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Nuclear magnetic resonance relaxation experiments with �eld cycling techniques proved to
be a valuable tool for studying molecular motions in liquid crystals, allowing a very broad
Larmor frequency variation, su�cient to separate the cooperative motions from the liquidlike
molecular di�usion. In new experiments combining NMR �eld cycling with the Jeener-
Broekaert order-transfer pulse sequence, it is possible to measure the dipolar order relaxation
time (T1D), in addition to the conventional Zeeman relaxation time (T1Z) in a frequency
range of several decades. When applying this technique to nematic thermotropic liquid
crystals, T1D showed to depend almost exclusively on the order 
uctuation of the director
mechanism in the whole frequency range. This unique characteristic of T1D makes dipolar
order relaxation experiments specially useful for studying the frequency and temperature
dependence of the spectral properties of the collective motions.

I Introduction

Liquid crystal molecules when ordered in a mesophase

undergo di�erent kinds of motions. Some of them

are individual molecular motions, like anisotropic ro-

tational and translational di�usion. These are liquid-

like rapid random jumps which can be characterized

with a correlation time �c, generally falling in the range

10�8 � 10�11s. There are also slower reorientational

motions involving a large number of molecules, that

are characteristic of the liquid crystalline states. These

collective molecular 
uctuations, called order 
uctua-

tions of the director (OFD), are described through a

superposition of a broad spectrum of individual purely

dissipative modes, with relaxation times ranging from

10�4 to 10�9s. As a consequence of the diversity of

characteristic times of the 
uctuations in liquid crys-

tals, the di�erent processes are clearly visible in di�er-

ent time scales. For example, in Zeeman order relax-

ation NMR experiments, the local motions dominate in

high frequencies (106�108Hz) while the order 
uctua-

tions represent the main mechanism of spin relaxation

in the low and medium ranges (103 � 106Hz).

The NMR relaxation method has been used for

many years for studying the complex anisotropic re-

orientation of molecules in the liquid-crystalline state.

The measured quantities are spin-lattice relaxation

rates which depend on the intra- and inter-molecular

interactions of the nuclear spin magnetization with lo-

cal magnetic and electric �elds; these �elds being mod-

ulated by the underlying molecular motions.[1] It is

experimentally observed that in conventional liquids

the relaxation times are almost independent of the

Larmor frequency. On the contrary, in liquid crystal

mesophases, the presence of cooperative motions causes

the relaxation times to have a marked frequency depen-

dence, showing usually a dispersion of about two orders

of magnitude in the frequency range 104 to 108Hz.

NMR studies of molecular motions in liquid crystals

are presently usually performed by essentially two dif-

ferent spin-relaxation experiments which can provide a

satisfactory number of data to disentangle the under-

lying spectral densities of the superimposed molecular

reorientation: On the one hand by combining high-

�eld, Zeeman relaxation (T1Z) with high-�eld dipolar

and quadrupolar order relaxation (T1D and T1Q respec-
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tively) measurements at constant Larmor frequency �L,

in 1H or 2H as a function of temperature.[2] On the

other hand by frequency dependent T1Z studies over a

broad Larmor frequency, �; range, often applying fast-

�eld cycling (FC) techniques.[3] Now, with adequate

instruments such frequency dependent measurements

are not necessarily restricted to T1Z , but in principle

are also applicable to T1D; this however has only been

tried rarely and not systematically, mainly because of

experimental limitations.

Due to the complexity of the molecular motions, and

the fact that the di�usion motions make their main

contribution in high frequencies, it is di�cult to dis-

tinguish between the cooperative and the local mo-

tions from standard high �eld NMR relaxation mea-

surements. However, by combining �eld cycling data

supplemented with conventional measurements (for the

highest frequencies), it is possible to cover a broad fre-

quency range (103�108Hz), allowing to distinguish the

mechanisms unambiguously.

The basic theory for explaining relaxation exper-

iments relates the relaxation times with the spectral

densities of the lattice; that is, with the nonspin vari-

ables. The second step demands a model for the

spectral densities that relates them with the particu-

lar system (viscosity, elastic constants, etc) and with

the externally controlled variables (temperature, fre-

quency, orientation). The theory of spin-lattice re-

laxation for liquid crystals is based on the weak-order

assumption,[1, 4, 5] that was traditionally applied in

liquids and solids. The starting point is the stochas-

tic Liouville equation for the density operator of the

spin system, which is integrated up to second order

in the perturbation (the interaction with the lattice).

The spin system is considered as an ensemble of iso-

lated spins, the neighboring spins being considered as

far as they form part of the lattice.

In the calculation of the spectral densities of the

lattice, the molecular motions are generally modeled

by stochastic Markovian processes. This is suitable

for liquid crystals, because of the low degree of po-

sitional order of the molecular motions. The models

for rotational and traslational di�usion are basically

the same as those used in liquids, with some re�ne-

ments to re
ect the characteristic anisotropy of the liq-

uid crystals.[6, 7, 8] The models for the OFD are based

on the hydrodynamic theory.[9] It is assumed that the

molecules follow the director dynamics; so doing the ef-

fects of the intermolecular short range correlation are

neglected.[10, 11] This approach yields spectral densi-

ties proportional to ��1=2 and ��1 for nematics [12, 13]

and smectics [14, 15] respectively. In the case of nemat-

ics, this law has been con�rmed by �eld cycling exper-

iments of Zeeman relaxation of protons and deuterons

in numerous nematogens.[3, 16] It was observed that

the OFD are dominant in the frequency range 103 -

5 � 105 Hz. There are also clear NMR FC examples

of both smectic thermotropic phases and smectic-type

lyotropics displaying the mentioned linear frequency

dependence.[18, 19, 20, 21]

One of the main hypotheses of the traditional the-

ory of relaxation concerning the correlation time of the


uctuations is that of the fast motion: �SI�c < 1 where

�SI is the characteristic frequency of the spin interac-

tion (dipolar or quadrupolar) and �C is the correlation

time of the 
uctuation. A consequence of this assump-

tion is that the spin interactions can be neglected from

the spin dynamics in the microscopic time scale. [5]

Though the former condition is not ful�lled by the slow-

est components of the OFD, this fact does not consti-

tute a di�culty in high �eld Zeeman order relaxation.

In these cases the picture of a single spin interacting

with a random bath is adequate, hence the details of

the spin interactions during the lifetime of the 
uctu-

ations can be neglected. The analysis of experimen-

tal T1Z within this theoretical framework showed to be

consistent. [2, 3, 22]

However, this would not be the case of dipolar or-

der relaxation, where the relaxing magnitude is the

dipole-dipole energy. In fact, recent results of T1D

in thermotropic nematic liquid crystals, as a function

of the Larmor frequency in �eld cycling experiments

evidenced clear discrepancies with the standard weak-

order theory [28]. The OFD are the leading relaxation

mechanisms even at high frequencies, having a larger

weight than the predicted by the standard approach.

This fact indicates the presence of additional relaxation

mechanisms, driven by the OFD, which are not taken

into account by the traditional approach. Due to its

higher sensitivity to the cooperative motions, T1D is

a powerful tool for investigating spectral properties of
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hydrodynamic 
uctuations in mesophases.

The possibility of measuring several independent re-

laxation times, re
ecting di�erent features of the molec-

ular motions, together with the existence of powerful

experimental techniques, make NMR relaxation a very

important tool for characterizing molecular motions in

mesophases.

In Section 2 we present a short review of the the-

oretical background necessary to interpret the experi-

mental results. Some examples illustrating the possibil-

ities of �eld cycling NMR experiments, in protons and

deuterons, are shown in Section 3. This selection does

not attempt to be a review of this vast �eld. Finally

in Section 4 some new, controversial results on dipolar

order relaxation are presented, and discussed in terms

of the existent theory, together with an analysis of a

possible way to understand the disagreement.

II Theoretical background

NMR relaxation experiments deal with the nuclear spin

degrees of freedom and provide information on the host

lattice through the time evolution of the spin system.

It is usual to think on the spin system as a thermody-

namic system in contact with a reservoir (the lattice)

having a huge number of degrees of freedom. In a typ-

ical experiment, energy in the form of radio frequency

pulses, is delivered to the spins in order to prepare it

(in the quantum mechanical sense). The system is then

allowed to develop in contact with the lattice during

the evolution period. The last step of the experiment is

just to pick up the result of the evolution. The recov-

ery of the equilibrium state occurs with a characteristic

time called spin-relaxation time, conditioned by the ef-

�ciency of the spin-lattice relaxation mechanisms.

The Hamiltonian describing the spin system and the

lattice is

H = HS +HL +HSL; (1)

HS and HL are the spin and the lattice Hamiltoni-

ans respectively, and HSL represents the spin-lattice

interaction.[1] The spin Hamiltonian contains the en-

ergy of interaction with the external magnetic �eld

(Zeeman energy) and the average energy of the spin

interactions. For the usually available magnetic �elds,

the principal spin interactions are the dipole-dipole and

quadrupolar energies. For example, in the case of the

dipolar interaction between like spins the spin Hamil-

tonian is:

HS = HZ +HSI with
HZ = �
~H0

P
j Ijz ; and

HSI = 1
2

P
lk

P
q A

q
lkF

q
lk ;

(2)


 is the gyromagnetic ratio and the upper bar means

average over the lattice ensemble. Aq
lk and F q

lk are spin

and lattice operators associated to the dipolar spin in-

teraction:

c

A0
lk = �
~f�Izl Izk + 1

4 (I
+
l I

�
k + I+k I

�
l )g F 0

lk =
1
r3
lk

(1� 3 cos2 �lk)

A�1lk = �3
2
~(I

z
l I

�
k + I�l I

z
k) F�1

lk = 1
r3
lk

sin �lk cos �lke
�i�lk

A�2lk = �3
4
~I

�
l I

�
k ; F�2

lk = 1
r3
lk

sin2 �lke�2i�lk :

(3)

d

� and � are the spherical angular coordinates of the in-

ternuclear vector rlk respect to a frame whose z-axis is

parallel to the magnetic �eld H0. In the quadrupolar

case the interaction is that of the nuclear quadrupolar

moment with the electric �eld gradient of the electronic

charge distribution. The angular dependence refers to

the orientation of the principal axis system of the elec-

tric �eld gradient tensor with respect to the laboratory

frame.[2]

The spin-lattice interaction Hamiltonian re
ects the


uctuations of the spin interactions caused by the lat-

tice motions. For example, for dipolar interaction:

HSL = �HD = 1
2

P
lk

P
q=0�1�2A

q
lk�F

q
lk ; (4)

where: �F q
lk(t) � F q

lk(t)� F q
lk :

The density operator of the whole system (spins and
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lattice) satis�es the Liouville equation

d�

dt
= � i

~
[H; �] : (5)

In NMR experiments only the spin system is detected,

therefore, the relevant statistical operator for calcu-

lating the time evolution of the observables associ-

ated to the spin system is the reduced density operator

� � TrLf�g, where TrL stands for the trace over the

lattice variables. The time evolution of this operator is

described by [23]

d�

dt
= � i

~
TrL [H; �] : (6)

At this point two basic assumptions are made: i)

The coupling between the spin system and the lattice

is weak enough for allowing to factorize the total den-

sity operator in the second member of Eq.(7) as a �rst

approximation.

ii) The lattice is considered as a quantum dissipa-

tive system having so many degrees of freedom that

dissipates the energy transferred by the spins in a short

time of the order of the lattice correlation time, which

is much shorter than the interval where the observed

magnitude varies appreciably. This means that the lat-

tice can be considered always at the equilibrium state.

Under these conditions, the master equation in the in-

teraction picture adopts the typical form of Markovian

processes: d��(t)
dt depends only on ��(t), with time in-

dependent coe�cients:[1, 23]

c

d��(t)

dt
= �~�2

Z 1

0
dt0TrL[H�

SL(t); [H�
SL(t

0); ��(t)�L(0)]] ; (7)

where �L(0) is the equilibrium canonical density operator of the lattice and `*' indicates that operators are expressed

in the interaction picture.

Eq.(7) can be rewritten in a more convenient form for studying longitudinal relaxation. Following Abragam [1]

d��(t)
dt = �~

�2

2 TrL

nR1
�1

dt0[H�
SL(t); [H�

SL(t
0); ��(t)]]�L(0)�

� R1
�1 dt0[H�

SL(t
0); �L(0)]�

�(t)H�
SL(t)+

+H�
SL(t)�

�(t)
R1
�1 dt0[H�

SL(t
0); �L(0)]

o
:

(8)

d
The �rst term has the structure of an ensemble aver-

age over the the lattice variables and coincides formally

with the semiclassical master equation as deduced from

the stochastic Liouville equation. The traditional weak

order master equation is obtained from Eq.(8) by as-

suming high lattice temperature (h�=KBT � 1), and

that the spin system is never very remote from a

state with equal populations of all spin energy levels

(�� ' I=A, I being the identity operator in the Hilbert

space of the spin system and A being the number of

degrees of freedom of the spin system).[1, 24] The re-

sulting equation coincides essentially with the �rst term

of Eq.(8) but including the correct stationary state:

c

d��(t)

dt
= �~

�2

2

Z 1

�1

dt0[H�
SL(t); [H�

SL(t
0); ��(t) � �0] : (9)

d
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This key equation allows the calculation of the

time dependence of any observable of the spin system
dhO�i
dt = Trs[

d��(t)
dt O�(t)]. It describes the irreversible

evolution of a macroscopic quantity and allows the cal-

culation of the transport coe�cients. In NMR relax-

ation such coe�cients are the relaxation times; they

can be related to the spectral densities, that is the

Fourier transforms of the time correlation functions of

the 
uctuating lattice operators, evaluated at the Lar-

mor frequency, �. For example, the time evolution of

the z-component of the magnetization (parallel to the

external �eld), due to dipolar coupling in a system of

two like spins is

d

dt
hIz + I0zi =

1

T1Z
fhIz + I0zi � hIz + I0ziequilg ;

where

T�11Z =
9

8

4~2fJ1(!) + J2(2!)g (10)

is the Zeeman order relaxation time and ! = 2��. The

spectral densities Jq(!) are de�ned as

Jq(!) =

Z 1

�1

F qF�q(t) expiq!t dt :

In Table 1 we summarize the standard theoretical

expressions for the most commonlymeasured relaxation

times. There we show the observable corresponding to

each case, the kind of 
uctuations responsible for dis-

sipating the initial condition, and the relaxation times

formulae in terms of the spectral densities. These ex-

pressions are the outcome of the traditional weak order

theory [Eq.(9)].

c
Table I: Relaxation rates within the weak order theory of spin relaxation. In the three �rst cases the observable is

the energy of interaction of isolated spins. For T�11D the observable is the secular dipole-dipole energy, and a model

of isolated spin pairs is assumed. Here CD = 9
8


4
~
2, CQ = 3

2

�
e2qQ
~

�2
, and Q is the nuclear quadrupole moment.

Observable Relaxation time SL interaction Refs:PhIzji proton Zeeman order T�11Z = CD

P
lk J

(1)
lk (!) + J

(2)
lk (2!) dipolar [1, 4]

hIzi deut. Zeeman order T�11Z = CQ

�
J (1)(!) + 4J (2)(2!)

�
quadrupolar [2]

hH0
Qi quadrupolar order T�11Q = 3CQJ

(1)(!) quadrupolar [25, 26]

hH0
Di dipolar order T�11D = 3CDJ

(1)(!) dipolar [33, 50]

d

The formula for proton Zeeman relaxation is a di-

rect generalization of Eq.(10) for the case of many non-

interacting spins [1]. The deuteron Zeeman relaxation

time describes the relaxation of the magnetization of a

quadrupolar nucleus due to 
uctuations of the electric

�eld gradient of the chemical bond bearing the reso-

nant nucleus. This is a single-spin description, and is

adequate when the dipolar interaction with neighbor-

ing spins can be neglected.[2] T1Q and T1D refer to the

relaxation of quadrupolar or dipolar order created by a

pulse sequence (Jeener-Broekaert experiment [27]) that

transfers the magnetic Zeeman order to the quadrupo-

lar or dipolar reservoirs. The three �rst lines of Table 1

represent situations which can be adequately described

by a picture of isolated spins, acted on by a random per-

turbation coming from the neighboring spins. On the

contrary, the case of dipolar order relaxation is basi-

cally di�erent because in this case the observable hH0
Di

involves the interactions among many spins. Here we

included the two-spin formula for T1D reported in the

literature. Nevertheless, a recent �eld cycling study

showed that this formula is incomplete for describing

the experimental data in nematics [28, 29, 30] (see Sec-

tion IV).

III Applications

A. The Field-Cycling Technique

Measurements of the relaxation times (T1Z , T1D or

T1Q) provide, in principle, a means of determining the

spectral densities of the molecular motions. Accord-

ing to Table I, by combining data of di�erent relax-
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ation experiments, it is possible to determine J1(�)

and J2(�) separately.[28] Then, the comparison of their

dependence with the magnetic �eld and temperature

with the theoretically predicted dependence for the in-

volved molecular 
uctuations, allows to obtain informa-

tion about the di�erent motional processes involved.

For example, conventional NMR temperature depen-

dent experiments of Zeeman and quadrupolar align-

ment relaxation in selectively deuterated liquid crystals,

allow to characterize intramolecular motions and also

give some consistent information about the order 
uc-

tuations. [31, 32] The dynamics of the aliphatic chains

in nematics was studied in detail by using this method

and comparing with theoretical model for molecular

potentials.[2, 33]

However, since the conventional NMR studies pro-

vide the T1Z pro�le only in a rather narrow spectro-

scopic window, the �tting of data with formula from

Table I and Eq.(11) becomes ambiguous and it is dif-

�cult to separate the contribution from the di�erent

relaxation mechanisms. Due to this weakness, some

early high frequency measurements [34, 35, 36] believed

to have found the theoretically predicted square root

frequency dependence characteristic of the OFD in ne-

matics [see Eq. (12].

This apparent result is incorrect because the re-

ported �ts in the MHz range do not coincide with sub-

sequent low frequency mesurements when extrapolated.

The mistake may be originated in the fact that the

other relaxation mechanisms possess a narrow range

where the corresponding spectral densities can be ap-

proximated by J(�) = a��1=2+ b.

A more comprehensive relaxometric study can be

performed by extending the measurements to the kHz

domain. However, standard NMR spectrometers can-

not perform low frequency measurements, because the

signal amplitude strongly decreases at lower external

magnetic �elds. The adequate experimental method to

solve this di�culty is the �eld-cycling technique, since

it allows to enlarge the range of the motional spectrum

scanned by longitudinal spin-lattice relaxation experi-

ments, by many orders of magnitude. Details of the ba-

sic principles of the technique can be found in Reference

[3] and [37] In few words, the method is based on the

concept of adiabatic demagnetization. The spin system

is polarized at high �elds ( frequency in the MHz re-

gion). Then, the external �eld is adiabatically switched

to a selectable lower level. The spin system evolves (re-

laxes) under these conditions, and after a given interval

the �eld is again adiabatically switched to its original

value, where the magnetization is detected by applying

a radiofrequency pulse (see Fig. 1a). So doing allows

to deal with a MHz quality signal but now keeping the

information of the spin-lattice relaxation at low �eld.

Figure 1. a) Typical modulation of the Zeeman �eld in a
�eld cycling NMR experiment. b) Scheme of the Jeener-
Broekaert pulse sequence combined with a �eld cycling.
During the polarization period two phase shifted pulses are
applied to create dipolar order. Subsequently the spin sys-
tem evolves in a di�erent magnetic �eld during the relax-
ation period. Finally, after switching back the Zeeman �eld
to the detection value HD, a read pulse is applied and the
dipolar signal is acquired.

B. Selected Experiments

A systematic study of the Larmor frequency depen-

dence of T1Z in thermotropic liquid crystals was car-

ried out mainly by the group of F. Noack (Universitat

Stuttgart). Particularly, the nematic phase has been

extensively studied. [3, 38, 39, 40]

An illustrative example is the textbook compound

PAA (4,4' - dimethyloxyazoxybenzene). Fig. 2 shows

the proton relaxation dispersion T1Z(�) for nematic

and isotropic phases. The isotropic phase shows the

characteristic behavior of common liquids. On the

contrary, relaxation in the nematic phase exhibits a

well developed �1=2 dependence in the frequency range
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103� 106Hz, revealing the occurrence of order 
uctua-

tions of the director.

Figure 2. Proton relaxation dispersion T1Z(�) for nematic
and isotropic PAA. The nematic phase shows a square root
frequency dependence, that is absent in the isotropic phase.
The solid lines are model �ts including OFD, self-di�usion,
molecular rotation and a low frequency cut-o�. Data from
Ref.39.

Typically, in thermotropic liquid crystals the sev-

eral mechanisms contributing to spin relaxation can be

considered as statistically independent processes. Un-

der this condition, the spectral densities can be cal-

culated as a sum of separate contributions from the

molecular rotational tumbling (ROT), traslational self-

di�usion (SD) (local motions) and the OFD:

Jq(�) = JqOFD(�) + JqSD(�) + JqROT (�): (11)

The three spectral densities are:

1. Order Fluctuations of the Director

1a. Nematics[12, 13]

J1OFD(�) = A��1=2; (12)

with

A =
kBTS

2

2�Kr6

�
K

�
+D

��1=2
(3cos2�� 1)2

4
; (13)

where kB is the Boltzmann constant, K is the aver-

age Frank constant, � is the viscosity, r the interproton

distance and � stands for the angle between the inter-

nuclear vector and the molecular axis.

1b. Smectics [14]

J1OFD(�) = B��1; (14)

with

B =
kBTS

2

�K11�r6
(3cos2�� 1)2

4
;

where K11 is the splay elastic constant (assumed to be

equal to the twist constant K22) and � is the coher-

ence length in the direction perpendicular to the smec-

tic layers. The spectral density J2OFD is assumed to be

negligibly in the small amplitude approximation. [10]

2. Rotation[2]

JqROT (�) =
3

2
BR�R

q2

1 + (q���?)2

where BR is a relaxation amplitude factor depending

on both bulk and molecular properties and �R is the

correlation time of the reorientation about the short

molecular axes.

3. Self-Di�usion [6]

JqSD(�) =
C�Dq

2

x4
[u+ (u sinx+ v cos x)e�x]

where u =
�
x
2 � 1

x

�
; v =

�
x
2 +

1
x + 2

�
; and x �

p
q���D, C is the di�usion amplitude factor, and �D

is the correlation time of the translational molecular

jump.

The models described above allow a quantitative

description of relaxation dispersion. As an example,

Fig. 3 shows the T1Z(�) pro�le for the nematic HpAB

(4,4' -bis-heptyloxyazoxy-benzene) with the contribu-

tions from the di�erent relaxation mechanisms.[28] This

is a characteristic pro�le of thermotropic nematics. It

is clear again that the OFD dominate the relaxation in

the KHz regime. For the �ttings it was also considered

a low frequency cut-o� �c as predicted by R. Blinc.[41]
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Figure 3. Proton relaxation of the Zeeman and the dipo-
lar order in nematic HpAB showing the three individual
contributions for T1Z(�) together with the rotation term
for T1D(�) (self-di�usion does not contribute to dipolar re-
laxation -see text). Rotations contributes appreciably to
Zeeman order relaxation in the MHz regime, but are neg-
ligible for dipolar order relaxation in all measured range.
Data from Ref.28.

The FC measurements allowed to overcome some

ambiguities in the evaluation of the parameters involved

in the �ttings, namely A, B, BR, C, �c,�R, �D. Partic-

ularly, the experimental amplitude factor A can be ob-

tained with good precision. The consistency of the �t-

tings is supported by reasonable magnitudes of the pa-

rameters and systematic parallels for all the measured

compounds. For instance, the �tted amplitude factors

A have a good agreement with the theoretical predic-

tion from Eq.(13), for many studied compounds.[3, 42]

Moreover, the obtained values for the self-di�usion

correlation time �D can be compared with di�usion

constant measurements by means of a special combi-

nation of NMR Field-Cycling with pulsed �eld gradi-

ents techniques.[43] Assuming the relation [6] �D = b2

6D

(with the distance of closest proton approach for di�u-

sion and D = 1
3(Dk + 2D?) an e�ective di�usion con-

stant), the calculated correlation times coincide in order

of magnitudes with the �tting parameters. [43]

Another interesting feature arising from FC mea-

surements is the occurrence of the low frequency cut-

o� typically about few KHz ( Fig. 3). At the present,

two possible explanations for this behavior have been

suggested: the �rst one states that, since the minimum

�eld which could give rise to Zeeman order cannot be

less than the local �elds produced by the neighboring

spins, it would be expectable that for frequencies of the

order of few KHz, T1Z became frequency independent;

the second one refers to the �niteness of the nematic

order correlation length, [41] �, due to the presence of

disclinations and other defects. In such a case only or-

der 
uctuations with a wavelength smaller than � can

take place, giving rise to a minimum cut-o� frequency,

through the `dispersion relation'

�c =
2�K

��2
; (15)

where K is the e�ective elastic constant and � is the

e�ective viscosity. Although most workers favor the

second hypothesis, a �nal experimental con�rmation is

still lacking and the subject is nowadays being investi-

gated theoretically and experimentally.[44]

The thermotropic smectic mesophase has not been

studied so extensively as the nematic one. Nevertheless,

the available experimental results show clearly the pres-

ence of collective motions. [19, 45] Fig. 4 shows the T1Z

pro�le for TBBA in the smectic A phase.[19] It can be

appreciated the predicted �1-law for order 
uctuations

within a smectic layer [Eq.(14)]. This linear dependence

is evident in the frequency range 103�105Hz, showing

again that the OFD are the dominant relaxation mech-

anism for the Zeeman order only at low Larmor fre-

quencies. Two additional relaxation mechanisms (self-

di�usion and anisotropic rotations) are necessary to de-

scribe the experimental results.

Recently, other workers [46] have measured a tran-

sition from �1 to �1=2 in the T1Z frequency dependence

of smectic 8CB (4- cyano-4' -8-alkylbiphenyl) at 23oK,

i:e: close to the smectic A-nematic transition. A similar

result was observed in the smectic HpAB at 82oK, but

now far from the transition. [47] Conceivably, this fea-

ture was not detected in earlier measurements due to

the low density of experimental points. At the present,

it is not clear if this is a pretransitional e�ect or if it re-


ects an intrinsic characteristic of the collective 
uctu-

ations in the smectic phase. Evidently, more systematic

measurements are needed.
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Figure 4. Proton spin relaxation dispersion, T1Z (�), for
TBBA in smectic A and smectic C phases. The solid line
is the �t according to Table I and Eq. (11) including again
OFD, molecular rotations and self-di�usion. Data from Ref.
19.

Figure 5. Proton relaxation dispersion T1Z(�) for the micel-
lar, hexagonal, cubic and lamellar phase of a lyotropic potas-
sium laurate-D2O mixtures. The micellar and the hexago-
nal system show the �1 dependence typical of smectics. The
linear pro�le is absent in the isotropic phases. Data from
Refs. 3,18.

The linear frequency dependence is better developed

in lyotropic liquid crystals. As pointed by Kuhner et

al, [48] this feature is expectable because the smec-

tic type layers are almost decoupled by the water in-

terface. In this way, each one constitutes basically a

two-dimensional system. An example are lamellar or

hexagonal potassium laurate-water mixtures (see Fig.

5), where the �1-law is observed approximately in the

range 103 � 105Hz.

An independent experiment providing additional

experimental evidence of the presence of collective 
uc-

tuations in nematics are NMR �eld-cycling studies of

deuteron spin-lattice relaxation. Contrarily to proton

NMR spectra, the deuteron spectra show without any

spin decoupling technique many well-resolved line dou-

blets, which can be assigned to non-equivalent sites

on the molecule. [17] At present it was not yet at-

tained enough signal quality and resolution to separate

the corresponding relaxation times for all the observed

doublets, due to the unfavorably smaller gyromagnetic

ratio (a higher detection �eld is needed). Neverthe-

less, it is possible to measure the spin lattice relaxation

rates for some average spin positions, namely for the

ring window and the chain window as shown in Fig.

6. It is interesting to note that, while the dispersion

pro�le of the chain deuterons reveal an approximate

square-root law in the same frequency range than the

proton data, the rings deuterons exhibit a weak fre-

quency dependence. This fact can be qualitatively un-

derstood by realizing that, since the relevant orienta-

tion for quadrupolar coupling is the angle between the

carbon-hydrogen bond and the static magnetic �eld,

the contribution from the molecular rotations along

the long axis of the molecule is signi�cantly greater for

deuteron than for proton spin relaxation.[17]

Finally, in Fig. 6 we also show a comparison be-

tween proton T1Z of the nematic 5CB (4- cyano-4' -5-

alkylbiphenyl) and the alkyl chain deuteron T1Z for the

per-deuterated nematic 5CB�d19. As can been clearly

seen the collective motions dominate in coincident fre-

quency ranges.

IV Dipolar order relaxation

Field Cycling experiments are able to reveal the fre-

quency range where cooperative motions dominate re-

laxation as well as giving an approximate value for the

relative weight of the di�erent relaxation mechanisms

in a number of nematics and smectics.

The NMR proton spectra of liquid crystals generally

present unresolved broad lines, due to the strong dipo-

lar interactions. The measured relaxation times repre-

sent all spins in the molecule, and the contributions to

the spectral densities from di�erent kinds of sites are

superimposed. When the molecular motions are com-

plex, T1Z(�) alone is insu�cient for disentangling the
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di�erent contributions to the spectral densities. Then

it would be adequate to complement the data of Zee-

man relaxation with another experiment. Under the

assumption that the (weak order) formulae from Ta-

ble I hold in the whole frequency range, measuring the

frequency dependence of di�erent relaxation times, like

T1D (or T1Q) together with T1Z comes out to be a more

descriptive experiment. The spectral density J1(�) can

be directly determined through the �rst one and then,

by using it in the formula for the latter, J2(2�) can be

calculated.

Figure 6. Comparison of the frequency dependence of T1Z
in protons of 5CB (triangles), chain deuterons of 5CB-d19
(open squares) and ring deuterons only (circles). Deuteron
measurements allow to select a separate frequency window
for di�erent sites in the molecule. Data from Ref. 17.

The �rst step in this direction was the �eld cycling

measurement of both proton T1Z(�) and T1D(�) in a

family of thermotropic nematic liquid crystals.[28, 40]

This method for measuring T1D combines the �eld

cycling technique with the Jeener-Broekaert pulse se-

quence for creating dipolar order. Figs. (1b) and (1c)

show a diagram of the technique. Fig. (3) shows

the dispersion of T1D and T1Z in the nematic phase

of HpAB. The �rst outstanding feature is that T1D(�)

follows the typical trend of the OFD in the whole fre-

quency range (even for � �10 MHz!). This behavior

is very di�erent from that of T1Z where, as a rule, the

OFD dominate, at most up to hundreds of kilohertz.

Another interesting feature is the occurrence of a cut-

o� frequency about 5 � 104 Hz, which is an order of

magnitude higher than the one of Zeeman relaxation

time.

The two-spin model for dipolar relaxation (see Ta-

ble 1) predicts that T1Z=T1D � 3 over all the frequency

range, since the spectral densities are positive quanti-

ties. Conversely, the experiments show that this ratio

is greater than three in both HpAB and 8CB, as dis-

played in Fig. 7. Also, as can be seen in Fig. 8, there is

a noticeable gap between the T1D calculated with the

isolated phenyl spin pairs model and the experimental

data; the di�erence is frequency dependent and pro-

portional to ��1=2, even at high frequencies. Similar

characteristics were found in other several compounds

in the nematic phase, [29,40] where it was realized that

the gap increases with the size of the molecule.

Figure 7. The quotient T1Z=T1D as a function of the Lar-
mor frequency in the nematic phase of HpAB and 8CB.
This ratio exceeds the value of three in discrepancy with
the semiclassical two-spins model. Data from Ref.28.

As can be seen in Fig.(3), the contribution from

the OFD to T1Z decays rapidly for increasing external

�eld, and it generally becomes comparable to the spec-

tral densities of rotational and translational di�usion

for frequencies higher than 5�105 Hz. The situation is

rather di�erent for dipolar relaxation, since it is mainly

driven by the OFD mechanism even at high �elds. It

can be clearly appreciated in Fig.(3) the larger in
uence

of the OFD as compared with the molecular rotational

di�usion. It can be a�rmed that the rotations are prac-

tically negligible in T1D.

These experimental �ndings are challenging since

they clearly point out some de�ciencies of the existent

theoretical approach, but, also reveal T1D(�) as a mag-

nitude that re
ects the OFD almost exclusively in the

available frequency range.

The fact that T1Z=T1D � 3 indicates that the ob-

served dipolar order relaxation is faster than the one

predicted by the traditional model. On the contrary
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T1Z(�) is well described by the formula from Table

I in numerous liquid crystals in the high �eld limit

(H0 >> Hlocal).[2, 3, 31, 32, 49] Therefore, the fail-

ure was assigned [28] to the standard two-spin (phenyl)

approach for dipolar order spin-lattice relaxation rate.

Figure 8. Frequency dependence of the dipolar order re-
laxation in the nematic phase of HpAB and 8CB. The
full line corresponds to the prediction from the two-spin
model and the dashed line is the best �t with the function
T�1
1D = 3CDJ

1(�)intra + a�1=2 + b. Data from Ref.28.

It should be kept in mind that the usual model for

dipolar relaxation in thermotropic liquid crystals[14,

50] starts from the weak order master equation [Eq.(9)]

and considers the spin system as an ensemble of isolated

spin pairs. Only intramolecular contributions are kept,

arguing that the rapid di�usive molecular motion av-

erages out the intermolecular contribution. The chain

protons are not considered either, due to their high mo-

bility. Another important hypothesis is the one known

as `fast motion', that is �D�c � 1 (�D a typical dipo-

lar frequency and �c a lattice correlation time). This

condition allows to neglect the spin-spin interactions in

calculating the time evolution of the spin operators in

the interaction picture. [5]

The observed frequency dependent gap between the-

ory and experimental data indicates that the model

for T1D in liquid crystals is oversimpli�ed and has ne-

glected important mechanisms of relaxation, driven by

the OFD. For instance, keeping only two spins avoids

the presence of spectral densities evaluated at zero fre-

quency or frequencies of the order of magnitude of the

dipolar coupling, J0(�D), because the coe�cients asso-

ciated to these terms involve spin traces which are iden-

tically zero for two spins. The physical reason of this

is that these coe�cients represent `
ip-
op' transitions,

that do not involve changes in the dipolar energy of only

two spins. Also spectral densities with q = 2, J2(2�),

do not appear due to similar reasons. According to

the proton spectra in nematics, there is an appreciable

dipolar contact among the core and chain protons, giv-

ing the possibility of some e�ects associated to interpair

interactions. This imposes a revision of the validity of

the hypothesis involved in the model for dipolar relax-

ation.

A partial answer came after a recent experimen-

tal and theoretical investigation of T1Z(�) and T1D(�)

in PAA and in the methyl-deuterated PAAd6.[29, 51]

Deuterating the methyl chain yields a proton system

re
ecting only the dynamics of the core. The frequency

dependence of the relaxation times in both compounds

showed discrepancies with the two-spin theory, similar

to those previously observed in HpAB and 8CB. Fig.

(9) shows the obtained results for the frequency depen-

dence of T1Z and T1D at 1300C. The �gures also include

a plot of the underestimated dipolar relaxation rate as

given by Table 1. The experimental data of the dipolar

relaxation time can be well represented by the function

T�11D = 3CDJ
1(�)intra + a��1=2 + b, down to 105 Hz.

The �rst correction term has the well known frequency

dependence of the OFD, [12] and the parameter a is

5:3� 103s�3=2 and 4� 103s�3=2 for PAA and PAAd6,

respectively. The frequency independent term is related

to the spectral densities with q = 0 which appear if the

model of isolated spin pairs is abandoned. In this case,

the constant are mainly associated to the dipolar inter-

action between the chain and the core. This term is not

dominant ( b = 0:7� s�1 for PAA and b = 0:2s�1 for

PAAd6), and contribute appreciably only in the MHz

range. For instance, at 10MHz, the constant term rep-

resents the 7% of the total relaxation rate for PAAd6.

In relation with the theory, following the lines of

the semiclassical formalism of spin-lattice relaxation[5]

a general high �eld expression for T�11D in nematic liq-

uid crystals valid for an arbitrary number of spins was
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deduced giving the result: [29]
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Figure 9: Zeeman and dipolar relaxation rates, measured
with the �eld cycling technique in nematic PAA and ne-
matic PAAd6 at the same temperature. The circles and
squares are experimental T1 and T1D respectively. The up-
per full lines are the �tting to T1Z with Table I and Eq.(11).
The dashed lines are the semiclassical two-spin model for
T1D from Table I. The lower full lines are the best �ts with
the function T�1

1D = 3CDJ
1(�)intra+a�

1=2+b (see the text).
Data from Ref.29.

The �rst term corresponds to interpair cross corre-

lations, while the others involve uncorrelated interac-

tions. All terms have similar structure: they are pro-

portional to angular averages of the type F 0
lj

2
. The

intermolecular contributions cancel due to the rapid rel-

ative motion of the molecule. Accordingly, the transla-

tional self-di�usion does not contribute appreciably to

dipolar order relaxation in nematics.

This general result allows to investigate the role

of interpair correlation of protons of the core and the

chains. When particularized to PAAd6 for calculating

the contribution to T1D by including second neighbor

protons, the calculation yielded a negligible correction

to the usual two-spin prediction. This fact, which is

consequence of the r�3 dependence of the dipolar en-

ergy interaction, is consistent with NMR line shape

second-moment studies[52] that characterize PAAd6 as

a two-spin system.

According to the former results, the dipolar order

relaxation of PAAd6, although seeming to be a two-spin

problem, cannot be described by the usual formula for

isolated spin pairs!. This means that the observed gap

has to be associated to some other type of processes

which are not considered by this approach.

A point still requiring discussion is the fast motion

hypothesis, contained in the basic weak-order theory.

Technically, this amounts to calculating the evolution

of the spin operators in the interaction picture with the

operator expit=~HZ (a simple rotation around the direc-

tion of the magnetic �eld). For the slowest components

of the OFD the condition �D�c � 1 is not ful�lled; then

neglecting the spin interactions during the lifetime of

the 
uctuations may be inadequate. In such cases, the

time evolution has to be calculated using the complete

operator eit=~(HZ+HD ) in order to the introduce the in-

teractions. However, this correction to the standard ap-

proach did not introduce signi�cant changes either.[30]

That is, this procedure does not lead to a frequency de-

pendent correction as needed for explaining the T1D(�)

dispersion.

The insensibility shown by the weak-order result to

the inclusion of the spin interactions in the microscopic

time scale, can be interpreted as follows: As shown in

Section II, the weak order master equation is obtained

by neglecting terms of quantum mechanical character

in Eq.(8). The relaxation rates calculated in this limit

are formally equivalent to those calculated directly from
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a stochastic Liouville equation, where the lattice vari-

ables of the spin-lattice Hamiltonian are given random

time functions. By representing the lattice variables

with arbitrary random functions of time, the back-

reaction of the lattice on the spin system during the

lifetime of the 
uctuations cannot be retained.

In summary, the former example allows to safely

conclude that the weak-order theory does not contain

all the ingredients necessary to explain the dipolar or-

der relaxation in systems having slow 
uctuations, like

nematic thermotropics. According to this outstanding

conclusion, the failure must be sought in the very basic

assumptions of the weak-order relaxation theory.

In order to include the correlation between a many

body system and the lattice in the microscopic time

scale, it is necessary to keep the quantum terms of

Eq.(8). Namely, when dealing with the relaxation of

the dipolar order, the spin system should be treated

as an open quantum system in thermal contact with a

quantum mechanical lattice. This can be done by elim-

inating the weak-order assumption.[30, 53] Under this

general condition, the master equation in the form of

Eq.(8) is not easily applicable to the calculation of the

time dependence of spin observables. A more tractable

equation follows by performing a series expansion of the

master equation in operator form.[54] The lowest order

term of the expansion coincides with the �rst term of

Eq.(8), while the higher order ones represent the quan-

tum mechanical part. In fact, the new contributions

cancel if the lattice is represented by a stochastic pro-

cess. The formalism is, at this point, adequate for in-

troducing a `trial' solution. The trial density operator

commonly used in NMR is the one corresponding to the

spin temperature assumption. Physically, it consists in

assuming that the relaxation can be described as a suc-

cession of semi-equilibrium states.[55, 56] Doing this,

it is straightforward to calculate a relaxation time in

terms of the spectral densities.[30]

Using the Pincus-Blinc model for the nematic hy-

drodynamic motions, leads to a correction term to the

usual expression of the dipolar order relaxation rate,

having the form a��1=2. This result agrees with the

phenomenological expression used in �tting PAAd6 and

PAA data, and other thermotropic nematic liquid crys-

tals. Accordingly, the discrepancy between experiments

and the weak order theory can be explained in terms

of multispin processes having a quantum mechanical

character.

The existence of the anomalous low-frequency cut-

o� can also be discussed in terms of the quantum me-

chanical approach. When the external magnetic �eld

is lowered so that the Larmor frequency is comparable

with the linewidth (105 Hz), the description is made in

terms of the dipolar and not the Zeeman energy levels.

Under this condition the Larmor frequency ceases to be

a collective parameter of the spin system.

V Final comments

Frequency dependent T1Z experiments using the �eld

cycling technique have shown useful in characterizing

the OFD. This is specially clear in nematics, where the

typical frequency behavior dominates in a broad fre-

quency range and less evident in smectics. The fact

that smectics have slower local molecular motions than

nematics has a double e�ect in reducing the e�ective-

ness of T1Z(�) for displaying unambiguously the con-

tribution of the collective motions. On the one hand

individual molecular motions (rotation and di�usion)

have a greater relative weight in smectics. On the other,

the frequency dependence of the OFD is steeper. This

amounts in a narrowing of the frequency range where

the OFD dominate relaxation [see Fig.(4)].

Due to the strong spin-spin interaction, the proton

Zeeman relaxation time is an average parameter repre-

senting all the protons placed in di�erent kind of sites

(for example in the chain or the core). In molecules

having many protons this produces a certain degree of

ambiguity in the physical parameters obtained from the

�ttings, due to the large number of parameters that

have to be determined. More informative nuclei would

be deuterons (D) or carbons (13C) because they sepa-

rate individual atomic sites on the molecules by a gen-

erally well-resolved spectrum. However, such experi-

ments imply important technological di�culties. This

limitation can be partially eliminated, in a more ac-

cessible way by combining experiments of relaxation in

protons of partially deuterated molecules; so doing the

di�erent relaxation mechanisms can be separated by al-

ternatively deuterating the chains or the cores. Also,

these experiments can be complemented with angular
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dependent measurements, which provide additional ex-

perimental information [14, 22, 57]

In Section (IV) we showed some examples where

dipolar order relaxation re
ects the OFD almost exclu-

sively. This outstanding feature makes T1D(�) an opti-

mum parameter for studying slow collective molecular

motion in mesophases. Accordingly, it could be help-

ful for testing theoretical models for the hydrodynamic


uctuations in mesophases having di�erent dimension-

ality.

Due to the di�erent frequency response of both re-

laxation times, experiments of T1D(�) in conjunction

with T1Z(�) may provide valuable experimental tools

for the study of molecular motions in mesophases. Par-

ticularly, it would allow to clearly discern the frequency

dependence of the collective motions in smectics. How-

ever, for these studies to be fruitful, a thorough the-

oretical revision of the e�ect of the slow 
uctuations

of the director on the dipolar relaxation rate becomes

necessary, since a comprehensive expression of T�11D in

terms of spectral densities is still lacking.

Parallel to the �eld of the applications, from a basic

perspective, dipolar order relaxation also provides an

interesting example of irreversible processes where the

spin-spin interactions occurring during the microscopic

time intervals seem to produce observable e�ects in the

transport parameters.
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