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In earlier work [1], we studied an extension of the canonical symplectic structure in the cotangent bundle of
an affine space Q = RN , by additional terms implying the Poisson non-commutativity of both configuration and
momentum variables. In this article, we claim that such an extension can be done consistently when Q is a Lie
group G.
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1. INTRODUCTION

As applied to physics, noncommutative geometry is under-
stood mainly in two ways. The first one is the spectral triple
approach of A.Connes [2] with the Dirac operator playing a
central role in unifying, through the universal action principle,
gravitation with the standard model of fundamental interac-
tions. The second one is the quantum field theory on noncom-
mutative spaces [3] with the Moyal product as main ingredient.
Besides these, a proposition by several authors [4, 5] was made
to generalise quantum mechanics in such a way that the oper-
ators corresponding to space coordinates no longer commute:
[x̂k, x̂`] 6= 0. This was implemented by an extension of the Pois-
son structure on the cotangent space such that the brackets sat-

isfy
{

xk,x`
}
6= 0. Upon quantisation, the corresponding oper-

ators should then also be noncommutative. A particle moving
in an affine space AN , has its configuration, in a fixed refer-
ence frame, given by an element {xk} of the translation group:
Q = RN with cotangent bundle T ?(Q ) = RN ×RN . In [1], we
examined such an extension of the canonical symplectic two-
form ω0 = dxi∧d pi → Ω = ω0 +ωF +ωB:

ωF =
1
2

Fi j(x)dxi∧dx j , ωB =
1
2

Bk`(p)d pk ∧d p` (1.1)

This extension is form-invariant under a change of the refer-
ence frame lifted to the cotangent bundle:

T ?(Q )→ T ?(Q ) :
(
xi, pk

)
→

(
x′ i = Ai

j x j +ak , p′k = p` (A−1)`k

)
(1.2)

Ω → Ω
′ = dx′ i∧d p′i +

1
2

F ′
i j(x

′)dx′ i∧dx′ j +
1
2

B ′k`(p′)d p′k ∧d p′`

(1.3)
F ′

i j(x
′) = Fk`(x)(A−1)k

i (A
−1)` j , B ′k`(p′) = Ak

i A`
j Bi j(p)

For a general configuration space Q , a diffeomorphism φ : xi →
x′ i .= φi(x), when lifted to T ?(Q ), becomes

φ̃ :
(
xi, pk

)
→

(
x′ i = φ

i(x), p′k = p`
∂(φ−1(x′))`

∂x′k

)
F ′

i j(x
′) = Fk`(x)

∂(φ−1)k(x′)
∂x′ i

∂(φ−1)`(x′)
∂x′ j

B ′k`(p′,x′) =
∂φk(x)

∂xi
∂φ`(x)

∂x j Bi j(p)

In general B ′k` is function of both variables {p′,x′} and no
intrinsic meaning can be given to the particular form of the ex-
tension Ω in equation (1.1).
In this work, we show that such an extension is achieved when
Q = G is a Lie group. This is possible because the cotangent
bundle T ?(G) has two distinguished trivialisations, the left-
and right trivialisations [7] implemented respectively by the
bases of the left- and right invariant differential forms.
In section 2., inspired by the rigid body motion, we use the left
trivialisation with left invariant or body-coordinates and con-

struct a left invariant two-form. In the case of constant Fi j and
Bk` fields the ωF term arises from a symplectic one-cocycle,
as introduced by Souriau [8, 9], and ωB will be automatically
left invariant. The constructed two-form Ω is obviously closed
but the non degeneracy condition leads in general to a con-
strained Hamiltonian system. This is examined in more detail
for SU(2) in section 3.. Final considerations are made in sec-
tion 4.. Some elements of Lie algebra cohomology [9, 10] are
recalled in the appendix.

2. THE PHASE SPACE {M0 ≡ T ?(G), ω0}

Let {gα , α = 1,2, · · · ,N} be coordinates of a group el-
ement g ∈ G. Natural or holonomic coordinates of points
(g,pg) ∈ T ?(G) are obtained using the basis {dgµ} of the
cotangent space T ?

g (G). They are given by (gα, pµ)hol , where
pg = pµ dgµ. Given a pair of dual bases {eα} of the Lie
algebra G .= Te(G) and {εα} of its dual G?, the differen-
tial and pull-back of the left- and right translations (Lg,Rg)
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define left- and right invariant vector fields and one forms:
eL

α(g) .= Lg∗|e eα , eR
α(g) .= Rg∗|e eα , εα

L(g) .= L∗g−1|g εα , εα
R(g) .=

R∗
g−1|g εα. With canonical group coordinates, in terms of

Lα
β(g,h) .= ∂(gh)α/∂gβ and Rα

β(g,h) .= ∂(hg)α/∂gβ, they are
explicitely given by:

eL
α(g) = Lµ

α(g,e)
∂

∂gµ , eR
α(g) = Rµ

α(g,e)
∂

∂gµ

(2.1)
ε

α
L(g) = Lα

µ(g−1,g)dgµ , ε
α
R(g) = Rα

µ(g−1,g)dgµ

These bases implement canonical trivialisations of the tangent
and cotangent bundle. For the cotangent bundle, which is the
arena of symplectic or Hamiltonian formalism, we have a left
and a right trivialisation:

λ : T ?(G)→ G×G? : (g, pg = pµ dgµ)→
(

g,πL = L∗g|e pg = π
L
µ ε

µ
)

π
L
µ = 〈pg,eL

µ〉= pν Lν
µ(g,e)

ρ : T ?(G)→ G×G? : (g, pg = pµ dgµ)→
(

g,πR = R∗
g|e pg = π

R
µ ε

µ
)

π
R
µ = 〈pg,eR

µ 〉= pν Rν
µ(g,e)

They can be viewed as a change of coordinates of a point
(g, pg) in T ?(G):

(g,pg)↔ (gα, pµ)hol ↔ (gα,πL
µ)B ↔ (gα,πR

µ )S (2.2)

In rigid body theory, the coordinates of the left trivialisation are
the ”body” coordinates, whence the subscript ( ,)B. The right
trivialisation yields ”space” coordinates with subscript ( ,)S.
Both are related through the coadjoint representation of G in
G?:

π
R
µ = Kµ

ν(g) π
L
ν = Adν

µ(g−1)π
L
ν (2.3)

Lifting the left multiplication in G to the cotangent bundle
yields a group action: L̃a : T ?(G) → T ?(G) : x = (g, pg) →
y = (ag, p ′ag = L?

a−1|ag pg). In body coordinates:
(

L̃a

)
B

:

(gα,πL
µ)B → ((ag)α,πL

µ)B. The pull-back of the cotangent pro-
jection κ : T ?(G)→G : x .= (g, pg)→ g, acting on the {εα(g)}
yield L̃a invariant one forms on T ?(G) : 〈εα

L(x)|= κ?
x εα

L(κ(x))
and the differentials of the left invariant functions πL

µ on T ?(G)
also yield L̃a invariant one forms on T ?(G). Together they
provide a left invariant basis of the cotangent space at x =
(gα,πL

µ)B ∈ T ?(G):{
〈εα

L |
.= Lα

µ(g−1,g)〈dgµ| , 〈εL
µ |

.= 〈dπ
L
µ |

}
(2.4)

Its dual basis in the tangent space Tx(T ?(G)) is given by{
|eL

α〉
.= |∂/∂gµ〉 Lµ

α(g,e) , |eµ
L〉

.= |∂/∂π
L
µ〉

}
(2.5)

The canonical Liouville one-form 〈θ0| = pα 〈dgα| and its as-
sociated symplectic two-form ω0 =−dθ0 = 〈dgα|∧〈dpα|, are
obtained as:

〈θ0|= π
L
µ 〈ε

µ
L| , ω0 = 〈εµ

L|∧ 〈ε
L
µ |+

1
2

π
L
µ fµ

αβ 〈εα
L |∧ 〈ε

β

L| (2.6)

The Hamiltonian vector field associated to a function A(g,πL)
on phase space M0 ≡ T ?(G), is defined by: ıX ω0 = 〈dA| . Its
components are:

Xµ .= 〈εµ
L|X〉= 〈dA|eµ

L〉

Xα

.= 〈εL
α|X〉=−〈dA|eL

α〉−π
L
µ fµ

αβ 〈dA|eβ

L〉 (2.7)

With ıY ω0 = 〈dB| , the Poisson bracket of dynamical vari-
ables: {A,B}0

.= ω0 (X,Y), is obtained explicitely in (gα,πL
µ)

variables as:

{A,B}0 = 〈dA|eL
α〉

∂B
∂πL

α

− ∂A
∂πL

α

〈dB|eL
α〉−

∂A
∂πL

α

π
L
µ fµ

αβ

∂B
∂πL

β

(2.8)
In particular, the basic Poisson brackets are:

{
gα,gβ

}
0
= 0 ,

{
gα,πL

ν

}
0 = Lα

ν(g,e){
π

L
µ ,gβ

}
0
=−Lβ

µ(g,e) ,
{

π
L
µ ,πL

ν

}
0 =−π

L
κ fκ

µν (2.9)

The flow of a particular observable, the Hamiltonian H(g,πL),
determines the time evolution of any observable A(g,πL) by
the equation: dA/dt = {A,H}0. We assume a Hamiltonian is
of the form H(g,πL) = K(πL)+V (g).
Here, as in rigid body mechanics, the kinetic energy is given
by

K .=
1
2

I αβ
π

L
α π

L
β

(2.10)

where I αβ is the inverse of a constant, positive definite, inertia
tensor Iµν in the ”body” frame. The potential energy is a func-
tion V defined on the group manifold. The Euler equations of
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motion read:

〈εα
L |dg/dt〉 = Lα

β(g
−1,g)

d gβ

dt
=

∂K
∂πL

α

(2.11)

〈εL
µ |dπ

L/dt〉 =
d πL

µ

dt
=− ∂V

∂gα
Lα

µ(g,e)+
∂K
∂πL

ν

π
L
α fα

νµ

(2.12)

The first of these equations (2.11) relates the angular momen-
tum πL

α with the angular velocity in the body frame Ω
µ
L:

Ω
α
L

.= Lα
β(g

−1,g)
dgβ

dt
= I αµ

π
L
µ ; π

L
µ = Iµν Ω

ν
L (2.13)

while the second (2.12) takes the classical form

dπL
µ

dt
+π

L
κ fκ

µν Ω
ν
L =− ∂V

∂gα
Lα

µ(g,e) (2.14)

An example of V (g) is given by a gravitational potential en-
ergy as follows. Let L = eα Lα be a constant vector in G (the
position of the centre of mass in the body frame) and γ = γα εα

a constant vector in G? (the gravitational force in the space
fixed frame). The potential energy is defined as:

V (g) .=− (γ |Ad(g)L) =−
(
K(g−1)γ |L

)
(2.15)

where ( | ) denotes the canonical pairing between G and its
dual G?. To compute 〈dV |eL

µ 〉 we use the representation of the
Maurer-Cartan form:

D(g−1)dD(g) = D′(g−1 dg)

where D is any representation D of G, with derived representa-
tion D′ of G . In particular, dAd(g) = Ad(g)ad(eµ)ε

µ
L(g) and

dK(g) = K(g)k(eµ)ε
µ
L(g). This yields:

〈dV |eL
µ 〉(g) =−

(
K(g−1)γ |ad(eµ)L

)
=− (Γ(g) |ad(eµ)L)

(2.16)
where Γ(g) .= K(g−1)γ is the variable gravitational force in
the body-fixed frame. Using the above formulae to compute
dK(g−1), we obtain:

d Γµ

dt
= (Γ |ad(eµ)ΩL) = Γα fα

µβ Ω
β

L (2.17)

Equation (2.14) reads:

dπL
µ

dt
+π

L
α fα

µβ Ω
β

L = (Γ |ad(eµ)L) = Γα fα
µβ Lβ (2.18)

Together with (2.13),

Ω
α
L

.= Lα
β(g

−1,g)
dgβ

dt
= I αµ

π
L
µ

the equations (2.17) and (2.18) form the so-called Euler-
Poisson system.

3. MODIFIED SYMPLECTIC STRUCTURE ON T ?(G)

In appendix A it is shown that, if Θ = 1
2 Θαβ εα ∧ εβ ∈

Λ2(G?), obeys the cocycle condition (A.1), then ΘL(g) .=

(1/2)Θαβ εα
L(g)∧ ε

β

L(g) is a closed left-invariant two-form on
G. Including this closed two-form in the canonical two-form,
one obtains another symplectic two-form on T ?(G), which,
furthermore, is L̃a invariant. So we define:

ωI = ω0−ΘL = 〈εµ
L|∧ 〈dπ

L
µ |+

1
2

(
π

L
µ fµ

αβ−Θαβ

)
〈εα

L |∧ 〈ε
β

L|
(3.1)

The Poisson brackets are also modified and (2.8), (2.9) be-
come:

{A,B}I =
∂A
∂gµ Lµ

α(g,e)
∂B
∂πL

α

− ∂B
∂gµ Lµ

α(g,e)
∂A
∂πL

α

−
(
π

L
µ fµ

αβ−Θαβ

) ∂A
∂πL

α

∂B
∂πL

β

(3.2)

In particular, the fundamental brackets are:{
gα,gβ

}
I
= 0 ,

{
gα,πL

ν

}
I = Lα

ν(g,e){
π

L
µ ,gβ

}
I
=−Lβ

µ(g,e) ,
{

π
L
µ ,πL

ν

}
I =−

(
π

L
κ fκ

µν−Θµν

)
(3.3)

The modified symplectic structure induces an additional inter-
action and the Euler equations become:

Ω
α
L

.= Lα
β(g

−1,g)
dgβ

dt
=

∂K
∂πL

α

= I αµ
π

L
µ (3.4)

dπL
µ

dt
= −〈dV |eL

µ〉+
∂K
∂πL

α

(
π

L
κ fκ

αµ−Θαµ
)

(3.5)

The relation between the velocity in the body frame and the
angular momentum (2.13) is maintained: πL

µ = Iµν Ων
L, while

the second (2.14) takes the interaction into account:

dπL
µ

dt
+π

L
κ fκ

µα Ω
α
L =−〈dV |eL

µ〉−Ω
α
L Θαµ (3.6)

For a semisimple Lie algebra G , we have Θαβ =−ξµ fµ
αβ and

we may define a modified Liouville one-form:

〈θI |= π
′
µ 〈ε

µ
L| , π

′
µ

.= π
L
µ +ξµ (3.7)

and the symplectic two-form reads

ωI = −d〈θI |= 〈εµ
L|∧ 〈dπ

′
µ|+

1
2

π
′
µ fµ

αβ 〈εα
L |∧ 〈ε

β

L| (3.8)

This means that such that {gα, p′µ = pµ + ξβ Lβ
µ(g−1;g)} are

Darboux coordinates:

〈θI |= p′µ 〈dgµ| , ωI
.=−d〈θI |= 〈dgµ|∧ 〈dp′µ| (3.9)

In
(
gα,π′µ

)
coordinates, the Hamiltonian reads

H ′ = K′(π′)+V (g) =
1
2

I µν (π′µ−ξµ)(π′ν−ξν)+V (g) (3.10)

and the Euler equations read:

Lα
β(g

−1,g)
dgβ

dt
=

∂K′

∂π′α
= I αµ (π′µ−ξµ) (3.11)

dπ′µ
dt

= −〈dV |eL
µ〉+

∂K′

∂π′α

(
π
′
κ fκ

αµ
)

(3.12)

which, obviously are equivalent to (3.4) and (3.12).



Brazilian Journal of Physics, vol. 39, no. 1, March, 2009 21

4. THE CLOSED TWO-FORM ωL

Configuration space coordinates which do not Poisson com-
mute, are obtained through the addition of a left-invariant and

closed two-form to (3.1):

ϒ
L .=

1
2

ϒ
µν 〈dπ

L
µ |∧ 〈dπ

L
ν| (4.1)

ωL
.= ω0−ΘL +ϒ

L = 〈εµ
L|∧ 〈dπ

L
µ |+

1
2

(
π

L
µ fµ

αβ−Θαβ

)
〈εα

L |∧ 〈ε
β

L|

+
1
2

ϒ
µν 〈dπ

L
µ |∧ 〈dπ

L
ν| (4.2)

With the notation Sαβ ≡
(
πL

µ fµ
αβ−Θαβ

)
, we wite ωL in matrix

form:

ωL ≡
1
2

(
〈εα

L | 〈dπ
L
µ |

)
∧

 Sαβ δα
ν

−δµ
β ϒµν

  〈εβ

L|

〈dπL
ν|

 (4.3)

The degeneracy of (ωL) is examined comsidering the equation

ı|X〉ωL = 〈dA| (4.4)

In the bases (2.4), (2.5): Xα .= 〈εα
L |X〉 , Xµ

.= 〈εL
µ |X〉 and (4.4)

reads:

Xα
Φα

ν = 〈dA|eν
L〉+ 〈dA|eL

µ〉ϒµν ,

Xµ Ψ
µ

β =−〈dA|eL
β
〉+ 〈dA|eα

L〉Sαβ (4.5)

where we introduced the matrices, linear in the momenta:

Φα
ν .= δα

ν +Sαµϒ
µν , Ψ

µ
β

.= δ
µ

β +ϒ
µνSνβ (4.6)

They are mutually transposed and the products ΦS =
SΨ , ϒΦ = Ψϒ are antisymmetric. The fundamental equation
(4.4), defining Hamiltonian vector fields, has a solution if Φ

and Ψ have inverses, i.e. if

∆
.= detΦ ≡ detΨ 6= 0 (4.7)

The matrices ϒΦ−1 = Ψ−1 ϒ and Φ−1 S = SΨ−1 are then also
antisymmetric. The Hamiltonian vector fields are obtained as:

Xα = (Ψ−1)α

µ
(
〈dA|eµ

L〉−ϒ
µν 〈dA|eL

ν〉
)

=
(
〈dA|eν

L〉+ 〈dA|eL
µ〉ϒ

µν
)

(Φ−1)ν

α

Xµ = (Φ−1)µ
α

(
−〈dA|eL

α〉−Sαβ 〈dA|eβ

L〉
)

=
(
−〈dA|eL

β
〉+ 〈dA|eα

L〉Sαβ

)
(Ψ−1)β

µ (4.8)

The Poisson brackets between the basic dynamical variables
are: {

gα,gβ

}
L

=−Lα
κ(g,e)Lβ

λ(g,e) ϒ
κµ (Φ−1)µ

λ{
gα,πL

ν

}
L = Lα

κ(g,e)(Ψ−1)κ

ν
,{

π
L
µ ,gβ

}
L

=−Lβ
κ(g,e)(Ψ−1)κ

µ{
π

L
µ ,πL

ν

}
L =−Sµκ (Ψ−1)κ

ν
(4.9)

For a Hamiltonian H = K +V , the equations of motion are:

Ω
α
L

.= Lα
β(g

−1,g)
dgβ

dt
=

(
∂K
∂πL

ν

+ 〈dV |eL
µ〉ϒ

µν

)
(Φ−1)ν

α

dπL
µ

dt
=

(
−〈dV |eL

β
〉+ ∂K

∂πL
α

Sαβ

)
(Ψ−1)β

µ

Since Φ , Ψ are linear in πL, ∆ is a polynomial in πL of degree
at most equal to N, the dimension of the Lie group. It defines
an algebraic variety in G?:

Π1
.= {(g,πL)|∆(πL) = 0} (4.10)

and its complement V∆

.= G?\Π1 defines a manifold

M ′
0

.= G×V∆ (4.11)

with symplectic structure given by ωL, restricted to M ′
0 . If it

happens that Π1 itself is an algebraic manifold, an imbedded
submanifold is obtained:

M1
.= G×Π1 (4.12)

with imbedding in M0
.= G×G?: j1 : M1 ↪→ M0. The system

is then constrained to M1 and we may look for solutions of
(4.4) restricted to M1. Such solutions may exist if further con-
ditions are imposed on the Hamiltonian. To proceed systemati-
cally, we follow the algorithm of Gotay, Nester and Hinds [11].
To keep things simple, this will be done in the next section for
the semi-simple group SU(2).

5. A CASE STUDY: SU(2)

The dynamical variables are functions on M0
.= SU(2)×

su(2)?. A basis {eα} of the Lie algebra su(2) may be cho-
sen such that its structure constants are the Kronecker sym-
bols [eα,eβ] = eµ εµ

αβ. The Killing metric ηαβ

.= εµ
αν εν

βµ =
−2δαβ, provides an isomorphism between su(2) and su(2)?.
The metric δαβ with inverse δµν will be freely used to raise or
to lower indices. ΘL is written in terms of a magnetic field
ξµ as Θαβ =−ξκ εκ

αβ and any antisymmetric ϒ can be written
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in terms of τλ, a dual magnetic field in momentum space, as
Y µν = τλ ελ

µν. Defining π′κ
.= πL

κ +ξκ, ωL reads:

ωL ≡
1
2

(
〈εα

L | 〈dπ
L
µ |

)
∧

 π′κ εκ
αβ δα

ν

−δµ
β τλ ελ

µν

  〈εβ

L|

〈dπL
ν|


(5.1)

The fundamental equation (4.4): ı |X〉ωL = 〈dH| becomes:

Xα
π
′
κ ε

κ
αβ−Xβ = Hβ , Xν +Xµ τ

λ
ελ

µν = Hν

where Hβ

.= (∂H/∂gα) Lα
β(g,e) , Hν .=

(
∂H/∂πL

ν

)
. The ma-

trices (4.6) are given explicitely by Φα
ν .= C1 δα

ν + ταπ′ν and
Ψµ

β

.= C1 δµ
β + π′µτβ, where C1

.= (1− π′ · τ). They obey

Φα
ν

(
δν

β− τν π′β
)

=C1 δα
β and Ψµ

β

(
δβ

ν−π′β τν

)
=C1 δµ

ν.
It follows that (4.5) implies:

Xα (1−π
′ · τ) = Hα−π

′α (τβ Hβ)− ε
αµ

ν Hµ τ
ν (5.2)

Xµ (1−π
′ · τ) = −Hµ + τµ (π′ν Hν)− εµα

β Hα
π
′
β

(5.3)

5.1. The non degenerate case

The determinant of the matrices Φ and Ψ is given by ∆ =
(C1)2. Obviously the plane Π1

.= {(g,πL)|(1−π′ · τ) = 0} is
an algebraic manifold in G?. Its complement V∆

.= G?\Π1
defines a manifold M ′

0
.= G×V∆ with symplectic structure ωL,

retricted to M ′
0 . On M ′

0 , Φ and Ψ have inverses:

(Ψ−1)β

ν
= (C1)−1

(
δ

β
ν−π

′β
τν

)
,

(Φ−1)ν

β
= (C1)−1

(
δν

β− τνπ
′β
)

(5.4)

For a Hamiltonian H = K(πL)+V (g), the Hamiltonian vector
fields are read off from (5.2) and (5.3) with ensuing equations
of motion:

Ω
α
L

.= Lα
β(g

−1,g)
dgβ

dt
=

(
∂K
∂πL

ν

+ 〈dV |eL
µ〉τ

λ
ελ

µν

)
(Φ−1)ν

α

dπL
µ

dt
=

(
−〈dV |eL

β
〉+ ∂K

∂πL
α

π
′
κ ε

κ
αβ

)
(Ψ−1)β

µ (5.5)

For a purely kinetic Hamiltonian, we obtain:

Ω
α
L =

∂K
∂πL

µ
(Φ−1)µ

α
,

dπL
µ

dt
= Ω

α
L π

′
β

ε
β

αµ (5.6)

5.2. The degenerate case

The equation C1 ≡ (1− π′ · τ) = 0 defines a two dimen-
sional plane Π1 in su(2)? ∼= R3. The primary constrained
manifold, defined by M1

.= SU(2)×Π1, is imbedded in M0
.=

SU(2)× su(2)?. On M1, the closed two-form ωL is degenerate
and the pairing of π′ ∈ su(2)? with τ∈ su(2) equals 1. So |τ〉 6=
0 and, without loss of generality, we take {τα} = {0,0,τ}.
In what follows, greek indices {α,β,µ,ν, · · ·} shall vary in
{1,2,3}, while latin indices {a,b,m,n, · · ·} assume only the
values {1,2}. The imbedding is given by:

a j1 : M1 ↪→ M0 :
x1 ≡ (gα,πL

m)→ x0 = j1(x1)≡ (gα,πL
m,πL

3 = 1/τ−ξ3)
(5.7)

with its differential or push-forward:

j1? : T M1 → T M0 : (x1;Xα,Xm)→ (x0;Xα,Xm,X3 = 0) (5.8)

The pull-back transforms forms on M0 into forms on M1:

j1? :
^•

(T ?M0)→
^•

(T ?M1) (5.9)

In particular the pull-back of ωL to the five dimensional mani-
fold M1 is

ω̃L|1
.= j1?(ωL) (5.10)

The restriction of ωL to M1, not to be confused with its pull-
back, is denoted by ωL|1

.= ωL ◦ j1. In matrix representation:

ωL|1 =
1
2

(
〈εα

L | 〈dπ
L
µ |

)
∧


0 1/τ −π′2 1 0 0

−1/τ 0 π′1 0 1 0
π′2 −π′1 0 0 0 1
−1 0 0 0 τ 0
0 −1 0 −τ 0 0
0 0 −1 0 0 0




〈εβ

L|

〈dπL
ν|


(5.11)

Let (T M0)|1
.= {(x,X) ∈ T M0 |x ∈ M1} be the subbundle of

T M0 restricted to M1. Following the GNH algorithm [11],
we look for a vector field |X〉 in (T M0)|1, tangent to M1 and
solution of ı|X〉ωL|1 = 〈dH| ◦ j1.

Explicitely :

−(1/τ)X2+π
′
2 X3−X1 = 〈dV |eL

1〉
+(1/τ)X1−π

′
1 X3−X2 = 〈dV |eL

2〉
−π

′
2 X1+π

′
1 X2−X3 = 〈dV |eL

3〉
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X1− τX2 = ∂K/∂π
L
1

X2+ τX1 = ∂K/∂π
L
2

X3 = ∂K/∂π
L
3

Two independent null vectors of ωL|1, solution of ı|Z〉ωL|1 =
0, are given by:

|Z1〉 = |eL
1〉+(1/τ) |∂/∂π

L
2〉−π

′
2 |∂/∂π

L
3〉

|Z2〉 = |eL
2〉− (1/τ) |∂/∂π

L
1〉+π

′
1 |∂/∂π

L
3〉 (5.12)

Consistency requires {〈dH|Za〉 = 0} for (a = 1,2) and π′3 =
1/τ.

C21 ≡ π
′
2 (∂K/∂π

L
3)−π

′
3 (∂K/∂π

L
2)−〈dV |eL

1〉 = 0

C22 ≡ π
′
3 (∂K/∂π

L
1)−π

′
1 (∂K/∂π

L
3)−〈dV |eL

2〉 = 0(5.13)

These two equations define a secondary constrained manifold
M2 ⊂ M1, on which a particular solution of (??) is

|XP〉= |eL
1〉∂K/∂π

L
1 +|eL

2〉∂K/∂π
L
2 +|eL

3〉∂K/∂π
L
3 +|∂/∂π

L
3〉C23

(5.14)
where C23 ≡ π′1 (∂K/∂πL

2)−π′2 (∂K/∂πL
1)−〈dV |eL

3〉. The gen-
eral solution |XG〉 of (??), on M2 , still contains two arbitrary
functions ζ1 and ζ2:

(XG) = ζ1


1
0
0
0

1/τ

−π′2

+ζ2


0
1
0

−1/τ

0
+π′1

+


∂K/∂πL

1
∂K/∂πL

2
∂K/∂πL

3
0
0

C23


(5.15)

This vector must be tangent to M1 and M2. This leads to three
equations

〈dC1 |XG〉= 0; 〈dC21 |XG〉= 0; 〈dC22 |XG〉= 0 (5.16)

If these three equations determine or not the two arbitrary func-
tions ζ1 and ζ2 , will depend on the kinetic energy K(πL) and
on the particular form of the potential V (g). If they do so, the
system will have a solution. If not, they will define a tertiary
constraint manifold M3 and the analysis must proceed.

6. CONCLUSIONS

In this work, we analysed the consistency of a modification
of the symplectic two-form on the cotangent bundle of a group
manifold. This was done in order to obtain classical, i.e. Pois-
son, noncommuting configuration (group) coordinates. This
was achieved in the non degenerate case, with the closed two-
form ωL which is then symplectic. We do not address here the
general quantization problem of such a system and refer e.g.
to [12] for a general review on quantization methods. It should
be stressed that, whatever the quantisation scheme, any such
obtained framework has little to do with non commutative ge-
ometry, either in the sense of A.Connes or as a quantum field
theory on non-commutative spaces.

APPENDIX A: THE SYMPLECTIC ONE-COCYCLE

A one-cochain θ on G with values in G?, on which G
acts with the coadjoint representation k, θ ∈ C1(G ,G?,k), is
a linear map θ : G → G? : u → θ(u). Its components are
θα,µ

.= 〈θ(eµ)|eα〉. It is a one-cocycle, θ ∈ Z1(G ,G?,k), if
its coboundary, (δ1θ)(u,v) .= k(u)θ(v)−k(v)θ(u)−θ([u,v]),
vanishes.

〈(δ1θ)(u,v)|w〉 .= −〈θ(v)|[u,w]〉+ 〈θ(u)|[v,w]〉− 〈θ([u,v])|w〉= 0
〈(δ1θ)(eµ,eν)|eα〉

.= −θκ,ν fκ
µα + θκ,µ fκ

να− θκ,α fκ
µν = 0

The one-cocycle σ is called symplectic if Σ(u,v) .= 〈σ(u)|v〉 is
antisymmetric, Σ(u,v) = −Σ(v,u) or Σ[αµ]

.= σα,µ = −σµ,α .
Any antisymmetric Θ defined in terms of θ ∈C1(G ,G?,k) as
Θ[αβ] = θα,β is actually a 2-cochain on G with values in R and
trivial representation: Θ∈C2(G ,R,0). Furthermore, when θ∈
Z1(G ,G?,k), Θ is a 2-cocycle of Z2(G ,R,0):

(δ2Θ)(u,v,w) .=−Θ([u,v],w)+Θ([u,w],v)−Θ([v,w],u)=0

(δ2Θ)(eα,eβ,eγ)
.= −Θκγ fκ

αβ + Θκβ fκ
αγ − Θκα fκ

βγ = 0
(A.1)

In general let Θ = 1
2 Θαβ εα ∧ εβ ∈ Λ2(G?), obey the cocycle

condition (A.1). Acting with L?
g−1|g yields the left-invariant

two form:

ΘL(g) .= L?
g−1|g Θ =

1
2

Θαβ ε
α
L(g)∧ ε

β

L(g) (A.2)

Using the cocycle relation and the Maurer-Cartan structure
equations, it is seen that ΘL(g) is a closed left-invariant two-
form on G.
When G is semisimple, Θ is exact. Indeed, the Whitehead
lemmas state that H1(G ,R,0) = 0 and H2(G ,R,0) = 0. In
particular, Θ ∈ B2(G ,R,0) is a coboundary and there ex-
ists an element ξ of C1(G ,R,0) ≡ G? such that Θ(u,v) =
(δ1(ξ))(u,v) =−ξ([u,v]) or

Θαβ =−ξµ fµ
αβ (A.3)

The constant vector ξ ∈ T ?(G) is the analogue of a magnetic
field in the abelian case G ≡ R3.
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