] for liquid Na and Shimojoet
al. for liquid Rb [8].

The results obtained for the EDOS of the liquid alka-
lis, and liquid Li-Na and Na-K alloys are shown in Fig. 1.
First, we note that the present results are, in general, very
similar to those derived from the free-electron model and
only for Rb and Cs we see some structure appearing in the
EDOS. The bottom of the band is only slightly shifted be-
low the free-electron band; this shift increases on alloying
from about 0.003 Ry. for the pure elements to 0.02 Ry for
the alloys. We checked the validity of these results of the
RPE by comparing it with results of the Quasi-Crystalline
approximation (QCA) [3] and found only small changes in
the total EDOS with respect to the RPE results.

The valence bands of the alkalis have been investigated
by Indlekofer and Oelhafen [9] using various UPS excitation
energies. There are two important characteristics observed
in these valence band spectra: (i) the widths of the valence
bands, i.e. the energy difference between the Fermi level
and the bottom of the valence band, are narrower than the
widths expected from free-electron behaviour, by some 15
to 25 %, and (ii) the spectra show a triangular shape, except
for Li where it is parabolic. The same narrowing is observed
in the crystalline state of alkalis [10], and has been attributed
to electron correlation effects not taken into account in the
Local Density Approximation [11].

The triangular shape has been shown to be consistent
with a free-electron EDOS, and is explained by the differ-
ence in cross sections of the valence electrons with different
angular momentum for excitations in the UPS regime [5]. In
the RPE these different angular moment components are not
available.

Figure 1. The EDOS as a function of energy for the liquid alkalis
near the melting point, and for the liquid alloys Li-Na at T=725 K
and Na-K at T=373 K.

Although the present scheme is not able to account for
the bandwidth reduction of the EDOS, it must be remarked
that this is also the case with the AIMD simulations reported
for liquid Na [7] and Rb [8]. In both cases, the valence bands
show an almost parabolic shape and a width similar to the
free-electron model.

The electrical conductivity is calculated by solving the
integral equation 2.6 forK(k, F ) and using the vertex de-
fined in 2.8. The electrical conductivity as a function of en-
ergy behaves in a similar way for all the systems studied. It
is small near the bottom of the band, and then it increases
to a broad maximiun around the Fermi level, and then it de-
creases. The Fermi level is in all cases located before the
maximum inσ(F ), so according to relation 2.9 leading al-
ways to a negative thermopower (see table 1). The sign of
the thermopower agrees with the experimental values except
for Li and Cs.

In table 1 we present the resistivity we calculated in the
present RPE scheme together with those predicted by Zi-
man’s formula using the same structure factor and pseu-
dopotential. The values of the latter approach are in most
cases somewhat smaller than the RPE. The comparison with
experimental data reveals discrepancies for Li and Cs, how-
ever, the discrepancies are smaller in the case of alloys.
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Table 1: Calculated resistivity (µΩ cm) and thermopower(µ V/K) for the liquid alkali metals near melting, the liquid alloys
Li-Na at T = 725 K and Na-K at T=373 K.

ρ(Kubo) ρ(Ziman) ρ(exp) S(Kubo) S(exp)
Li 7.3 7.0 24 -3.9 +21.7
Na 16.3 15.8 9.6 -8.0 - 7.9
K 19.6 18.5 13.0 -10.6 -14.0
Rb 22.0 20.8 22.0 -11.2 - 6.3
Cs 14.9 13.8 36.0 -11.7 + 6.4
Na 36.2 36.4 24.6 -16.0 -13.2

Li0,4Na0.6 27.8 27.5 30.2 -13.9 +2.2
Li0.5Na0.5 25.9 25.3 31.5 -13.4 +5.1
Li0.6Na0.4 23.2 22.8 32.2 -12.6 +8.5
Li0.8Na0.2 18.2 17.8 33.1 -11.1 +16.2

Li 12.3 12.0 33.6 -9.0 +25.2
K 21.6 20.3 14.9 -11.5 -

Na0.3K0.7 48.4 48.2 39.5 -8.5 -
Na0.5K0.5 48.4 49.0 43.0 -8.6 -
Na0.8K0.2 32.6 32.8 26.0 -8.3 -

Na 16.3 15.8 9.6 -8.0 -

In the case of Na at different temperatures we find that,
although the structure factor is well reproduced, the values
obtained for the conductivity are always smaller than the ex-
perimental ones, the discrepancy with experiment becoming
smaller as the temperature increases. The same behaviour
for the resistivity is obtained by Silvestrelliet al. [7] in their
AIMD studies for Na; moreover, the discrepancy with exper-
iment is in their AIMD calculation larger for lower temper-
atures than in the RPE. They used the Topp-Hopfield pseu-
dopotential for Na, which reproduced correctly the struc-
ture factor in all thermodynamic states. Moreover they per-
formed computations with norm-conserving non-local pseu-
dopotentials, even including core corrections, but no im-
provement was obtained for the conductivity values, com-
pared with experiment.

For Rb, the AIMD of Shimojoet al. [8], using a norm-
conserving non-local Troullier-Martins pseudopotential, ob-
tained conductivities which are much smaller than the exper-
imental ones, whereas our calculations agree very well with
experiment. It is also interesting to note that the structure
factor was correctly reproduced both in the AIMD and in
our calculations.

We also performed calculations for the atomic and elec-
tronic properties using the Fiolhais-Perdew pseudopotential
[15], but did not obtain improved agreement with experi-
ment.

V Conclusions

The above comparisons show that when suitable pseudopo-
tentials are used, the combination of LRT, MHNC and RPE
produces self-consistent results for the atomic and electronic
properties of liquid alkali metals, which agree with modern
state of the art AIMD methods, at least for alkalis for which

results using both these methods are available. The agree-
ment of our atomic structure factors with experiment is ex-
cellent. The agreement between theoretical and experimen-
tal electronic properties is less satisfactory. For Li and Cs,
we find large discrepancies with experimental data for the
resistivity and for thermopower of Li and Cs for we do not
even find the right sign. No thermopower data are available
from these AIMD simulations.

In our calculations we have found that for the pure alkali
metals, the deviation of the EDOS from the free-electron
parabola is rather small, and it increases somewhat on alloy-
ing. The resistivity and thermopower agree reasonably well
with experiment for Na, K, Rb and Na-K but is less satisfac-
tory for Li and Cs, and as a consequence for the liquid Li-Na
alloys in the Li-rich composition regime. It is known that the
pseudopotential of Li and Cs has rather large non-local com-
ponents, for Li becausep states are missing in the core, and
for Cs because d states are present near the Fermi level. Such
nonlocal components of the pseudopotential do not seem to
contribute much to the atomic structure, but could be of im-
portance for the electronic properties. However, the use of a
non-local pseudopotential by Shimojo [8] does not improve
the AIMD result for the conductivity for Rb when compared
with experiment. Note that for Rb we find good agreement
with experiment. Such non-local components could alter the
position of the maximum inσ as a function of energy. In-
troducing relative stronger electron-ion scattering below the
Fermi level, which would give a minimum inσ(E), thus
also changing the sign of the thermopower.

The larger bandwidth calculated for the EDOS com-
pared with experiment has been attributed to electron corre-
lations not taken into account in the LDA approximation. In
our scheme we take these electron-electron interactions into
account implicitly in the screened pseudopotential. To take
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these electron-electron interactions into account in a more
explicit way would require the introduction of a self-energy
in the r.h.s. of equation 2.3, and using the bare electron-ion
potential: in terms of diagrams it means that instead of sum-
ming part of the electron-electron interactions in a screened
electron-ion potential, one collects them in a medium propa-
gator, which describes the motion of electrons including the
electron-electron interactions between two scattering events
on bare electron-ion potentials. This electron self-energy
can be approximated for these NFE systems in the Random
Phase Approximation (see [l6] . The consequence of such
a scheme for the conductivity is not an increase of the ef-
fective electron-ion scattering, but could result in a slight
change of the EDOS at the Fermi level. Most of the changes
in the EDOS should occur below the Fermi level. The EDOS
at the Fermi level of Na is nearly given by the NFE model.

The discrepancy of the electronic transport properties
with experimental results we attribute to the construction of
the pseudopotential, and not to basic problems in our theory
which should be valid for these weak scattering systems, as
also follows from the comparison of our results for the resis-
tivity and those obtained from the Ziman equation: we find
only small corrections to the Ziman results.

The success of both the present approach and the AIMD
in reproducing the experimental electronic properties ap-
pears to depend very much on the subtle details of the pseu-
dopotential. The atomic structure and electronic structure
and transport properties are determined by different parts of
the pseudopotential. Electrons penetrate more into the core
region and are also more sensitive to angular non-local com-
ponents. So changes in these contributions not necessarily
will affect the atomic structure.

The conclusion is that there exists accurate theoretical
tools that can in principle give reliable self-consistent re-
sults for both the atomic and electronic properties of liquid
(alkali) metals provided adequate pseudopotentials are used.
However, considering the results of the present calculations,
we conclude that most of the pseudopotentials proposed up
to now for alkali metals, although good enough to describe
the static and dynamic atomic structure, are not accurate
enough to give good agreement also with the experimental
electronic properties. Even for Na, which has always been
considered as the simplest metal to describe.

In contrast to the pseudopotentials used in AIMD sim-
ulations our pseudopotentials are adjusted to the electron
density in the liquid metal. We attribute the failure of our
pseudopotentials to describe the EDOS to the linear screen-
ing approximation. Further checks are currently being un-
dertaken. Preliminary results for a pseudopotential based on
the electronic density show better agreement with experi-
ment for the electronic properties, while preserving the good
agreement of the atomic properties with experiment. We at-
tribute the discrepancy between experiment and theory in
case of the electronic transport properties to so-called non-
local contributions to the pseudopotential, which in case of
Li and Cs can be rather large.

We have shown that fully self-consistentab-initio calcu-
lations, with as only input the chosen pseudopotential, using

integral equation approximations for the static and dynamic
atomic structure as well as for the electronic properties give
results of the same reliability as AIMD simulations, under
the condition that the electron-ion pseudopotential has been
constructed well. The advantage of the present method is
that it is much faster than the AIMD simulations and only re-
quires minimal computational resources, and so the study of
possible improvements in the construction of the pseudopo-
tential taking into account nonlocal components and imple-
mentation of a scheme bare electron-ion potentials together
with the electron-electron self-energy can in principle easily
be implemented and studied.
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