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Measuring Shear Viscosity Using Correlations
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Measurements of transverse momentum fluctuations can be used to determine the shear viscosity [1]. We
use current data to estimate the viscosity-to-entropy ratio in the range from 0.08 to 0.3, and discuss how future
measurements can reduce this uncertainty.
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I. INTRODUCTION

Elliptic flow measurements at RHIC are described by ideal
viscosity-free hydrodynamics, indicating that the quark-gluon
system produced in these collisions is a nearly perfect liq-
uid [2–6]. In particular, the strong suppression of flow due
to shear viscosity predicted by weak-coupling transport cal-
culations is not observed [5]. This result is exciting because
a small viscosity relative to the entropy density of the system
may indicate that the system is more strongly coupled than ex-
pected: The collisional shear viscosity is proportional to the
mean free path, which is shorter when the coupling is stronger.

But is the viscosity really small? Hirano et al. point out that
color glass condensate formation may produce more elliptic
flow than considered in refs. [4, 5], requiring a larger viscosity
for agreement with data [8]. We therefore seek experimental
information on viscosity that does not rely on elliptic flow.

We propose that transverse momentum correlation mea-
surements can be used to extract information on the kinematic
viscosity,

ν = η/T s, (1)

where η is the shear viscosity, s is the entropy density and T
is the temperature. This ratio characterizes the strength of the
viscous force relative to the fluid’s inertia and, consequently,
determines the effect of η on the flow [6]. We argue that vis-
cous diffusion broadens the rapidity dependence of transverse
momentum correlations, and then show how these correla-
tions can be extracted from measurements of event-by-event
pt fluctuations.

A number of experiments have studied transverse momen-
tum fluctuations at SPS and RHIC [9, 10]. Interestingly, the
STAR collaboration reports a 60% increase of the relative ra-
pidity width for pt fluctuations when centrality is increased
[15]. While the STAR analysis differs from the one we pro-
pose, model assumptions provide a tantalizing hint that the
viscosity is small.

Any experimental information on the kinematic viscos-
ity of high energy density matter is vital for understanding
the strongly interacting quark gluon plasma. Theorists had
long anticipated a large collisional viscosity based on weak
coupling QCD [16] and hadronic computations [17], with
values of η/s roughly of order unity for both phases near
the crossover temperature ∼ 170 MeV. Supersymmetic Yang

FIG. 1: (Color online) Shear flow results when plates move past one
another.

Mills calculations give the significantly smaller ratio η/s =
1/4π in the strong coupling limit [18]. Lattice QCD calcula-
tions of the shear viscosity will eventually settle the question
of the size of the viscosity near equilibrium [19]. However,
the effective viscosity in the nonequilibrium ion-collision sys-
tem may differ from these calculations. In particular, plasma-
instability contributions can also explain the small viscosities
in nuclear collisions [20].

We begin in the next section by formulating a simple model
to illustrate how shear viscosity attenuates correlations due to
fluctuations of the radial flow. In section III, we show how
transverse momentum fluctuations can be used to measure
these correlations. The magnitude of viscosity in heavy ion
collisions at RHIC and SPS energies is discussed in section
IV. In section V, we then demonstrate the impact of viscos-
ity on the rapidity distribution of fluctuations. We explore the
implications of current fluctuation data in section VI.

Before wading into the quark-gluon liquid, it is useful to
recall how shear viscosity affects the flow of more common
fluids. In a classic example of shear flow, a liquid is trapped
between two parallel plates in the xy plane, while one plate
moves at constant speed in the x direction as shown in fig. 1.
The fluid is pulled along with the plate, so that vx varies with
the normal distance z. The viscous contribution to the stress
energy tensor is then

Tzx = −η∂vx/∂z; (2)

see ref. [21] for a general treatment.
To fix definitions, recall that relativistic hydrodynamic

evolution satisfies the energy-momentum conservation law
∂µT µν = 0. The stress-energy tensor is T µν = (e+P)UµUν −
Pgµν + τµν, where e is the energy density, P is the pressure,
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FIG. 2: (Color online) The transverse velocity deviates from the av-
erage by an amount that varies throughout the collision volume. Vis-
cosity drives this deviation to zero.

Uµ = γ(1,v) is the four-velocity of the fluid, and γ = (1 −
v2)−1/2. The dissipative contribution is τµν. Following Lan-
dau and Lifshitz, we define the four velocity to vanish when
T 0i = 0 [21]. Then the momentum current is T0i = γ2(e+P)vi
and τµν depends only on the viscosity, with τ00 = 0 = τ0i and

τi j = −η{∇iv j +∇ jvi − 2
3

δi j∇ ·v}−ζδi j∇ ·v (3)

in a local rest frame. We mention that the bulk viscosity ζ re-
sists compression or expansion in which ∇ ·v �= 0; the classic
example is a Hubble-like expansion. Typically ζ � η [17];
see however [23].

II. VISCOSITY AND DIFFUSION

Central nuclear collisions produce a high energy density
fluid that flows outward with an average radial velocity vr.
In the hydrodynamic description of these collisions, we typ-
ically assume that vr varies smoothly with spacetime (t,x)
and is the same for all collisions of a fixed impact parame-
ter. For central collisions, vr is cylindrically symmetric. More
realistically, small deviations u(x) of the radial flow occur
throughout the fluid, varying with each ion-collision event.
Such deviations occur, e.g., because the number and location
of nucleon-nucleon subcollisions varies in each event.

Viscous friction arises as neighboring fluid elements flow
past each other as illustrated in fig. 2. This friction reduces u,
driving the velocity toward the local average vr. The final size
of the velocity increment u depends on the magnitude of the
viscosity and the lifetime of the fluid.

In order to illustrate how the damping of radial flow fluc-
tuations depends on the viscosity of the fluid, we introduce a
velocity increment in the radial direction u that depends only
on the longitudinal coordinate z and t. Our aim is to determine
the linear response of the fluid to this perturbation. For sim-
plicity, we take the unperturbed flow as slowly varying, and
work in a co-moving frame where vr locally vanishes. As in
(2), the flow of neighboring fluid elements at different radial
speeds u(z) produces a shear stress

Tzr = −η∂u/∂z . (4)

This stress changes the transverse momentum current of the
fluid, which is generally

T0r = γ2(ε+ p)vr (5)

for energy density ε, pressure p, and γ = (1− v2)−1/2 [21].
The perturbation u results in the change

gt(x) = δT0r ≈ (ε+ p)u (6)

in the co-moving frame, while

∂gt/∂t = −∂Tzr/∂z, (7)

which follows from the energy-momentum conservation
equation ∂µT µν = 0.

We combine these results to obtain a diffusion equation for
the momentum current

∂gt/∂t = ν∇2gt (8)

to linear order. The kinematic viscosity is given by

ν = η/(ε+ p). (9)

This quantity measures the relative strength of the viscous
relative to the fluid’s and inertia, as is most apparent in the
nonrelativistic limit, where ε + p → ρ for ρ the mass density
(c = 1). It follows that ν ≈ η/ρ [21]. In our relativistic system
at small net baryochemical potential, µ≈ 0, so that ε+ p≈ T s.
Then ν is given by (1).

Observe that (8) applies for any fluctuation gt for which
∇ · gt = 0 [21]; our physically-motivated radial gt(z, t) is a
specific instance of such a flow. Such shear modes are related
to sound waves (compression modes) but diffuse rather than
propagate [22]. Note that the scale over which sound is at-
tenuated Γs = (4η/3+ζ)/T s depends on both shear and bulk
viscosity [21–23].

Viscosity tends to reduce fluctuations by distributing the ex-
cess momentum density gt over the collision volume. This ef-
fect broadens the rapidity profile of fluctuations. We write (8)
in terms of the spatial rapidity y = 1/2 ln(t + z)/(t − z) and
proper time τ = (t2 − z2)1/2 to find

∂gt/∂τ = (ν/τ2)∂2gt/∂y2. (10)

A similar equation is used to study net charge diffusion in
ref. [26], and we can translate many of those results to the
present context. Defining

V ≡ 〈(y−〈y〉)2〉 =
∫

y2gtdy∫
gtdy

(11)

for 〈y〉 = 0, we multiply both sides of (11) by y2 and integrate
to obtain

d
dτ

V =
2ν
τ2 . (12)

For a constant ν, we compute the rapidity broadening

∆V =
2ν
τo

(
1− τo

τ

)
, (13)

where ∆V ≡ V − V (τo) for τo the formation time. Ob-
serve that V → 2ν/τo as τ → ∞. Also, note that the diffu-
sion equation (10) can be solved directly to find gt(τ,y) ∝
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exp[−y2/2V (τ)1/2]. The ratio (11) remains finite despite the
fact that gt → 0 in that limit.

We briefly remark on the effect of the mean radial flow vr
and transverse degrees of freedom on the growth of the rapid-
ity width. In the comoving frame where vr is small, we can
generalize (8) as

∂gt

∂τ
+vr ·∇⊥gt +gt ·∇⊥vr =

ν
τ2

(
∂2

∂y2 +∇2
⊥

)
gt . (14)

We transform the diffusion equation (14) into (10) by replac-
ing gt by a quantity that is averaged over the transverse coor-
dinate r⊥. To see this, integrate both sides of (14) over r⊥.
The transverse contributions lead to “surface terms” that van-
ish to this linear order. We stress that this result is independent
of the azimuthal anisotropy of the collision volume. This re-
sult follows because gt is conserved – it doesn’t matter where
the momentum is in the transverse plane, as long as we add
it up. Of course, that only applies if we limit our interest to
the rapidity dependance. To study the azimuthal behavior of
fluctuations we must solve the full eq. (14).

III. CORRELATIONS AND DIFFUSION

A. Transverse momentum correlations

We extend this discussion to address a more general ensem-
ble of fluctuations by considering the correlation function

rg = 〈gt(x1)gt(x2)〉−〈gt(x1)〉〈gt(x2)〉. (15)

In local equilibrium, rg has the value rg,eq. The spatial ra-
pidity dependence of ∆rg ≡ rg − rg,eq is broadened by mo-
mentum diffusion. If the rapidity width of the one-body den-
sity follows (13), then the width of ∆rg in the relative rapidity
yr = y1 − y2 grows from an initial value σo following

σ2 = σ2
o +2∆V (τ f ), (16)

where τ f is the proper time at which freeze out occurs. This
equation is entirely plausible, since diffusion spreads the ra-
pidity of each particle in a given pair with a variance ∆V . We
then take

∆rg(yr,ya) ∝ e−y2
r /2σ2−y2

a/2Σ2
, (17)

where (16) gives the width in relative rapidity and the width
in average rapidity ya = (y1 + y2)/2 is Σ.

To compute fluctuation observables in the next sections, we
identify spatial and momentum-space rapidity at a fixed freeze
out proper time τ f . Observe that ISR and FNAL data on the
rapidity dependence of multiplicity fluctuations [24] can be
characterized as Gaussian near midrapidity. Moreover, these
data show that charged particle correlations are functions of
the relative rapidity yr with only a weak dependence on the av-
erage rapidity ya. Correspondingly, we take Σ
σ. In the next
section we see that diffusion increases both σ and Σ compared
to their initial values σo and Σo at the hadronization time τo in
accord with (25) and (26). For simplicity, we assume that Σo
is sufficiently large that we can neglect the time dependence
of Σ in (26).

B. Transport in fluctuating systems

Observe that (16) and (17) are exact for our diffusion
model. To see that this is the case, we apply the theoretical
framework developed by Van Kampen and others [25] to vis-
cous diffusion. We have used this framework elsewhere to
study the effect of diffusion on net charge fluctuations [26].
Since the key results of this section, (16) and (17), are “obvi-
ous,” this section may be skipped on a first reading. However,
the details are amusing.

The framework of ref. [25] generalizes the classic prob-
lem of Brownian motion, in which a dust particle wanders
through a fluid with mean displacement d that satisfies d2 ∼
〈x2〉− 〈x〉2 ∝ t on average. Microscopic molecular collisions
cause the particle’s motion, while friction of the macroscopic
particle with the liquid dampens it. Here, we seek an evolu-
tion equation for rg, in which gt(x, t) replaces the Brownian
x. Our equation for rg must have the correct limit rg,eq when
the system is in equilibrium. Equation (33) in the next section
implies that

rg,eq(x1,x2) = δ(x1 −x2)
∫

f (x1,p)p2
t d p

= n〈p2
t 〉δ(x1 −x2), (18)

where f (x,p) is the phase space distribution of particles, n is
the density.

In the previous section we found that gt obeys a diffusion
equation (8) in the regime of small fluctuations, but this state-
ment requires clarification. Consider an ensemble of systems
with different initial gt . At the macroscopic scales of inter-
est, viscosity indeed dampens fluctuations, working to drive
gt(x, t) → 0. Opposing this dampening are Brownian-like ve-
locity and thermal fluctuations due to the microscopic motion
and collisions of particles. These fluctuations are present at
all times prior to freeze out. In equilibrium, fluctuations and
viscous dissipation are balanced.

To describe the effect of these fluctuations on the momen-
tum current, we treat gt as a stochastic quantity. It is the av-
erage of gt over our ensemble that satisfies (8); such an en-
semble average is always implicit in hydrodynamics. Going
further, we write a Langevin equation for the fluctuating gt as

∂gt

∂t
+∇ · jg = 0, (19)

where jg = −ν∇gt + k and k is a stochastic contribution to
the current. If we divide the fluid into tiny cells with a macro-
scopic number of particles, then particle and momentum flow
into and out of each cell gives rise to k. Observe that (19) con-
serves the transverse momentum current in each ‘event’ in the
ensemble. The current k is a Langevin noise term satisfying
〈k〉 = 0 and

〈ki(x1, t)k j(x2, t ′)〉 = K(x1, t)δi jδ(x1 −x2)δ(t1 − t2); (20)

see [25]. The coefficient K is determined by the requirement
that fluctuations have the correct value in equilibrium (the
fluctuation-dissipation theorem).



1026 Sean Gavin and Mohamed Abdel-Aziz

Applying the methods in [25] to (19), we find that the cor-
relation function (15) satisfies the diffusion equation

(
∂
∂t

−ν(∇2
1 +∇2

2)
)

∆rg(x1,x2) = 0, (21)

where ∆rg = rg − rg,eq. This equation means that over time
rg → rg,eq as small deviations in the momentum current dif-
fuse over the collision volume. As for (8), we emphasize that
(21) only applies in the linear regime where fluctuations are
small.

To get a rough understanding of how (21) comes about,
consider the change δgt in the time increment δt. The change
of the two-point equal-time function at points 1 ≡ (x1, t) and
2 ≡ (x2, t) is δ〈gt(1)gt(2)〉 = 〈δgt(1)gt(2)〉+ 〈gt(1)δgt(2)〉+
〈δgt(1)δgt(2)〉, where the increment δgt = (∂gt/∂t)δt is given
by (19). In the absence of noise, the term 〈δgt(1)δgt(2)〉
would vanish as δt2. However, noise forces gt to undergo
a “random-walk” so that δgt receives a stochastic increment
∝ δt1/2. This increment contributes to 〈δgt(1)δgt(2)〉 ∝ δt.
One finds(

∂
∂t

−ν(∇2
1 +∇2

2)
)

rg(1,2) = ∇1 ·∇2〈K(1)δ(1−2)〉; (22)

the right side is zero in the absence of noise. Choosing K so
that rg → rg,eq for a uniform system in equilibrium gives (21).

The correlation function ∆rg(y1,y2,τ) then obeys
(

∂
∂τ

− ν
τ2

∂2

∂y2
1
− ν

τ2
∂2

∂y2
2

)
∆rg = 0. (23)

We write (23) in terms of the relative rapidity yr ≡ y1−y2 and
average rapidity ya = (y1 + y2)/2:

(
∂
∂τ

− 2ν
τ2

∂2

∂y2
r
− ν

τ2
∂2

∂y2
a

)
∆rg = 0; (24)

the “2” follows from the transformation to relative rapidity yr.
To compute the widths of ∆rg(yr,ya,τ) in relative or average
rapidity, one multiplies (24) by y2

r or y2
a and integrates over

both variables. We find

∆〈(yr −〈yr〉)2〉 = 2∆V (τ) (25)

and

∆〈(ya −〈ya〉)2〉 = ∆V (τ), (26)

where ∆V (τ) is calculated in the previous section.

IV. VISCOSITY IN ION COLLISIONS

Gyulassy and Hirano survey computations of the ratio of
the shear viscosity to the entropy and find that both the hadron
gas and the perturbative quark gluon plasma have η/s ∼ 1, if
one naively extrapolates these calculations near TC [6]. These
values correspond to ν = η/T s roughly of order 1 fm for
TC = 170 MeV. On the other hand, they argue that the entropy

FIG. 3: Rapidity spread vs. time for momentum diffusion from (13)
and (16) for two viscosity values. The gray area marks the range
extrapolated from data in ref. [15] using (42).

increase near TC reduces η/s for a strongly interacting plasma,
perhaps to the supersymmetric Yang-Mills value η/s = 1/4π.

Motivated by these estimates, we show in fig. 3 the increase
of σ given by (13) and (16) as a function of τ. Calculations for
two values ν/τo ∼ 0.1 and 1 schematically exhibit the likely
range of viscous broadening. For τo ∼ 1 fm, these values re-
spectively correspond to η/s ∼ 1/4π and 1. We provide these
calculations as benchmarks; more realistically, ν would effec-
tively increase with τ depending on the state of the fluid.

We stress that the rapidity width depends on the viscous dif-
fusion coefficient integrated over the collision lifetime. Com-
paring the viscous and perfect scenarios in fig. 3, we see that
the largest contribution to this width comes from the earliest
times. Consequently, we expect measurements of this width
to yield information on the viscosity when the evolution is
dominated by partons.

V. FLUCTUATIONS AND CORRELATIONS

A. Transverse momentum covariance

Variation of the radial fluid velocity over the collision vol-
ume induces correlations in the transverse momenta pt of par-
ticles [27]. To describe such correlations, we observe that
an inhomogeneous fluid near local thermal equilibrium can
be divided into cells that are small enough to be regarded as
uniform, while containing a macroscopic number of particles.
Particles emerging from cells of different radial velocity vr
are more likely to have different pt than particles from the
same cell. We describe the number of particles of momen-
tum p in a cell at position x at the instant of freeze out as
dn = f (x,p)d pdx, where d p ≡ d3 p/(2π)3 and dx ≡ d3x. We
take the phase space density f (x,p) to be a Boltzmann distrib-
ution corresponding to the fluid velocity v(x) and temperature
T (x). The temperature and velocity profiles both vary from
event to event. A similar formulation is used in [28] to com-
pute nonequilibrium pt fluctuations. Here, we focus on central
collisions, where there is a body of RHIC data suggesting that
local equilibrium is likely achieved.

To characterize the dynamic correlations of pt , we use the
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transverse momentum covariance

C = 〈N〉−2〈∑
i �= j

pti pt j〉−〈pt〉2, (27)

where i labels particles from each event and the brackets rep-
resent the event average. The average transverse momentum
is

〈pt〉 ≡ 〈∑ pti〉/〈N〉. (28)

This quantity vanishes in local thermal equilibrium, where the
momenta are uncorrelated and particle number fluctuations
satisfy Poisson statistics, so that 〈N2〉− 〈N〉2 = 〈N〉. It fol-
lows that 〈pt1 pt2〉eq = 〈N(N −1)〉〈pt〉2/〈N〉2 = 〈pt〉2.

This covariance is related to the spatial correlations of the
momentum current (15) by

C = 〈N〉−2
∫

∆rg(x1,x2)dx1dx2. (29)

To obtain this result, observe that near local equilibrium
f (x,p) = 〈 f 〉+δ f , where the average distribution is 〈 f (x,p)〉
and the event-wise deviation δ f is necessarily small. Then

〈N〉〈pt〉 =
〈∫

ptdn
〉

=
∫

pt〈 f 〉d pdx+
∫
〈gt(x)〉dx

≡
∫

pt〈 f 〉d pdx. (30)

The contribution of fluctuations to the momentum current,

gt(x) =
∫

δ f (x,p)ptd p, (31)

vanishes on event averaging. Similarly, the unrestricted sum
is

〈∑ pti pt j〉 = 〈
∫

pt1 pt2dn1dn2〉

= 〈N〉2〈pt〉2 +
∫
〈gt(x1)gt(x2)〉dx1dx2. (32)

We find ∫
rgdx1dx2 = 〈 ∑

all i, j
pti pt j〉−〈N〉2〈pt〉2

= 〈N〉2C + 〈∑ p2
ti〉; (33)

the second equality follows from (27). In local equilibrium,
C ≡ 0 implies

∫
rg,eqdx1dx2 = 〈∑ p2

ti〉. Subtracting this term
from (33) gives (29).

B. Multiplicity variance

The correlation information probed by C differs from that
found in the multiplicity variance

R = (〈N2〉−〈N〉2 −〈N〉)/〈N〉2. (34)

Multiplicity fluctuations and their relation to correlation func-
tions are discussed in [29]. As before, and in accord with [29],
we write

R = 〈N〉−2
∫

∆rndx1dx2, (35)

where ∆rn = rn − rn,eq and

rn = 〈n(x1)n(x2)〉−〈n(x1)〉〈n(x2)〉. (36)

The density correlation function (36) carries different infor-
mation than (15) because particle number is not conserved.
Density fluctuations evolve by the full hydrodynamic equa-
tions, while gt follows diffusion. We mention that

rn,eq = 〈n(x1)〉δ(x1 −x2), (37)

which is analogous to (18) but somewhat easier to understand.
Equation (37) implies that (36) vanishes when particle number
fluctuations obey Poisson statistics, a property that is evident
from (34).

C. Rapidity dependance of pt covariance

Viscosity information can be obtained from C as follows.
For simplicity, we identify spatial and momentum space ra-
pidity. The broadening in rapidity of ∆rg depends on the shear
viscosity via (16). Equation (29) implies that the rapidity de-
pendence of ∆rg can be measured by studying the dependence
of (27) on the rapidity window in which particles are mea-
sured.

We illustrate this acceptance dependence in fig. 2 for the
ν/τo values from fig. 1 as follows. The covariance C is com-
puted by integrating ∆rg over an interval −∆/2≤ y1, y2 ≤∆/2
corresponding to the experimental acceptance. We use (17),
(29), and assume Σ 
 ∆/2 to obtain

〈N〉C ≈ 1
〈N〉

∫ ∆/2

−∆/2

∫ ∆/2

−∆/2
∆rg(y1,y2)dy1dy2

≈ 2
〈N〉

∫ ∆/2

0
dya

∫ ∆/2−ya

−∆/2+ya

∆rg(yr,ya)dyr

≈ 〈N〉C
∞

erf
(

∆/
√

8σ
)

, (38)

where the total number of charged particles is 〈N〉 ∝ ∆ and
〈N〉C∞ is the value obtained for a large rapidity window. We
assume τ f /τo ∼ 20.

VI. CURRENT DATA

A. Rapidity dependence of pt fluctuations

Transverse momentum fluctuations have been measured at
STAR and at the CERN SPS. We now ask whether informa-
tion from these measurements can provide any information
on the viscosity. The covariance C we propose is sensitive
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FIG. 4: Rapidity dependence of the pt covariance (27) for τ f /τo ∼
20. The initial distribution has σo ∼ 0.5.

to the variation of the pt of particles as well as their number
density, in that both quantities affect the momentum current.
Other measures of pt fluctuations in the literature are designed
to minimize any density contribution, often termed “volume
fluctuations” [31]. This difference is important for the follow-
ing discussion.

The STAR analysis in ref. [15] incorporates some of these
ideas and, intriguingly, finds a broadening in rapidity together
with a narrowing in azimuth for pt correlations in central com-
pared to peripheral collisions. We will use the rapidity in-
formation to estimate the viscosity. However, the measured
quantities differ sufficiently from C that this estimate requires
significant model assumptions. We therefore regard the result
only as a signal of our method’s promise.

STAR employs the transverse momentum fluctuation ob-
servable ∆σ2

pt :n to construct a correlation function as a func-
tion of rapidity and azimuthal angle. They find that near-side
correlations in azimuth are broadened in relative rapidity, with
a rapidity width σ∗ that increases from roughly 0.45 in the
most peripheral collisions to 0.75 in central ones [15]. In our
terms,

∆σ2
pt :n = 〈N〉−1〈∑

i �= j
(pti −〈pt〉)(pt j −〈pt〉)〉. (39)

To relate this to our observables, we expand the right side and
use (28) to find

〈N〉∆σ2
pt :n = 〈∑

i �= j
pti pt j〉−〈N(N −1)〉〈pt〉2, (40)

since the average number of pairs is 〈N(N − 1)〉. We then
obtain

∆σ2
pt :n

〈N〉 = C −〈pt〉2R, (41)

where C and R are respectively given by (27) and (34).
The quantity ∆σ2

pt :n therefore depends on both momentum
current and density correlation functions (15) and (36),

∆σ2
pt :n = 〈N〉−1

∫
{∆rg −〈pt〉2∆rn}dy1dy2. (42)

We can directly compare σ∗ to σ in fig. 1 if ∆rg and ∆rn have
the same widths. Equation (16) then implies that the widths in
central and peripheral collisions satisfy

σ2
c −σ2

p = 4ν(τ−1
f , p − τ−1

f ,c). (43)

Observe that the dependence on τo cancels. Taking the
freeze out times in central and peripheral collisions to be
τ f ,c ∼ 20 fm and τ f , p ∼ 1 fm, we then find ν ∼ 0.09 fm.
The value τ f , p ∼ 1 fm is reasonable, since ref. [15] argues
that the average participant path length is about 1 fm for these
peripheral collisions. We use (1) to find η/s ∼ 0.08.

This result is remarkably close to the supersymmetric Yang
Mills value 1/4π, and is consistent with some hydrodynamic
comparisons to elliptic flow data [5]. However, we must be
cautious: If ∆rg and ∆rn have different rapidity widths σ and
σn then their relation to σ∗ depends on the relative strength
of these contributions. Data in ref. [32] may indicate that σn
is roughly twice σ∗. As we argue shortly, σ is bounded by
σn and σ∗. At the maximum value σ = 2σ∗, our dynamic
assumptions yield η/s = 0.3. Together, our estimates con-
stitute an uncertainty range for the viscosity-to-entropy ratio,
0.08 < η/s < 0.3. We also indicate the range of σ2

c −σ2
p im-

plied by the STAR data in fig. 3 as a gray band corresponding
to σ∗ < σ < 2σ∗.

To show σ is bounded by σn and σ∗, we observe that (42)
implies that σ∗ follows from a distribution in relative rapidity

f (yr) = ∆rg −〈pt〉2∆rn. (44)

It follows that

σ2
∗ =

∫
y2

r f (yr)∫
f (yr)

=
σ2G−σ2

n〈pt〉2N
G−〈pt〉2N

, (45)

where G =
∫

∆rg and N =
∫

∆rn. We then find

σ2 =
σ2∗ +βσ2

n

1+β
, (46)

where β = 〈pt〉2N/G. Although β is not measured, the width
cannot exceed σn ∼ 2σ∗. (We restrict our integrals to a rapid-
ity and pt region where a Gaussian parameterization of ∆rg
and ∆rn makes sense; hence β ≥ 0).

We briefly comment on the narrowing in azimuth for pt cor-
relations observed in ref. [15] in central compared to periph-
eral collisions. The diffusion broadening of azimuthal corre-
lations is compensated by a narrowing due to the mean radial
flow vr, which hurls particles outward, and surface bias, which
hides particles that flow in the wrong direction. Opening-
angle effects in resonance decays lead to further narrowing.
These effects are familiar in HBT. To address the azimuthal
dependence of correlations, an equation analogous to (24) can
be derived from (14). One must also account for the azimuthal
anisotropy of the collision volume.

B. Other experimental information

As an aside, we now note some of the information from
other experimental pt fluctuation studies. The observable
〈δpt1δpt2〉 studied in [28] and measured in [9], [10] and [11]
satisfies

∆σ2
pt :n =

〈N(N −1)〉
〈N〉 〈δpt1δpt2〉, (47)
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FIG. 5: (Color online) Energy dependence of the pt fluctuations us-
ing the observable (47). Data are from [9], [10], and [11].

where R = (〈N2〉− 〈N〉2 −〈N〉)/〈N〉2 measures multiplicity
fluctuations [29]. The energy dependence of this quantity is
shown in fig. 5.

The energy independence of these measurements supports
the hypothesis that the largest contribution to pt fluctua-
tions is from the collective behavior of soft and semi-hard
particles rather than jets as sometimes noted [34]. New
PHENIX energy-dependence data further supports the soft
origin of fluctuations [35]. Observe that (47) implies that
∆σ2

pt :n will increase with energy in proportion to the multi-
plicity if 〈δpt1δpt2〉 is energy dependent. All this concerns the
overall scale of the fluctuations. Little can be said about the
energy dependence of the rapidity distribution of these fluctu-
ations at present.

Alternative observables Φpt , Fpt , and ∆σpt proposed in
[30], [13], and [14] satisfy Fpt ≈ Φpt /σ ≈ 〈N〉〈δpt1δpt2〉/2σ2

for σ2 = 〈p2
t 〉−〈pt〉2, see e.g. [31]. Broadly, the differences in

these various quantities is important only in peripheral colli-
sions where the multiplicity is small. The different quantities
have depend differently on the experimental efficiency, e.g.,
〈δpt1δpt2〉 is designed to minimize efficiency dependence.
Other differences may reflect the different experimental ac-
ceptance and analysis issues.

VII. SUMMARY

In summary, we find that shear viscosity can broaden the ra-
pidity correlations of the momentum current. This broadening
can be observed by measuring the transverse momentum co-
variance (27) as a function of rapidity acceptance. Our rough

estimate from current data, η/s ∼ 0.08− 0.3, is small com-
pared to perturbative computations [6]. To reduce the exper-
imental uncertainty, we suggest measuring C to allow more
direct access to the momentum density correlation function.

We stress that there is additional theoretical uncertainty in
this estimate, mainly due to our freeze out model. In prac-
tice, σ2

c −σ2
p ≈ 4ντ−1

f , p, since τ f , p � τ f ,c. The freeze out time
in peripheral collisions τ f , p is not plausibly smaller than our
value 1 fm (the nucleon radius), but may be twice as large.
This would double the upper limit of our uncertainty band.
That added uncertainty can eventually be reduced by measur-
ing τ f , p as in [33]. HBT and resonance effects omitted here
may contribute only at the 10% and 15% levels, respectively
[10]. Minijets, color glass, and other particle production ef-
fects modify σo in (16). We assume that any modification
cancels in studying the centrality dependence at fixed beam
energy. As to our hydrodynamic treatment, we have not con-
sidered alternative transport formulations that enforce causal-
ity [36]. Furthermore, our linearized diffusion model of flow
fluctuations is physically reasonable but highly idealized. A
more refined hydrodynamic description will be necessary to
confront the measurements we suggest.

How can we reduce the theoretical uncertainty? The viscos-
ity of a common fluid can be measured by applying a known
pressure and observing the resulting flow in a fixed geometry,
e.g., a pipe. Alternatively, one can study the attenuation of
high frequency sound waves from a calibrated source. Efforts
to compare flow measurements to viscous hydrodynamic cal-
culations are analogous to the first method [5]. Our observable
C is in the spirit of ultrasonic attenuation. The early dynamics
produces a spectrum of fluctuations analogous to sound waves
that are attenuated by viscosity [37]. We suggest that experi-
menters pursue both approaches to extract quantitative viscos-
ity information from ion collisions, since the initial conditions
and model parameters are all unknown.
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