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Polymer Dynamics: Long Time Simulations and Topological Constraints
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Topological constraints, entanglements, dominate the viscoelastic behavior of high molecular weight poly-
meric liquids. To give a microscopic foundation of the phenomenological tube, recently a method for identifying
the so called primitive path mesh that characterizes the microscopic topological state of (computer generated)
conformations of long-chain polymer networks, melts and solutions was introduced. Here we give a short
account of this approach and compare this to long time simulations.
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I. INTRODUCTION

The viscoelastic properties of polymer liquids and their link
to the microscopic structure and dynamics are key issues in
modern polymer science and biophysics [1–6]. For this a pro-
totypical system is a melt or semi-dilute solution of long (flex-
ible) chain molecules. On a microscopic scale, their Brown-
ian motion is dominated by the restriction that the chains may
slide past but not through each other. This introduces mo-
tion constraints in a way that each polymer chain can only
move along a tube like region around a so called primitive
path. This primitive path is the backbone of the appropriately
coarse grained chain contour [7, 8]. Recent, more refined ana-
lytical [3, 9] and numerical models [10–14] concentrate on the
dynamics of these primitive paths. These models are able to
quantitatively describe many rheological and single chain dy-
namics data with a small set of material-specific parameters
such as the tube diameter, dT . It is the purpose of the present
short contribution, to compare a topological approach to de-
termine the tube diameter from chain conformations with long
time simulations, which essentially follow an analysis close to
experiments.

II. EXPERIMENTS/SIMULATIONS

The key quantity of the theory, the mesh of primitive paths
or equivalently the tubes with diameter d2

T ∼ Ne, the entangle-
ment molecular weight, is experimentally not directly accessi-
ble. Thus a variety of experiments have been devised, leading
to estimates of dT (or equivalently, Ne), based on different the-
oretical approximations. Here we discuss three examples.

A. Chain Diffusion D(N)

The diffusion of individual beads as well as of the whole
chain can be studied by a variety of experiments as well as
computer simulations. Within the concept of the tube or rep-
tation model one expects for the diffusion constant of a whole
chain in a melt or semidilute solutions of identical other chains
(N being the chain length):
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respectively from different experimental and simulation results
for various polymer systems. The best fit for the entanglement length
yields ne = 62±8 coarse grained beads, giving approximately Ne,D'
15. Figure taken from[16]

D(N) ∼
{

N−1 ;N ≤ Ne
NeN−2 ;N À Ne

(1)

Recent experiments even suggest a somewhat stronger de-
cay for longer chains[15]. Taking the above relation, we ex-
pect a universal curve, when plotting the ratio of D(N) over
the hypothetical short chain diffusion constant of the same
chain length vs N/Ne. Using this one can fit a value for Ne,
if a "master plot" is available, cf, Fig. 1. For the present case
of the diffusion of polycarbonate, the master curve is from
experiments on polyethylene [16]. This allows for a first de-
termination of Ne and thus dT .
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B. Dynamic Structure Function S(q,t)

Alternatively one can also analyze the dynamic coherent
scattering function of individual chains as done for example
in neutron scattering experiments. For simple computer poly-
mers, all form factors of the monomers or beads are taken
equal and are set to one. Then S(k, t) reads

S(k, t) =
1
N ∑

i, j
exp[ik(ri(t)− r j(0))], (2)

with ri(t) being the position of bead i at time t. For times
larger than the time a bead needs to explore the diamter of
the tube, but much shorter than the time the chain needs to
diffuse out of the tube, the scatterer observes a smeared out
bead density within the tube, akin to the effect described by
the Debye-Waller factor in solid state physics. This leads in
the aforementioned time regime to a plateau in the decay of
S(k, t)[17–19]

S(k, t)
S(k,0)

= {[1− exp[−(kdT /6)2]
]

f
(

k2b2
√

12Wt/π
)

+exp[−(kdT /6)2]} 8
π2

∞

∑
p=1,odd

exp[−t p2/τd ]
p2 , (3)

where f (u) = exp[u2/36]er f c(u/6), b is the bond length and
W is the bead friction. Figure ?? shows this, again for the ex-
ample of polycarbonates[16]. From the above expression dT
can be estimated. Again, dT is used to fit the data to the the-
ory. If we assume that d2

T = R2(Ne) = Nec∞b2, R2(Ne) being
the mean square end to end distance of a chain of Ne beads
and c∞ the Flory characteristic ratio [20], it is then possible to
calculate the entanglement length Ne.

C. Plateau Modulus G0
N

The third approach goes back to the very origin of the tube
models and employs the analogy between long chain poly-
mer melts and networks. Under elongational or shear strain
the initial stress relaxes rapidly towards a plateau G0

N . In a
simulation, the normal stress σn can be determined by the mi-
croscopic virial tensor and the resulting stress plateau can be
fitted to the stress strain formulas from classical rubber elas-
ticity (CRE) (e.g. elongational strain in the limit of small de-
formation λ) [21, 22]

σn = G(λ2− 1
λ

), (4)

to determine G0
N , which in turn is related to Ne [1, 3] by the

expression

G0
N =

4
5

ρkBT
Ne

. (5)
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FIG. 2: Scaled dynamic structure factor S(q, t)/S(q,0) as a function
of time for the polycarbonate melt with chain length N = 120 repeat
units. For each q-value, dotted lines show the fit to the expression of
equation 3. Figure taken from[16]

TABLE I: Values obtained for Ne using the different approaches dis-
cussed in the text for fully flexible bead spring chains [17] and a
coarse grained model of polycarbonate (BPA-PC) [16, 30]. The max-
imum chain lengths studied are also indicated.

NBPA−PC
e Nbead−spring

e

D(N) ≈ 15 ≈ 70
S(q, t) 10 55

G0
N 5-6 72

Nmax 120 2000

where ρ is the bead density. This is the most direct experi-
mental way to determine dT and Ne respectively, as no fitting
is required and only the underlying theory is applied. How-
ever, this again is not a direct measurement of Ne.

In Table I the outcome of the different approaches from
simulations of a special coarse grained model of polycarbon-
ate and for highly flexible simple bead spring chains are given.
For both cases the material specific quantity Ne is very dif-
ferent, if obtained by different methods. While this by itself
is not surprising and problematic, it is the fact that the ratio
of the estimates from individual "experiments" is very differ-
ent for the two different cases. Thus there is a clear need for
an independent ansatz to obtain the material specific quantitiy
Ne, without referring to the rather indirect experimental ap-
proaches.
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III. PRIMITIVE PATH ANALYSIS

To do this, we go back to the original idea of Edwards [23]
who identified the random walk-like axis of the tube with what
he called the “primitive” path: the shortest path between the
endpoints of the original chain into which its contour can be
contracted without crossing any obstacle. Similar to the tube,
the primitive path is usually discussed without specifying the
relation between the obstacles and the melt structure. How-
ever the obstacles themselves are chains, which has to be taken
into account, when constructing the primitive path [24–26]. In
Ref. [24] we introduced a primitive path analysis (PPA) where
all polymers in the system are contracted simultaneously in a
way, that a linear stress strain relationship is kept. This allows
us to establish the microscopic foundations of the tube model
and to endow a highly successful phenomenological model
with predictive power for structure-property relations.

We performed the primitive path analysis on a variety of
different simple bead spring chain melts [27] and semi di-
lute solutions [28] with variable intrinsic stiffness [29]. All
these cases include the crucial ingredients characteristic for
polymeric systems: connectivity, flexibility, local liquid-like
monomer packing and mutual uncrossability of the chain
backbones. The parameters used for the PPA are given in [25].

Monodisperse polymer melts of M = 200− 500 chains of
length 50 ≤ N ≤ 700 at a bead density of ρ = 0.85 σ−3 (in
Lennard Jones units) are studied. By introducing a small in-
trinsic bond bending potential, the Kuhn length, lK = 〈R2〉/L,
is varied between 1.80 σ and 3.34 σ. 〈R2〉 is the mean squared
end to end distance of the chain and L is the chain contour
length. For details see Ref. [29]. In addition, we present
results for a coarse-grained model for polycarbonate (BPA-
PC)[16, 30]. In this case, we analyzed melt configurations for
M = 100 chains of N = 60 chemical repeat units which are
represented by four beads each. All the melt samples studied
are tabulated in [25].

The implementation of the PPA is straightforward: First
the chain-ends are fixed in space. Then, all intrachain inter-
actions other than the FENE bond interaction, which has its
minimum at r = 0, are switched off. Finally the total energy
is minimized by cooling the system slowly to T → 0. With-
out thermal fluctuations and intra-chain EV interactions, the
bond springs try to reduce the bond length to zero and pull the
chains taut. The interchain EV interactions provide an energy
barrier to prevent chain crossings. Needless to say, a crucial
ingredient for the success of the whole procedure is the avail-
ability of well equilibrated conformations[29, 31]! For details
of the PPA protocol we refer to [25]. The algorithm intro-
duced so far does not account for self-entanglements. In a
recent variant of the approach this is included in the PPA [25].

IV. RESULTS - COMPARISON TO EXPERIMENTS

In order to understand the relationship between the melt
structure and properties like the plateau modulus for many
different polymers and simple model systems we need a di-
mensionless way to compare data. To render the G0

N values

dimensionless, we need an energy scale and a length scale.
As the dominant contribution to G0

N is of entropic origin, kBT
as the energy scale suggests itself. However, there are essen-
tially two independent length scales that characterize the local
structure of polymer melts. One, the Kuhn length, lK [1] is
defined for random walks as the length of an individual step
of a freely jointed chain with the same mean-square end-to-
end distance 〈R2〉= lKL and contour length L. Random walks
however do not densely fill space. Locally however, most
monomers will belong to the same chain. The length at which
the polymers start to interpenetrate is given by the packing
length, p = (ρchain〈R2〉)−1. The packing length can be visual-
ized as the average strand strand distance. It is relevant to note
that the product of the number density of chains, ρchain, and of
〈R2〉 is independent of chain length for a fixed monomer num-
ber density, ρ. Following the standard convention [32] based
on the chemical structure of the polymers, we choose lK as the
unit of length. With this choice, instead of G0

N we can consider
the dimensionless quantity G0

N l3
K/kBT . This quantity has to be

a function of the only remaining dimensionless parameter: the
ratio of Kuhn and packing length lK/p.

The available experimental data for dense melts are the re-
sult of a long term substantial experimental effort [33, 34].
Rheological measurements were performed on these sam-
ples and in many cases the 〈R2〉 values were determined us-
ing small angle neutron scattering. Refs. [33, 34] provide
the values for the plateau modulus, G0

N , the mass density,
ρm, the ratio of the mean-square end-to-end distance to the
molecular weight of the polymer, 〈R2〉/M, and the packing
length, p = M/(〈R2〉ρmNA), where NA is the Avagadro num-
ber. All the melt data points obey the empirical relation
G0

N = 0.00226kBT/p3, indicated as the dashed line in Fig. 3.
The way to determine lk for experimental systems, depends
on the definition of the contour length. It is however worth-
while to note, if the empirical relation is valid, then any choice
for lK will preserve the scaling relationship between G0

N and
p. The actual choice for lK will determine the position of the
data points in Fig. 3 and will just move them along the dashed
line in the figure. All the melt data shown in the figure are
tabulated in [25], where also a more detailed discussion of
the mapping and the length scales can be found.

The aforementioned mapping can be also be used to
identify bead spring polymer models to individual chemical
species. The standard model [27] with fully flexible polymer
chains used in molecular dynamics simulations corresponds
to lK/p = 2.68. Among the available experimental data, the
chemical species with the closest lK/p value is natural rubber
(cis-Polyisoprene) with lK/p = 2.72. This suggests that the
elastic properties of the usually studied bead spring polymer
model corresponds most closely to that of natural rubber, the
prototypical experimental system for elastic behavior.

V. DISCUSSION

Having provided a method to determine the primitive paths
for melt configurations of entangled bead-spring model poly-
mers, we can now test the predictive power of the tube model.
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FIG. 3: Dimensionless plateau moduli G0
N l3

K/kBT as a function of
the dimensionless ratio lK/p of Kuhn length lK and packing length
p. Inset (a) contains (i) experimentally measured plateau moduli for
polymer melts[? ] (∗ Polyolefins, × Polydienes, + Polyacrylates
and . miscellaneous, (ii) plateau moduli inferred from the normal
tensions measured in computer simulation of bead-spring melts [17,
24] (¤) and a semi-atomistic polycarbonate melt [16] (♦) under an
elongational strain, and (iii) predictions of the tube model Eq. 6 based
on the results of our PPA for bead-spring melts (¥), and the semi-
atomistic polycarbonate melt (¨). The line indicates the best fit to
the experimental melt data for polymer melts by Fetters et al. [34].
Errors for all the simulation data are smaller than the symbol size.

To this end, we use the standard expression [1, 24]

G0
N =

4
5

kBT
pd2

T
=

4
5

ρkBT
Ne

, (6)

which relates the plateau modulus to the Kuhn length of the
primitive path. The dT values can be obtained from the con-
tour length of the primitive path, Lpp (which is the sum of the
lengths of all the back bone bonds of a chain averaged over all
the chains in the melt) using dT = 〈R2〉/Lpp. For details refer
[24, 25]. Fig. 3 shows an explicit comparison of the dimen-
sionless plateau moduli G0

N l3
K/kBT of experimental systems

and bead-spring model polymers with identical ratios lK/p.
The good agreement of the two data sets confirms the insensi-
tivity of entanglement effects to atomistic details and provides
the necessary validation of our generic bead-spring models.

VI. ACKNOWLEDGEMENTS

The present results are a subset of those, which are originat-
ing from a very fruitful and (in some cases) very longstanding
collaboration with G. S. Grest, R. Everaers, S. Sukumaran, C.
Svaneborg, L. Delle Site and S. Leon. The present work is
updated and shortened version of Ref. [35].

[1] M. Doi and S. F. Edwards, Theory of Polymer Dynamics,
Clarendon: Oxford 1986.

[2] H. Watanabe, Prog. Pol. Sci. 24, 1253 (1999).
[3] T. C. B. McLeish, Adv. Phys. bf 5, 1379 (2002).
[4] D. Humphrey, C. Duggan, D. Smith, and J. Käs, Nature 416,

413 (2002).
[5] T. T. Perkins, D. E. Smith, and S. Chu, Science 264, 819 (1994).
[6] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of

Polymeric Liquids, Vol. 1, Wiley: New York (1977).
[7] S. F. Edwards, Proc. Phys. Soc. 92, 9 (1967).
[8] P. G. J. de Gennes, J. Chem. Phys. 55, 572 (1971).
[9] A. E. Likhtman, T. C. B. McLeish, Macromolecules 35 6332

(2002).
[10] Y. Masubuchi, J.-I. Takimoto, K. Koyama, G. Ianniruberto, G.

Marrucci, and F. Greco, J. Chem. Phys. 115 4387 (2001).
[11] J. T. Padding, W. J. Briels, J. Chem Phys. 117, 925 (2002).
[12] K. Iwata, M. Tanaka, N. Mita, and Y. Kohno, Polymer 43, 6595

(2002).
[13] M. Doi, J. Takimoto, Phil. Trans. R. Soc. Lond. A 361, 641

(2003).
[14] J. D. Schieber, J. Neergaard, and S. Gupta, J. Rheol. 47, 213

(2003).
[15] T. P. Lodge, Phys. Rev. Lett. 83, 3218 (1999).
[16] S. Leon, L. D. Site, N. van der Vegt, and K. Kremer, Macro-

molecules 38, 8078 (2005).
[17] M. Puetz, K. Kremer, and G. S. Grest, Europhys. Lett. 49, 735

(2000).
[18] P. G. de Gennes, J. Phys. (Paris) 42, 735 (1981).
[19] P. Schleger, B. Farago, C. Lartigue, A. Kollmar, and D. Richter,

Phys. Rev. Lett. 81, 124 (1998).
[20] P. Flory, Statistical Mechanics of Chain Molecules, Inter-

science: New York (1969).
[21] L. R. G. Treloar, The Physics of Rubber Elasticity, Clarendon

Press: Oxford (1975).
[22] J. D. Ferry, Viscoelastic Properties of Polimers, Wiley: New

York (1980).
[23] S. F. Edwards, Brit. Polym. J. 9, 140 (1977).
[24] R. Everaers, S. K. Sukumaran, G. S. Grest, C. Svaneborg, A.

Sivasubramanian, and K. Kremer, Science 303, 823 (2004).
[25] S. K. Sukumaran, G. S. Grest, K. Kremer, and R. Everaers, J.

Polym. Sci. Part B: Polym. Phys. Ed., to be published (2004)
[26] M. Rubinstein, E. Helfand, J. Chem. Phys. 82, 2477 (1985).
[27] K. Kremer, G. S. Grest, J. Chem. Phys. 92, 5057 (1990).
[28] P. Ahlrichs, R. Everaers, B. Duenweg, Phys. Rev. E 64, 040501

(2001).
[29] R. Auhl, R. Everaers, G. S. Grest, K. Kremer, and S. J. Plimp-

ton, J. Chem. Phys. 119, 12718 (2003).
[30] C. F. Abrams, K. Kremer, Macromolecules 36, 260 (2003).
[31] R. S. Hoy, M. O. Robbins, Phys. Rev. E 72, 061802 (2005).
[32] W. W. Graessley, S. F. Edwards, Polymer 22, 1329 (1981).
[33] L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel,

Macromolecules 27, 4639 (1994).
[34] J. Fetters, L. D. Johse, and W. W. Graessley, J. Polym. Sci. B:

Polymer Phys. 37, 1023 (1999).
[35] K. Kremer, S. K. Sukumaran, R. Everaers, and G. S. Grest,

Comp. Phys. Comm. 169, 75 (2005).


