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This paper discusses the interaction between energetic ions and lower hybrid waves in toka-
mak plasmas, presenting a numerical analysis which employs a quasilinear formalism ap-
propriated for the situation in which ion stochastic di�usion occurs. The results show that
signi�cant wave-particle interaction may take place when a population of energetic ions is
present in the plasma, in partial agreement with evidence from experimental results available
in the literature.

I. Introduction

The analysis of some experiments realized in the

JET tokamak (Joint European Torus) has shown evi-

dence of signi�cant absorption of lower hybrid wave en-

ergy by a population of energetic ions generated by the

injection of ion cyclotron radiation [1, 2]. The descrip-

tion of these experimental results, obtained by direct

measurements of the fast ion energy and by measure-

ments of 
 ray and neutron emission rates, has been ac-

companied by theoretical analysis in which the interac-

tion was described by a one-dimensional Fokker-Planck

equation in velocity space, which includes quasilinear

coe�cients for ion cyclotron waves (IC) and for lower

hybrid waves (LH), and a collision term accounting for

the collisions with particles of the Maxwellian body of

the distribution [1, 2, 3]. The di�usion coe�cient for

LH waves employed in the Fokker-Planck equation was

intended to describe the stochastic di�usion in velocity

space which may occur in the presence of su�ciently

intense waves [4]. This mechanism of stochastic ion

di�usion has been proposed and explained nearly two

decades ago, when it was shown that the movement of

an ion in a uniform magnetic �eld becomes stochastic

in the presence of a perpendicularly propagating coher-

ent electrostatic wave, if the wave amplitude exceeds

a threshold [5, 4]. Due to the stochasticity, the ion

di�uses in velocity space and it is possible to derive a

di�usion equation to describe the time evolution of the

ion distribution function, which also applies to the case

of di�usion due to lower hybrid waves in the slow mode

(non-vanishing kk << k?), in a weakly inhomogeneous

magnetic �eld [4].

The motivation for the mentioned investigation

based on the JET experiments may be summarized as

follows. Lower hybrid waves are proposed as an alter-

native for the generation of non-inductive current in a

tokamak [6, 7, 8]. With this purpose a spectrum of LH

waves is launched in the tokamak, with frequency and

parallel wave-number chosen in order that the waves

are absorbed by electrons in the tail of the electron dis-

tribution function, by the mechanism of parallel Lan-

dau damping which occurs when the wave-particle res-

onance condition is satis�ed. However, it had been ar-

gued that in fusion reactors the presence of energetic

ions, particularly � particles originated from fusion re-

actions, would contribute to decrease the e�ciency of

the lower hybrid current drive, since part of the energy

of the LH waves would be absorbed by the � parti-

cles by the mechanism of the so-called perpendicular
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Landau damping [5]. The purpose of the experiments

was therefore to study, in the absence of � particles, the

possibility of interaction between the LH waves and fast

ions generated by IC waves, utilized to heat the ions in

the plasma [1, 2]. The results obtained indicate that the

absorption of LH waves by fast ions indeed occurs, and

therefore con�rm the convenience of further investiga-

tions on this important issue concerning the dynamics

of � particles and energetic ions in the environment of

a reactor and the e�ciency of the LH waves for radio

frequency current drive. Several examples of studies on

the subject may be found in the recent literature, ded-

icated to the interaction of LH waves with � particles

[9, 3, 10, 11, 12, 13] and other kinds of energetic ions

[14, 15], including the case of interaction between LH

waves and a population of energetic ions generated by

neutral beam injection [16, 17, 18, 19].

In a previous publication we have addressed the sub-

ject, by considering the threshold condition for stochas-

tic ion di�usion due to LH waves, originated from the

analysis by Karney [4]. We have introduced models

for the tokamak and the wave packet inside the toka-

mak, which allowed the evaluation of the wave ampli-

tude at a given position, and its comparison with the

threshold condition [20]. The results obtained show

that the threshold condition may be not easily satis-

�ed in present day large tokamaks, but can be attained

in small tokamaks with relatively modest levels of wave

power.

In the present paper we continue the study of

stochastic di�usion of energetic ions, by means of a

two-dimensional quasilinear formulation which follows

the time evolution of the electron and ion distribution

functions under the action of LH and IC waves, and

collisions, in a tokamak environment approximated as

a magnetized slab of plasma, as in the previous analysis

[20].

The plan of the paper is the following. In Sec. II

we present the models employed to describe the toka-

mak and the spectrum of lower hybrid waves propagat-

ing in the plasma. Sec. III is dedicated to present a

short account of the quasilinear formalism utilized for

the time evolution of both electron and ion distribution

functions. In Sec. IV we present some numerical re-

sults obtained from the application of the quasilinear

formulation described in Sec. III. Finally, in Sec. V we

summarize the main results of the paper, and comment

on possible future developments of this investigation.

II. Models of the tokamak and the wave packet

Let us assume a gaussian packet of lower hybrid

waves propagating in a tokamak, with spectral distribu-

tion centered at Nk = Nk, where Nk is the component

ofN = ck=! parallel to the ambientmagnetic �eld (k is

the wave vector, and ! is the angular wave frequency).

Let us assume that the half-width of the spectrum is

given by �Nk,

S(Nk) = S0
e�(Nk�Nk)

2

=(�Nk)
2

p
�(�Nk)

; (1)

where
R
dNkS(Nk) = S0, the local wave intensity. The

local amplitude of the electric �eld is related to the en-

ergy 
ux, and may be given by [21]

E0(Nk) =

�
16�

(4��0)c

jBj
j@D=@NjS(Nk)

�1=2
: (2)

In order to atribute to these quantities a numeri-

cal value at a given position, it is necessary to describe

with more details the wave propagation and the en-

ergy deposition of the wave. However, details about

these processes are di�cult to estimate, since lower

hybrid waves su�ers considerable refraction inside the

plasma. Therefore, we will assume a simplifyingmodel,

which will be useful to provide an estimate about the

magnitude of the quasilinear e�ect on the plasma elec-

trons compared to the e�ect on the ion distribution,

and therefore provide an estimate about the feasibility

of the stochastic di�usion, as a function of wave and

plasma parameters.

For these purposes a simpli�ed tokamak model de-

scribed by a slab of plasma shall be satisfactory, with

the following pro�les

n�(x) = n�(0)

�
1� x2

a2

�

T�(x) = T�(0)

�
1� x2

a2

�2
(3)

B0(x) = B0(0)
�
1 +

x

R

��1
;
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where a is the minor radius, R is the major radius, and

x is the radial coordinate in the equatorial plane, with

the origin in the center of the plasma column. n�(0),

T�(0), and B0(0) are respectively the density and elec-

tron temperature of species � and the ambient toroidal

magnetic �eld, at the center of the plasma.

The half-width along the z-axis occupied by the

wave packet propagating with spectral half-width

�Nk may be approximately estimated as �z =

2c=(!(�Nk)). If we assume a poloidal width �� for the

wave packet, the area a�ected by the wave in a magnetic

surface of radius r will be given by S! = 2(�z)(��)r,

while the area of the magnetic surface itself will be

S = 4�2rR, and therefore the fraction of a given mag-

netic surface which is a�ected by the wave may be es-

timated as


 � S!
S

=
�z��

2�2R
: (4)

This quantity can also be regarded as an estimation of

the fraction of time in which a particle moving on a

magnetic surface at radius r remains under the in
u-

ence of the wave.

After these geometric considerations, it is possi-

ble to evaluate the local wave intensity as the ratio

between the wave power, W0, and the surface occu-

pied by the wave front, estimated as S!, resulting that

S0 =W0=S!. This rather rough estimate of wave inten-

sity tends to very large intensities near the center of the

tokamak, and indeed diverges for r! 0, since S! ! 0.

In order to avoid this divergence, we arbitrarily set a

minimum value for S! and a corresponding maximum

value for S0, chosen as the values of S! and S0 at r = 2

cm. Even with this cut-o� value which avoid the di-

vergence of the wave intensity at r ! 0, it is possible

that this simpli�ed model is super-estimating the local

magnitude of the wave electric �eld, for the central re-

gions. If that is the case, it will at least be useful to

provide limits to the possibility of stochastic di�usion,

as a function of wave energy.

For application of this scheme, the relevant parame-

ters for the lower hybrid waves will be !, Nk, �Nk, and

W0. Another necessary parameter is ��, which will be

assumed �xed for all the ensuing cases, as �� = �=4 [4].

For given values of ! and Nk, the dispersion relation for

LH waves must be solved in order to obtain N?.

III. Quasilinear formulation for electron and ion

distributions

From basic quasilinear theory, it is known that the

time evolution of the distribution function for parti-

cles of population �, at position x, under the action

of lower hybrid and ion cyclotron waves and a collision

term, may be described by an equation of the following

form

@��f� = (@��f�)lh + (@��f�)ic + (@��f�)col (5)

where f� = f�(ujj; u?; ��; x). �� is the time nor-

malized to the collision time, de�ned as the in-

verse of the local collision frequency, ��(x) =

�(x)!4p�(x)=8�n�(x)v
3
�(x). �(x) is the Coulomb log-

arithm at position x, !p�(x) is the angular plasma

frequency at the same position, n�(x) is the local

density of particles of population �, and v�(x) =

(T�(x)=m�)
1=2 is the thermal velocity for these par-

ticles. The u? and uk quantities that appear as ar-

guments of f� are the components of the velocity in

the directions respectively perpendicular and parallel

to the ambient magnetic �eld, normalized to v�. The

symbol � is not appended to the components of u in

order to avoid excessive burden to the notation. The

�rst term of the right-hand side of Eq. (5) indicates

the action of the lower hybrid waves, the second term

represents the e�ect of ion cyclotron waves, and the last

term expresses the e�ect of the collisions. In what fol-

lows, explicit expressions for these terms will be given,

adequated for each particle species.

A. Quasilinear formalism for the electron distri-

bution function

For the case of the electron distribution function,

the �rst term in the right hand side of equation (5) may

be obtained from conventional quasilinear formalism,

(@�efe)lh = @ujj
�
dlh@ujjfe

�
; (6)

where u is de�ned as v=ve, and where dlh is the lower

hybrid di�usion coe�cient, which in the case of a spec-

trum of LH waves as we have introduced may take the

following form
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c

dlh(uk) =
16�2

me!2pe!�jukj



 
jBj
jAj

jD11D22 � jD12j2j
2

j@D=@Nj S(Nk)

!
Nk=�

1=2
e =uk

: (7)

In the above expression ! is the frequency of lower hybrid waves, �e � mec
2=Te, and S(Njj) is the spectrum of

energy 
ux for the lower hybrid waves. This form of the di�usion coe�cient is based in a well known formulation

found in the literature [21], but here we have written explicitly the factor 
, de�ned by Eq. (4), accordingly with

the procedure to be adopted also for the di�usion coe�cient acting on the ion distribution. The Dij are de�ned

by Dij = NiNj � N2�ij + �ij, where the Ni are the components of N, and the �ij are the components of the cold

plasma dielectric tensor. The quantities A and B are given by the following

A = jD13D22 �D12D23j2 + jD23D11 �D�
12D13j2 + jD11D22 � jD12j2j

2
;

B = D11D22 � jD12j2 +D11D33 � jD13j2 +D22D33 � jD23j2 :

while D is the dispersion relation for the LH waves, obtained from the determinant of the Dij ,

D = �11N
4
? + N2

?[(�11 + �33)(N
2
k � �11) � �212] + �33[(�11 � N2

k )
2 + �212] = 0: (8)

The second term in Eq. (5) vanishes for the case of � = e, since there is no e�ect from the ion cyclotron waves

on the time evolution of the electron distribution function.

For the third term, which is the collision term, we use a simpli�ed form describing the interaction of electrons

belonging to the electronic tail with electrons and ions from the body of their respective distribution functions,

since the velocity of the tail electrons is much larger than both ion and electron thermal velocities [21]. This term

is given by

(@�efe)col =
Z2 + 1

u3sin�
@� (sin�@�fe) +

2

u2
@u

�
1

u
@ufe + fe

�
; (9)

where � is the angle between the particle momentum and the ambient magnetic �eld and Z is the e�ective ion

charge.

d
B. Quasilinear formalism for the ion distribution

function

For the quasilinear evolution of the ion distribution

function, an additional assumption will be made. We

are using a gaussian spectrum of LH waves, but if it

is narrow we may assume that only the central ray is

signi�cant for the determination of the di�usion coef-

�cient which will be used in Eq. (5). That is, we will

consider the case of a single monochromatic LH wave

acting on the ions. We intend to investigate the role of

this simplifying assumption in the near future, but it

is useful in the present case because it may provide a

limiting case for the study of the quasilinear e�ects of

the LH ions on energetic ions.

Therefore, we follow the formalism developed by

Karney [4]. According to this formalism, the di�usion

in velocity space produced by a lower hybrid wave with

angular frequency ! and components of the wave num-

ber N? and Nk may be described by the following equa-

tion, in normalized form,

(@�ifi)lh =
1

u?
@u? (u?Dlh@u?fi) ; (10)

where the ion thermal velocity is used for velocity nor-

malization (u � v=vi), and where
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c

Dlh(u?) =

8>>>>>>>>><
>>>>>>>>>:

�
4

E2

0

c2B2

0

�2i
N2

?u
2

?


i

�i
jH(1)0

� (�)j2g2(A) 
; for u? � uph;

Dlh(uph); for uph � utr � u? < uph;

Dlh(uph) [u? � (uph � 2utr)]
2; for uph � 2utr � u? < uph � utr;

0; for u? < uph � 2utr:

(11)

d

Moreover,

uph = !=(k?vi); utr = (qiE0=mik?)
1=2

=vi;

A =
��

r
jH(1)0

� (�)j; (12)

with the introduction of the following de�nitions

� = !=
i; r = k?v?=
i;

and

� =
E0

B0

k?

i

=
E0

B0

N?�

c
;

where N? is the perpendicular component of N, 
i

is the ion cyclotron frequency, E0 is the amplitude of

the wave electric �eld, and B0 is the ambient magnetic

�eld. We have also de�ned �i = mic
2=Ti. The quanti-

ties H(1)
� and H(1)0

� are respectively the Hankel function

of �rst kind and its derivative, given by

jH(1)
� (r)j ' (2=�)1=2(r2 � �2)

�1=4
;

jH(1)0
� (r)j ' (2=�)

1=2
(r2 � �2)

1=4
=r;

for r � � + (�=2)
1=3

[4]; for r < � + (�=2)
1=3

, it is used

jH(1)
� (r)j ' jH(1)

� (� + (�=2)1=3)j;

jH(1)0
� (r)j ' jH(1)0

� (� + (�=2)1=3)j:

In Eq. (11) the threshold condition is expressed by

the quantity g(A). This quantity is zero for A smaller

than As and grows fast to g(A) = 1 for A larger than

As [4],

g(A) = max
�
1� A2

s=A2; 0
�
: (13)

The stochasticity condition de�nes the situation in

which a stochastic layer occupies a substantial fraction

of the phase space, and therefore the di�usion becomes

e�ective. This condition does not allow a precise def-

inition of As. Karney sets the requirement that for

A = As the phase change su�ered by a particle in

the wave-particle resonance would be equal to �=2, and

therefore assumes that As = 0:25 [4]. The same condi-

tion is assumed in the present work.

Another quantity appearing in Eq. (11) is the frac-

tion of time in which the particles remain under the

e�ect of the lower hybrid waves, denoted by 
, which

is a quantity dependent on the existence of models for

the tokamak and the wave packet. According to the

models which we have introduced, this fraction of time

is given by Eq. (4).

For the second term appearing in Eq. (5), we use

a simpli�ed form, which guarantees the creation of a

population of energetic ions with large perpendicular

energy. The existence of this population is essential for

our present purpose of analysis of their interaction with

LH waves, but we will not be concerned here with the

details of the interaction between the ions and the IC

waves. The model di�usion term to be utilized for IC

waves is the following [2, 22]

(@�ifi)ic =
1

u?
@u? (u?Dic@u?fi) ; (14)

where we assume

Dic = Dic0
e�(u�uic)

2=(�u)2

�u
p
�

: (15)

It is easy to see that uic indicates the velocity of

maximumvalue of the di�usion coe�cient and �u is the

half-width of the spectrum, with Dic0 �
R
duDic(u).

For the collision term, we consider that the energetic

ions constitute a tenuous population and mostly collide
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with the ions of the Maxwellian body of the distribu-

tion, as well as with Maxwellian electrons. Therefore,

it is possible to neglect the nonlinear e�ect due to col-

lisions within the energetic tail. We start from expres-

sions available in the literature for the Fokker-Planck

collision term for energetic ions [23], and after straight-

forward but tedious algebraic manipulations arrive to

the following

c

(@�ifi)coll =
1

Z2

(
mi

me

2

u3
	(ue=

p
2) @2ufi +

mi

me

2

u2

"
	(ue=

p
2) +

�
me

mi

�3=2
up
2
�0(ue=

p
2) � 1

u2
	(ue=

p
2)

#
@ufi

+

�
�(ue=

p
2) � mi

me

1

u2
	(ue=

p
2)

�
1

u3
@�
�
(1� �2)@�fi

�
+

�
me

mi

�1=2p
2�0(ue=

p
2)fi

)

+

�
2

u3
	(u=

p
2) @2ufi +

2

u2

�
	(u=

p
2) +

up
2
�0(u=

p
2) � 1

u2
	(u=

p
2)

�
@ufi (16)

+

�
�(u=

p
2) � 1

u2
	(u=

p
2)

�
1

u3
@�
�
(1� �2)@�fi

�
+
p
2�0(u=

p
2)fi

�
;

where the terms divided by the factor Z2 refer to ion-electron collisions, and the remaining terms to ion-ion collisions,

and where ue � (me=mi)1=2u. Moreover, we have

	(x) = �(x)� x�0(x); �(x) =
2p
�

Z x

0

e�t
2

dt; �0(x) =
2p
�
e�x

2

:

d

IV. Numerical results of the quasilinear analysis

The formalism described in Sec. III can be now

applied for evaluation of the time evolution of the dis-

tribution function of ions and electrons.

A. Implementation of the quasilinear formalism

In order to solve numerically equation (5) for ion

and electron distribution functions, we write if entirely

as function of the variables u and � = cos�, with

the (u; �) space described by a discrete grid of 151 �
31 points. The u limits of the grid are u = 0 and

u = ulim = 10, and the limits in � are � = �1. It

is assumed that the distribution remains Maxwellian

at u = ulim and beyond, and satisfy the condition

@f=@� = 0 at � = �1 and � = 1. The set of �nite di�er-

ence equations obtained from the quasilinear equation

is then solved numerically, using the alternating direc-

tions implicit method (ADI) [24].

For the diagnostics of the results obtained, we de�ne

a series of auxiliary quantities, the parallel distribution

function, the perpendicular distribution function, the

perpendicular temperature, the electronic current den-

sity, and the dimensionless power dissipated by IC and

LH waves, de�ned respectively as follows

c

f�jj(ujj; ��; x) = 2�

Z 1

0

du? u?f�(ujj; u?; ��; x)

f�?(u?; ��; x) =

Z 1

�1

duk f�(ujj; u?; ��; x)

T�?(ujj; ��; x) =
2�Te
f�jj

Z 1

0

du? u?
u2?
2
f�(ujj; u?; ��; x);
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J�(��; x) = �ecnep
�e

Z
d3uukfe(ujj; u?; ��; x) (17)

(P�)ic (��; x) =

Z
d3u

u2

2

�
@��f�(ujj; u?; ��; x)

�
ic

(P�)lh (��; x) =

Z
d3u

u2

2

�
@��f�(ujj; u?; ��; x)

�
lh
:

For the evaluation of (P�)ic and (P�)lh, of course, the corresponding terms in Eq. (5) are inserted in the

integrand at the right-hand side.

d
B. Results of the numerical analysis

We consider plasma parameters representative of

large tokamaks, similar to those of the JET tokamak

(Joint European Torus), with pro�les given by Eq. (3).

The parameters are the following: ne(0) = 3:5 � 1019

m�3, Te(0) = 5:0 keV, equal ion and electron densities

and temperatures, and B0(0) = 3:0 T. For minor ra-

dius we use a = 1:2 m, and for the major radius we use

R = 5:0 m, somewhat larger than the JET radius.

For the LH waves we consider parameters already

utilized in our previous analysis about the threshold

condition [20], namely ! = 1:5 !lh, Nk = 2:53, �Nk =

0:2, and three values of wave power, W0 = 2:0, 1:5,

and 1:0 MW. The choice of Nk = 2:53 means that the

center of the LH spectrum will be resonating with elec-

trons at four thermal velocities, which is expected to

assure good e�ciency in current generation. For prac-

tical reasons, the gaussian spectra has been assumed to

exist between Nk � 2�Nk and Nk + 2�Nk, vanishing

outside these limits. Numerically, the LH spectrum is

described by an array of 61 points. For the IC waves

we assume Dic0 = 0:5, uic = 5:0, and �u = 1:0, to be

used with the model coe�cient given by Eq. (15).

The formalism developed e�ectively uncouples ion

and electron distributions, since the collision term only

includes collisions of the resonating particles with the

Maxwellian background. Therefore, the study of the

two distributions can be made independently. We use

a time step ��� = 1: � 10�3, running the code until

a steady-state is nearly attained, with the wave e�ects

on the distribution function nearly balanced by collision

e�ects.

Let us start by the analysis of the electron distribu-

tion function, which is not a�ected by the IC di�usion

term. We choose to display the results obtained at the

central position of the tokamak, x = 0 m. In Fig. 1

we show the quantity � ln fejj, as a function of ukjukj,
for W0 = 1:0, 1:5, and 2:0 MW, at �e = 100. For

comparison, a Maxwellian distribution appears in this

representation, in the shape of the letter V. It is easily

seen the assymetry caused by the LH waves toward the

side of positive uk, although some e�ect is also seen in

the side of negative uk, caused by collisional di�usion.

The perpendicular distribution is also a�ected by colli-

sional di�usion, as can be seen is Fig. 2, which shows

ln fe?, as a function of u2?=2, forW0 = 1:0, 1:5, and 2:0

MW, also at �e = 100. This excess of perpendicular en-

ergy is not equally distributed along the distribution, as

demonstrated by the peaks in perpendicular tempera-

ture exhibitted in Fig. 3. These features of the electron

distribution function under the e�ect of LH waves are

well known and are shown here only for the sake of

completicity [21, 25, 26].

Still regarding the dynamics of the interaction be-

tween LH waves and electrons, in Fig. 4 we show the

time evolution of the power dissipated by lower hy-

brid waves on the electron distribution function, for the

same parameters used in Fig. 1. Instead of plotting

the quantity (Pe)lh, as given by Eq. (17), we present

in Fig. 4 the time evolution of the energy dissipated on

the electrons by unit of time measured in the time scale

of the ions, a quantity which we denote by P̂e,

c
�
P̂e

�
lh
(�e; x) �

Z
d3u

u2

2

�
@�ife(ujj; u?; �e; x)

�
lh
=

�e
�i

(Pe)lh (�e; x) :
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This quantity has been de�ned here because it is

useful for direct comparison between the energy dissi-

pated on the electrons and the energy dissipated on the

ions, measured in the same scale of time.

Figure 1. � ln fejj, vs. ukjukj, at x = 0 m and �e = 100,

for ! = 1:5 !lh, Nk = 2:53, and �Nk = 0:2. (a) W0 = 1:0
MW; (c) W0 = 2:0 MW; between these two, the curve for
W0 = 1:5 MW. The dotted line represents the Maxwellian
distribution. The plasma parameters are ne(0) = 3:5� 1019

m�3, Te(0) = 5:0 keV, B0(0) = 3:0 T, a = 1.2 m, and R =
5.0 m.

Figure 2. ln fe?, vs. u
2

?=2, at x = 0 m and �e = 100, for
! = 1:5 !lh, Nk = 2:53, and �Nk = 0:2. (a) W0 = 1:0
MW; (c) W0 = 2:0 MW; between these two, the curve for
W0 = 1:5 MW. The dotted line represents the Maxwellian
distribution. The plasma parameters are the same as in
Fig.1.

We investigate now the time evolution of the ion dis-

tribution function. The �rst noticeable feature, which

has been anticipated in a previous publication [20], is

that for the frequency utilized the di�usion coe�cient

for LH waves vanishes for W0 = 1:0 MW, and is barely

signi�cant for W0 = 1:5 MW. For larger wave frequen-

cies (!=!lh � 2:0), the di�usion coe�cient would be

null even for W0 = 2:0 MW [20].

These results seem to disagree with experimental re-

sults which report absorption of LH waves by energetic

ions, at frequency !=!lh = 3:7, even for wave power

of 1:0 MW [1]. As discussed on our previous analysis

on the threshold condition [20], one possible reason for

the di�erence is that in the experimental situation a

spectrum of waves is present, while the theory utilized

assumes a monochromatic LH wave acting on the en-

ergetic ions. We intend to continue our investigation

on the subject, by considering the e�ect of the pres-

ence of a group or spectrum of waves, but we consider

that the simplicity of the slab model and narrow gaus-

sian spectra utilized here may provide at least an useful

qualitative guide to the phenomena involved.

Figure 3. Te?=Te vs. uk, at x = 0 m and �e = 100, for

! = 1:5 !lh, Nk = 2:53, and �Nk = 0:2. (a) W0 = 1:0
MW; (c) W0 = 2:0 MW; between these two, the curve for
W0 = 1:5 MW. The plasma parameters are the same as in
Fig.1.

Figure 4.
�
P̂e

�
lh

vs. �e, at x = 0 m, for ! = 1:5 !lh,

Nk = 2:53, and �Nk = 0:2. (a) W0 = 1:0 MW; (b)
W0 = 1:5 MW; (c) W0 = 2:0 MW. The plasma parame-
ters are the same as in Fig.1.

Regarding the results obtained with the present for-

mulation, which uses a single wave and the correspond-

ing di�usion coe�cient [4], we observe in Fig. 5 that

the parallel distribution of the ions departs from the

Maxwellian form, but remains symmetrical along par-

allel direction. The perpendicular distribution and tem-

perature have more signi�cant features. In Fig. 6 and
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7 we show respectively the natural logarithm of the

perpendicular ion distribution and the perpendicular

ion temperature, for W0 = 1:0, 1:5, and 2:0 MW, at

�i = 100. It is noticeable in both �gures the e�ect due

to the LH waves, in the di�usion along the perpendic-

ular direction. For W0 = 1:5 MW the small amount

of quasilinear di�usion causes a small e�ect, as com-

pared to the modi�cation of the distribution function

by the IC waves. For W0 = 2:0 MW, however, the

di�usion due to LH waves is already very signi�cant,

and a sizable additional perpendicular 
attening of the

distribution is obtained.

Figure 5. � In fijj, vs. ukjukj, at x = 0 m and �i = 100,

for ! = 1:5 !lh, Nk = 2:53, and �Nk = 0:2. (a) W0 = 1:0
MW; (b) W0 = 1:5 MW; (c) W0 = 2:0 MW. Dic0 = 0:5,
uic = 5:0, and �u = 1:0. The dotted line represents the
Maxwellian distribution. The plasma parameters are the
same as in Fig.1.

Figure 6. In fi?, vs. u
2

?=2, at x = 0 m and �i = 100, for
! = 1:5 !lh, Nk = 2:53, and �Nk = 0:2. (a) W0 = 1:0
MW; (b) W0 = 1:5 MW; (c) W0 = 2:0 MW. Dic0 = 0:5,
uic = 5:0, and �u = 1:0. The dotted line represents the
Maxwellian distribution. The plasma parameters are the
same as in Fig.1.

Figure 7. Ti?=Te vs. uk, at x = 0 m and �i = 100, for

! = 1:5 !lh, Nk = 2:53, and �Nk = 0:2. (a) W0 = 1:0
MW; (b) W0 = 1:5 MW; (c) W0 = 2:0 MW. Dic0 = 0:5,
uic = 5:0, and �u = 1:0. The plasma parameters are the
same as in Fig.1.

In Fig. 8 it is seen the time evolution of (Pi)lh,

for the same parameters used in Fig. 5. The compari-

son between the results appearing in Fig. 8 and those

of Fig. 4 shows that the power dissipated by the LH

waves on the ion population is null for W0 = 1:0 MW,

is less than 10 % of the power dissipated on the elec-

tron population for W0 = 1:5 MW, and is more than

50 % of
�
P̂e

�
lh

for W0 = 2:0 MW. It is interesting

to observe that the increase of LH power dissipation

decreases the e�ciency of IC power deposition, due to

the 
attening of the ion distribution function caused by

the LH induced di�usion. This behavior is seen in Fig.

9, which shows the power dissipated by the model IC

term, (Pi)ic.

This reduction in the e�ciency of IC power deposi-

tion due to high power LH waves is a non trivial behav-

ior of the distribution function which evolves according

to the quasilinear dynamics. In Fig. 10 we observe the

complementary e�ect, by considering the time evolu-

tion of (Pi)lh, for �xed LH power (W0 = 1:5 MW) and

four values of Dic0. The other parameters are as in Fig.

5. It is seen that for vanishing IC power the absence of

the enhanced population of energetic ions means negli-

gible coupling between LH waves and ions. The natu-

ral logarithm of the perpendicular ion distribution as a

function of u2?=2 and the perpendicular temperature as

a function of uk are shown in Figs. 11 and 12, respec-

tively, for W0 = 1:5 MW and four values of Dic0.
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Figure 8. (Pi)lh vs. �i, at x = 0 m, for ! = 1:5 !lh,
Nk = 2:53, and �Nk = 0:2. (a) W0 = 1:0 MW; (b)
W0 = 1:5 MW; (c) W0 = 2:0 MW. Dic0 = 0:5, uic = 5:0,
and �u = 1:0. The plasma parameters are the same as in
Fig.1.

Figure 9. (Pi)ic vs. �i, at x = 0 m, for ! = 1:5 !lh,
Nk = 2:53, and �Nk = 0:2. (a) W0 = 1:0 MW; (b)
W0 = 1:5 MW; (c) W0 = 2:0 MW. Dic0 = 0:5, uic = 5:0,
and �u = 1:0. The plasma parameters are the same as in
Fig.1.

Figure 10. (Pi)lh vs. �i, at x = 0 m, for ! = 1:5 !lh,
Nk = 2:53, �Nk = 0:2, W0 = 1:5 MW, uic = 5:0, and
�u = 1:0. (a) Dic0 = 0:0; (b) Dic0 = 0:25; (c) Dic0 = 0:5;
(d) Dic0 = 0:75. The plasma parameters are the same as in
Fig.1.

Figure 11. In fi?, vs. u2?=2, at x = 0 m and �i = 100,
for ! = 1:5 !lh, Nk = 2:53, �Nk = 0:2, W0 = 1:5 MW,
uic = 5:0, and �u = 1:0. (a) Dic0 = 0:0; (b) Dic0 = 0:25;
(c) Dic0 = 0:5; (d) Dic0 = 0:75. The dotted line represents
the Maxwellian distribution. The plasma parameters are
the same as in Fig.1.

Figure 12. Ti?=Te vs. uk, at x = 0 m and �i = 100,

for ! = 1:5 !lh, Nk = 2:53, �Nk = 0:2, W0 = 1:5 MW,
uic = 5:0, and �u = 1:0. (a) Dic0 = 0:0; (b) Dic0 = 0:25;
(c) Dic0 = 0:5; (d) Dic0 = 0:75. The plasma parameters are
the same as in Fig.1.

V. Summary and conclusions

In the present paper we have carried out a quasi-

linear analysis of the stochastic di�usion of energetic

ions in a tokamak, due to the interaction with lower

hybrid waves of su�ciently high intensity. The toka-

mak plasma and the lower hybrid wave have been de-

scribed by simple models which are intended to con-

tribute for the understanding of basic features related

to the stochastic di�usion and its theoretical descrip-

tion.

Using quasilinear equations for the time evolution of

both ion and electron distribution functions, we have

considered parameters typical of present large toka-

maks, The results indicate that the power dissipated

by the LH waves on the ion distribution can be a sig-

ni�cant fraction of the power dissipated on the electron
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distribution, and therefore give support to the idea that

the presence of energetic ions can contribute for a re-

dution of the e�ciency of lower hybrid current drive,

in qualitative agreement with experimental results. On

the other hand, the energy dissipated on the ions has

been shown to be null for wave powers and frequencies

where it has been observed in experiments, indicating

that improvements must be introduced in the theoret-

ical description of the interaction between LH waves

and energetic ions. One possible reason for the quan-

titative di�erence obtained may be the presence of a

spectrum of waves instead of the single monochromatic

wave assumed in the present theoretical analysis. We

intend to proceed investigating the subject, and report

our �ndings in a forthcoming publication.
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