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Ghost Free Analysis of a Nonsymmetric Theory of Gravitation
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The absence of ghost-negative energy radiative modes in a proposed generalized theory of gravitation based on
a non-symmetric metric is reanalyzed. The missing contribution of the symmetric sector of the Lagrangian is
calculated and shown to be null. The ghost free character of the theory is then firmly established.

1 Introduction Here we use the notatidd =,/—gX, whereg is the deter-
minant ofg, s whose inverse ig*? as defined by*?g,,., =

In this paper we shall investigate in a more complete way theJ5. Next

problem of the emission of gravitational radiation in a metric

nonsymmetric theory of gravitation developed by one of us Uap =

in a previous work [1], herefrom referred to as I, which has

not been adequately investigated in that paper. In a secondymmetric, because the second term is (see below), is the
paper [2] the solution _of the field equations for a spherlcal analogue of the Ricci tensor, depending only on the sym-
point source was obtained together with its implications for ,atric part of the connection which is given by

the motion of test particles and light. The theory was shown

o o o A o A
Llas)o = LTloa)s s Mo =Tl [os): ()

to be consistent with the four classical solar tests of general 1
.. o — ~4(0N) ( + _ )
relativity. (aB) = 59 Sax,B T 8A8,a — Sag,A
The sources of the field are the energy-momentum- 1
i - (o) _s0SA _ SAso s
stress tensof, s and the phenomenological coupled mat- +4 (g Sap — 003 (5a5ﬂ) (ln ) , (3)
ter fermion number current density* = Fn®, where 97 A

n® = nu® is the fermion number density.f current found . , . ) .

in the description of the interior of stars amtlis the cou- ~ WNeresqs symmetric and with determinant, is the in-
pling constant of the current to the geometry. The gravita- verse ofg(*? as defined by.g(*" = 657. Next,I'y =
tional radiation comes from both of these sourcspeing 38, — I',) is the torsion vector involving contractions

the one connected directly to the antisymmetric part; of the antisymmetric part of the connection ahés the cos-

of the metric. In | it was claimed that the energy of the Mmological constant. Tha term of Eq. (1) could be written
emitted radiation coming from the current sousteis pos- ~ 2v/—gA butwe shallkeepitas itis to make a close contact to
itive definite. As the part coming from the stré&s; hasno |- From Eq. (3) one sees thef, ,, = (In(—g)/v~s) , SO

problem, it was concluded that the theory is free of ghost- the second term on the right of Eq. (2) is in fact symmetric.
negative radiative modes which, as shown by Damour, DeseVariations with respect tg”, IV, 5 andl’, yields the field
and McCarthy (DDM) [3], were present in previous theories. equations. The former leads 80,5 + I'(o, 5] + Agas = 0,
However, in analyzing the radiation coming from the current with symmetric and antisymmetric parts given by
sourceS® only a part of the Lagrangian, its antisymmetric

sector, was taken into account leaving it open the question of Uap + Ag(ap) =0 (4)
what the contribution coming from the other part, the sym-

metric sector, might be. Here we complete this missing cal- gnd

culation showing that this last contribution is actually null r LA —0 5)
guaranteeing in this way that the theory is really ghost free. [ex,5] Ilap] '

The variation with respect 07,4 leads to the third field

2 The field equations equation

g | glamps

Bupa  _ g(aB) -
(i) + 87T — 81T, 0, (6)

The vacuum field Lagrangian of the theory is written in Eq. (wy)

(1-5.13), here with the replacemeti, /3 =T, which can be solved as in Eqg. (3), and the last one leads to

1 the fourth one,
L =g (Uaﬁ + Tiap + 2Agaﬁ> : (1) glodl 5= 0. 7
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3 The energy-momentum-stress ten- and
1
sor Lop = gl (F[a,ﬁ] + 2Ag[ag]> . (14)

Following DDM [4], the idea behind the calculation is to ex- onlv this part of the Laarangian was considered
pand the field Lagrangian in Eq.(1) about a Riemannian gen-. 3{ T P nd  order wg 9 that this term i
eral relativity (GR) background space with met€ig, 5 in n(g)' 0 seco aﬁo (% el see (tha s 1€ S
such a way as to have the Lagrangian splitted in two terms,L2B = V-GB F[a,ﬁ] + 5AB‘W) = —Av-G
the one of GR and a second one containing the contributionG**G? B. s B,,5 /2, where use has been made of Eq. (5) in
of glag- This is done by writingg.s = Gas + gap and the last step. From Eg. (10) this gives to tHestress tensor
expandj.s=g(ap) + Jlap) in powers of the lowest-order an-  the contribution written in Eq. (I-5.19)

tisymmetric part of the metri&,z = g[(;)ﬂ] which acts as a
perturbation, keeping the expansion to second order Tgﬁ - _LA (1G‘WBWBN _ B““Bﬂu) (15)
8 4 v ’

Jap = Gaﬁ + Baﬁ + afBauB#B + bG(xﬁB#VB;u/- (8)

. - which is typical of a Maxwell field stress tensorAf < 0.
ngea af‘db are constants to beL determ;ned anq indices A€ This then leads to a positive energy contribution as ascer-
raised with the GR metriGo5, B"5 = G*"Byg. Withsuch — 5ih04jn |, By the way, this result follows immediately from
an expansion the Lagrangian can be expanded as the relationssy/—G = v—GG*#3G.5/2 and 6GH? =

L=V-G(R(G) +2A) + L, (9  —G"eGP73Gq; when varyingLyy.
) ) ) ) Our problem now is to see what the contributiong of
where the first term is 'Fhe L_ag_rang|an correspondlng to theihe B field is. As it will be showrL;  will give no contri-
GR background field with Ricci scald andL is the con-  tion to theB stress tensor. We proceed with the expansion

tribution of the B,,; field, which acts then as a "matter” La-  of the first term on the right of Eq. (13) on account of Eq.
grangian in the GR background field. In this formulation the (8). First we have, wittB*” B,,, = B2,

B gravitational stress tens®t,” is defined through the vari-
ation of theB action according to [4§I5 = [ dLpd'z = 1
87 [ T3P 6G opd*z, that s, V=9=v-G {1 +70-2a+ 86)32} - (16)

o 1 oL

T’ = Sﬂmﬁ- (10) Next, the inverse to Eq. (8) ig®® = G* + B*P 4+

“ (1 —a)B*B,? — bGP B2. Its symmetric part ig(*?) =

All what we need is theB field Lagrangian to second or-  G*% 4 (1—a)B*B,” —bG*’ B2, whose inverse is,; =
der and that is why we stopped at that order in Eq. (8). To G5 — (1 — a)B*B,,” + bG,3B2. Thus, from Eq. (3) we
make a c_Iose contact with | we rewrite Eq. (1) asasumofagge thatte .. — 274+ fﬂaﬁ where the first term is the
symmetric sector plus an antisymmetric one, °

Christoffel connection of thé& field and the second term
1 1 is the contribution of theB field, which is at least of order
L =g (Uaﬁ + 2Ag(aﬁ)>+g[“ﬁ] (F[a,m + 2Ag[a5]> O(B?) because,s = G5 + O(B?). With this we obtain
(11) for U,p the relationl, s = Ros+ Uap Where
and consider the contribution of each ternitg. Only the i . . . .,
contribution of the second term was considered in I, lead-  7us=T"(04)j6 — Cao)s + Lias Do) — Liap Lo
ing to a positive energy. Here we shall complete the cal- 17)
culation by investigating what the contribution of the first is the contribution of theB field. Here a vertical bar in-
term is. Calling these contributiods, 5 andL,p we write dicates the Riemannian covariant derivative with respect to

Ly =L + Lo in Eq. (9), the background Christoffel connection. Knowing all this
it is easy to write down the form oL;p in terms ofa
L=vV-G(R+2M) +Lip +Lop, (12)  andb. As eachl is of orderO(B2) we see that the term
where according to Eq. (11) V—=GG*? U, coming from the expansion of the first term

on the right-hand side of Eq. (13) is of fourth ordemnup
1 to a total derivative coming from the two first termsof,
— (@B) z _JZa(qe8 g B8
Liz=¢ (U""a + 2Ag("“ﬁ)) G(G™ Rop + 20 which does not contribute to the Lagrangian. To the desired
(13) second order the final result is

]

1
L2 = V=G ({4(1 — 2a 4 4b) B>G*P + (1 — a)Ba”Buﬁ} Rap + A(4b — a)B2) : (18)
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The last task before calculating the corresponding contribu-wherel is the mass of the particle. The last nonzero metric
tion to the stress tensor is then to determine the values of thecomponents are
two parameters.

1

F
_—. 22
r2 (1+ %)3/4 (22)

. . giro] = —Y[or] =
4 Determination of the parameters

b we make use of the solution of the field equations for a the standard ones® = (¢, r, 0, ¢) following the same steps
point mass source found in [2] and compare with Eq. (8) We encounter in GR [5]. These harmonic coordinates are the
when properly expanded. The solution fors correspond- ~ Ones appropriate to radiation problems as we are now fac-

ing to the static spherically symmetric arc element, given in ing. The havrmonic condition is here defined by the relation

coordinater® elation becomes, as shown in Appendix

ds* = ydt? — adr? — r*(d6? + sin® 0d¢?) , (19) A,
: 2 v A
is @p) X o xr g 23
F2 1/2 2M F2 1/4 g o ] -9 (ap) vy — Y- ( )
7<1+r4> r<1+r4> (20) Ow Oz
Notice that as Eq. (6) gives the relation
and g@d) 5 +g(“ﬂ>1“(”aﬁ) = 0 similar to GR, the above ex-
1 2 oM 2\ 3/ pression can also be written as'{? X*,,) 5 = 0. We
— =1+ 4(1+4) , (21) set
« T T
]
X' = R(r)sinfcos ¢; X? = R(r)sin¢; X> = R(r) cos 0 (24)

and look for the solution foR(r) from Eq. (23). Having this we can determine the arc element in terms of the new space
variables. Usinglr = dR/R, R2d) = dX;dX; — (dR)?, and RdR = X;dX; we obtain

2 o} r? X;X; P
dij + (? - ﬁ) jo dx'dXx’. (25)

r
ds? = ~ydt? — V2

Having R(r) we will then be able to determine the parame- dence is all we need for the determination of the parameters
tersa andb by comparing the resultant metric components a andb. We show the details of the calculation in Appendix
with Eq. (8). To obtainR(r) we concentrate on Eq. (23) B and quote here only the final result,

for the space componefif’ and make use of Egs. (lI-13) )

and (11-20) fqr the needed value_sgff““m gndl‘(”uﬁ)_. In this R=r(1+ F74). (26)

way we obtain a second order differential equation/ér) 4r

which we solve to first order i /r* only. We neglect the Plugging this in Eq. (25) together with the valuescoand
curvature terms that depends &h because thé” depen- ~in Egs. (20) and (21) without th&/ terms we find

]
2 F? F? X; X, I
2 _ 2 1“1 %
ds <1+2T4)dt [(127A>52-j+r4 B ]dX dXx’. (27)
|
Now, to lowest order, that is keeping onB}y; terms andno  and
curvature contributions, Eq. (8) gives gij = —(1 — 2bBox Bok )8 — aBoiBo;. (29)

Comparison with the metric components present in Eq. (27)
shows that
goo = 1+ (a — 2b)BOiB0i (28) a=1 (30)



824 S. Ragusa and L. Chibebeleri

and ) and for the symmetric part of the connection [6]
b = 7 (31)
4 7 faia @@’W a2jn (33)
and Bo;By; = F?/r* this last relation being in agree- (@B) = gzn \ 9z dzB~ (o) ' gxadaB )

ment with the first order part of Eq. (2@}33] = F/r? =
(BoiBo;)'/?, the modulus oB3; (r). With the results in Egs.
(30) and Eqg. (31) we see the right hand side of Eq. (18) van-
ishes,ngB) = 0. ThereforeL, s is at least of fourth order

in the B field, and as a consequence of this the correspond-
ing stress tensor vanishes. Therefore, Eq.(15) gives the full
expression of the3 stress tensor. This then establishes in \yjith the harmonic conditio@“’”)f? o =
a complete way the positive definite character of the theory (23), withz* = X P
developed in [1]. ' '

Contracting these two equations, and multiplying by
07> /0x” we obtain

02z
Ax*dzP

=A
g(aﬁ)rw oz

9T oA
(ap)ggy =977

= (o) + g(aﬁ)

(34)

0 we obtain Eq.

5 Appendix A: Harmonic relation 6 Appendix B: Solution for R

We use Egs. (II-13) and (II-20) for the needed values of
g(ed) andl“?aﬁ)and note in special the relatiop8’y/a =

v/(ay—w?) = —g' and fag") !t = 1-F?/(F*+11).

The transformation formula fog(*?) () when we go to a
new coordinate frame is

92 0aP ()

glod) = ——_ 2= (32) In this way we obtain after some algebra
oz oz
]
N I A S i 20R (PN (35)
2y 2a 1 24t r2 F24p4) 7

which we solve forR to first order inF2?/r* only. We ne-
glectin Egs. (20) and (21) the curvature terms that depends
on M because thé" dependence is all we need for the de-
termination of the parametessandb. PuttingR = r + x F'2

we are led to the differential equation

2z 1_

0
rz2 b ’

(36)

x?’ + 7 _
with solutionz = 1/4r3. Then,R = r(1 + F?/4r%) as
written in Eq. (26)
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