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The e�ect of quenched disorder in the one-dimensional asymmetric exclusion process is reviewed.

Both particlewise and sitewise disorder generically induce phase separation in a range of densities.

In the particlewise case the existence of stationary product measures in the homogeneous phase

implies that the critical density can be computed exactly, while for sitewise disorder only bounds

are available. The coarsening of phase-separated domains starting from a homogeneous initial

condition is addressed using scaling arguments and extremal statistics considerations. Some of

these results have been obtained previously in the context of directed polymers subject to columnar

disorder.

I Introduction

The one-dimensional asymmetric simple exclusion pro-

cess (ASEP) was introduced by Spitzer in 1970 as an

example of an interacting stochastic process [1, 2, 3]. In

the probabilistic community it has been widely used for

rigorous studies of the emergence of hydrodynamic be-

havior from stochastic microscopic dynamics [4, 5]. Al-

ready thirty years ago similar models were considered in

the context of biopolymerization [6], while recent appli-

cations have focused on the problem of vehicular tra�c


ow [7]. The interest of statistical physicists has been

further fueled by the discovery of boundary-induced

phase transitions [8, 9, 10] as well as the relations to

interface growth and directed polymers in random me-

dia [11, 12]. In short, the ASEP is a generic model

of driven single �le transport which combines utmost

simplicity with a remarkable richness of behaviors.

Fig. 1 illustrates the model. Particles occupy the

sites of a one-dimensional lattice subject to the simple

exclusion rule (at most one particle per site). In an in-

�nitesimal time interval dt particle i at site xi attempts

a jump to the right (left) with probability pdt (qdt).

The jump succeeds if the neighboring site is empty and

is suppressed otherwise. In general the jump rates p

and q may depend on both the particle label i and the

position x on the lattice. In much of the paper I will

restrict myself to the totally asymmetric case q = 0.

In the present article I want to address the e�ects

that quenched disorder in the jump rates has on the be-

havior of the ASEP. Disorder e�ects can be quite dra-

matic in one-dimensional single �le systems, as is evi-

denced by the everyday experience with platoons and

tra�c jams caused by slow vehicles, accidents or road

construction on highways [13, 14, 15, 16, 17]. Also in

the context of driven transport on biomolecules a cer-

tain amount of disorder seems unavoidable [18].

Figure 1. Illustration of the asymmetric simple exclusion
process.

It is natural to distinguish between particlewise dis-

order with p = pi, q = qi independent of x, and site-

wise disorder with p = p(x), q = q(x) independent of
i. Both particlewise and sitewise disorder generically
induce phase separation in the sense that, for global
particle densities � in a certain interval [��c ; �

+
c ], the

system breaks up into regions of density ��c and �+c
separated by sharp density discontinuities (\shocks").
These shocks are typically associated with bottlenecks,
i.e. slow particles or slow sites in the particlewise and
sitewise cases, respectively. If the system is started
from a homogeneous initial condition, the average size
� of phase separated regions grows as a power law

�(t) � t1=z; (1)

de�ning a dynamic exponent z; an example of the time
evolution in the particlewise case is shown in Fig. 2.
Two kinds of questions will therefore be asked in the
following: First, how can the density interval [��c ; �

+
c ]

of phase separation be determined? Second, what is the
value of the dynamic exponent, and how does it depend
on the distribution of the disordered jump rates?
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Figure 2. Space-time plot of trajectories of the ASEP with
particlewise disorder. The �gure shows 256 particles on a
ring of 1024 sites. The initial distribution of particles was
random with density � = 1=4 < �c = 0:4. Courtesy of M.
Gerwinski.

For particlewise disorder a number of exact analytic
results are available [19, 20, 21, 22, 23] which have been
reviewed elsewhere [15]. This case will therefore only
be brie
y summarized in Section II. The more di�cult
problem of sitewise disorder has been studied numeri-
cally by Tripathy and Barma [24] and others [16, 25],
but little is known analytically. In Section III some
progress in this direction will be reported. Speci�cally,
I derive a rigorous bound on the critical densities based
on the results for the particlewise case, and obtain pre-
dictions for the coarsening behavior for various types
of disorder distributions. The relation to directed poly-
mers in random media is brie
y discussed in Section

III.4, and some conclusions and open questions are for-
mulated in Section IV.

II Particlewise disorder

II.1 Steady state and critical density

For particlewise disorder the con�gurations of the
system are most naturally described in terms of the
headways ui = xi+1 � xi � 1 in front of the particles.
The key simplifying feature is that di�erent headways
become statistically independent in the steady state,
with a geometric distribution [19, 21]

Pi(u) = (1� �i)�
u
i (2)

for the headway in front of particle i. In the totally
asymmetric case the parameters �i are determined by
the jump rates pi through the simple relation [20, 21]

�i = v=pi (3)

where v is the (common) mean speed of the particles
in the steady state. Eq.(3) expresses the plausible fact
that the headways in front of slow particles are larger
than in front of fast ones. The geometric distribution
(2) remains valid in the case of partial asymmetry, but
then (3) is replaced by a more complicated relation
[19, 21]. The steady state distribution for the totally
asymmetric model with parallel update has a similar
form [22].

In the following we consider the totally asymmetric
case and take the pi to be independent random vari-
ables with a probability density f(p) supported on the
interval [c; 1], with a minimal speed c bounded away
from zero. Since particles cannot pass each other, it is
clear that the steady state speed v in an in�nite sys-
tem cannot exceed c. To compute it, one determines
the mean headway in front of particle i from (2) and
performs the disorder average. In a system of density �
the resulting average headway must be (1� �)=�. This
yields the implicit equation

� =

�
1 + v

Z 1

c

dp f(p)

p� v

��1
(4)

for the speed as a function of density. Two cases are
to be distinguished. If the integral on the right hand
side of (4) diverges in the limit v ! c, then v(�) < c for
all � > 0. In this case the �i in (2) are bounded away
from unity for all i, the headway distributions are nor-
malizable, and the system remains homogeneous. If,
on the other hand, the integral remains �nite in this
limit, then the right hand side of (4) evaluated at v = c
de�nes a critical density �c such that v(�) � c in the en-
tire interval [0; �c]. For the slowest particles with pi � c
this implies that the headway distributions (2) are no
longer normalizable. Large gaps appear in front of these
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particles, and the faster particles form platoons behind
them, a phenomenon familiar from vehicular tra�c on
country roads [15, 13, 14]. The system phase separates

into regions of density ��c = 0 (the gaps) and regions of
density �+c = �c (the platoons).

It is evident from (4) that the condition for phase
separation translates into a condition on the behavior of
the disorder distribution f(p) near p = c. Introducing
an exponent n through

f(p) � (p� c)n; p! c; (5)

phase separation occurs i� n > 0. At the critical point
� = �c the disorder averaged headway distribution has
a power law tail � u�(n+2) [20]. Evans [21, 22] has
emphasized the close analogy to Bose-Einstein conden-
sation, where f(p) plays the role of a density of states,
and the slowest particle in the system corresponds to
the quantum mechanical ground state.

II.2 Coarsening behavior

No exact results pertaining to the dynamics of phase
separation are available, apart from the observation [23]
that the existence of a well-de�ned hydrodynamic limit
implies that inhomogeneities are restricted to scales
smaller than t, and therefore

lim
t!1

�(t)=t = 0: (6)

Considerable evidence has however accumulated in fa-
vor of the idea [20] that the coarsening behavior for
particlewise disorder can be described in terms of a
simpler, deterministic model, in which particles move
ballistically on the real line with �xed random speeds
and coalesce upon overtaking. Such a model was �rst
introduced by Newell [13], and later a detailed kinetic
theory was worked out by Ben-Naim, Krapivsky and
Redner [14].

Within the deterministic model, the dynamic expo-
nent z can be determined through a simple extremal
statistics argument. The key idea is that the parti-
cles heading the platoons at time t are those with the
smallest speeds among of the order of �(t) particles. El-
ementary probability theory su�ces to show that, for
a probability density behaving as (5), these extremal
speeds cluster in an interval of size ��1=(n+1) above the
minimal speed c. Therefore the speed di�erence �v be-
tween two platoons is of the order ��1=(n+1), and the
faster platoon will merge with the slower one on a time
scale t � �=�v � �(n+2)=(n+1). Inverting this relation
one obtains the coarsening law (1) with

z =
n+ 2

n+ 1
: (7)

Numerical results supporting (7) have been reported for
models with parallel update [26], in simulations of jam
dissolution [23] and in a simulation study of a system
with open boundaries [27].

III Sitewise disorder

III.1 Disorder types

We distinguish three cases which will turn out to
represent di�erent classes of coarsening behavior. For
type I disorder the dynamics is totally asymmetric,
q(x) � 0, and the forward rates p(x) are independent
random variables in an interval [c; 1], with a minimal
rate c > 0. The simplest (and typical) example is that
of binary rates, with probability density

f(p) = ��(p� c) + (1 � �)�(p� 1) (8)

where � 2 (0; 1) denotes the fraction of slow sites. Type
II disorder is similar to type I except that the support
of the probability density f(p) extends all the way to
p = 0, i.e. the minimal rate c = 0. For type II disorder
nontrivial dynamics occurs only for continuous f(p). As
in the models with particlewise disorder (eq.(5)), the
important feature of f(p) is the behavior near p = 0,
which can be characterized by an exponent n through
the relation

f(p) � pn; p! 0: (9)

Finally, for type III disorder not only the strength,
but also the direction of the bias is spatially random.
A majority of sites has a bias to the right, say, with
p(x) > q(x), while a minority has q(x) > p(x). If the
one-dimensional lattice is viewed as a transport path
in a higher-dimensional disordered structure, such as a
percolation cluster, the stretches of minority sites can
be interpreted as \backbends" where the path turns
back against the direction of the driving �eld [28]. Com-
pared to the strong disorder e�ects induced by the back-
bends, the randomness in the strength of the bias is
irrelevant. Therefore a representative example of type
III disorder is a model where the strength of the bias
is constant, and only its direction varies. This corre-
sponds to setting q(x) = 1�p(x) and choosing the p(x)
from a binary distribution which is symmetric around
p = 1=2,

f(p) = (1� �)�(p� b) + ��(p� (1� b)): (10)

Here b 2 (1=2; 1) denotes the strength of the bias and
� 2 (0; 1=2) the fraction of minority sites.

It is easy to see that for type II and III disor-
der the stationary particle current vanishes in the in-
�nite system limit, due to the existence of arbitrar-
ily large stretches of arbitrarily small jump rates (for
type II) or arbitrarily long backbends (for type III). As
a consequence phase separation occurs at any density
� 2 (0; 1), i.e. ��c = 0 and �+c = 1. For type I disorder
the existence of a nontrivial current function J(�) > 0
describing the large scale dynamics of density pro�les
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has been rigorously established, and it has been shown
that J(�) is convex in the sense that J 00(�) � 0 [29].
However, in contrast to the models with particlewise
disorder the stationary state is not known, and there-
fore an explicit computation of J(�) is not possible. In
the next section some bounds on J(�) will be derived
and used to bound the critical densities for type I dis-
order. The coarsening dynamics for all three cases will
be addressed in Section III.3.

III.2 Bounds on the critical density for
type I disorder

We �rst collect some obvious properties of J(�).
Due to particle-hole symmetry we have J(�) = J(1��).
The current is bounded from below by the current
c�(1 � �) of a pure system with all rates equal to the
minimal rate c, and from above by the current �(1� �)
of the system with all rates equal to unity. A more
precise upper bound is obtained by observing that in
the in�nite system there are arbitrarily large stretches
with rates arbitrarily close to c. The maximum current
that can be driven through such a stretch is c=4, the
maximum value of c�(1 � �). We conclude that

c�(1� �) � J(�) � min[c=4; �(1� �)]: (11)

Numerical simulations of site-disordered exclusion
models [24, 16, 25] and related growth models [30, 31]
indicate that the upper bound c=4 is attained in a �nite
density interval around � = 1=2, which coincides with
the phase separation interval [��c ; �

+
c ]; by particle-hole

symmetry ��c = 1��+c � �c. In the following our strat-
egy will be to derive optimal lower and upper bounds
J<(�) and J>(�) on the stationary current, which are
then translated into lower and upper bounds �<c , �

>
c on

�c through the relation

J>(�
<
c ) = J<(�

>
c ) = c=4: (12)

The lower current bound in (11) does not give rise to
any nontrivial density bound, while the upper bound
�(1 � �) yields

�c � (1 �p1� c)=2: (13)

For the case of binary disorder (eq.(8)) an improved
lower bound on the current was derived by Tripathy
and Barma [24] by considering a �nite ring of L sites,
N = �L particles and Ns = �L slow sites. They start
from the observation that the maximum current that
can be driven through a stretch of slow sites is a de-
creasing function of the length of the stretch (we will
return to this point below in Section III.3). It is there-
fore plausible (though not rigorously established) that
for given L, N and Ns the stationary current will be
minimal in the fully segregated limit where all slow sites
form a single large stretch. For L!1 the fully segre-
gated system can be treated as two connected homoge-
neous systems with di�erent densities, which are �xed

through the constraints of equal currents and total par-
ticle number. This yields the upper density bound

�c � (1� (1 � �)
p
1� c)=2: (14)

In the dilute limit �! 0 the bounds (13) and (14) co-
incide, and give �c = (1�p1� c)=2 exactly. It should
however be noted that this limit does not correspond to
the case of a single defect site, since the maximal cur-
rent that can be driven through a single defect is larger
than c=4 [32] (see also Section III.3).

The lower bound (13) can be improved by compar-
ing the disordered exclusion model to a zero range pro-

cess (ZRP) with the same set of jump rates fp(x)g. In
the ZRP an arbitrary number of particles is allowed on
any site [1, 15], and therefore any attempted jump suc-
ceeds. As a consequence the stationary state of the ZRP
is a product measure, with the occupation numbers at
di�erent sites being independent, for any choice of jump
rates depending on the position x and on the number
of particles at the site [19, 33]. Here we consider the
case where the rate at which a particle is transferred
from site x to x + 1 is equal to p(x) independent of
the number of particles at x, provided the latter is not
zero. It is then obvious (and can be proved through
waiting time considerations) that the particle current
JZRP(�) of the ZRP provides an upper bound to the
current J(�) of the ASEP.

In fact the disordered ZRP is equivalent to the
ASEP with particlewise disorder, with the ZRP occupa-
tion numbers representing the headways in the ASEP
[19, 15]. The ZRP current is equal to the particle speed
v of the ASEP, which is given by (4) for any disor-
der distribution f(p). The ZRP density is equal to the
mean headway of the ASEP, and is therefore related to
the ASEP density through �ZRP = 1=�ASEP � 1. Eval-
uating the integral in (4) for the binary distribution (8)
yields

�ZRP = JZRP

�
�

c � JZRP
+

1� �

1� JZRP

�
; (15)

and setting J> = JZRP in (12) we obtain the density
bound

�c � �

3
+

c(1� �)

4� c
; (16)

which improves (13) for small c. In particular, for c! 0
we have �c � �=3, which proves, remarkably, that the
homogeneous phase � < �c persists even when the slow
sites become complete blockages. In Fig. 3 the bounds
(13), (14) and (16) are compared to numerical data.
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Figure 3. Bounds on the critical density for sitewise disorder
with the binary distribution (8), � = 1=2. The dashed line
is the upper bound (14), the two full curves show the lower
bounds (13) and (16), and the full squares are simulation
data obtained by G. Tripathy.

III.3 Coarsening behavior

At least for type I disorder the existence of a hydro-
dynamic limit [29] implies that the relation (6) carries
over to the sitewise case. To obtain a �ner estimate
of the coarsening scale �(t) we rely on extremal statis-
tics arguments similar to those used in Section II.2.
A schematic phase separated density pro�le is shown
in Fig. 4. Two \antischocks" at positions x1 and x2,
where the density jumps from �+c = 1� �c to ��c = �c,
mark bottleneck regions of particularly slow rates, which
support maximum currents j1 and j2. If the bottleneck
in the downstream direction is slightly more restrictive,
in the sense that �j = j1 � j2 > 0, then the low den-
sity region between the bottlenecks will slowly �ll in
and disappear at a time

t � (1� 2�c)�=�j: (17)

If the statistics of extremal bottlenecks is known, the
typical current di�erence �j can be estimated as a func-
tion of � and (17) yields a prediction for the coarsening
law �(t). In the following this will be carried out for
the di�erent disorder types.

Figure 4. Schematic of two bottlenecks at positions x1 and
x2.

III.3.1 Type I disorder

Consider �rst the conceptually simplest case of
the binary disorder distribution (8). We expect long
stretches of slow sites to constitute the most restric-
tive bottlenecks. For a quantitative analysis we would
require the maximum current jmax(c; `) which can be
driven through a stretch of ` slow sites with jump rates
c embedded in an in�nite system of sites with jump
rates 1. Already for ` = 1 the computation of jmax(c; `)
is a di�cult unsolved problem [32]. However for large `
we can make progress by replacing the stretch by a �nite
system of ` sites with uniform jump rates c and periodic
or open boundary conditions, for which the maximum
current is known [9, 10]. For both kinds of boundary
conditions the current approaches the `!1 limit c=4
from above, with a leading correction [34] proportional
to 1=`. Thus we expect, for large `,

jmax(c; `) � (c=4)(1 + a=`) + O(1=`2); (18)

where a is a positive constant of order unity.
Since the probability distribution of the lengths of

slow stretches is

P (`) = (1� �)�`; (19)

the longest stretch in a region of size � is of the order
of

`max � ln �

ln(1=�)
: (20)

Note that `max � �, which is consistent with the as-
sumption of well-localized bottlenecks inherent in Fig-
ure 4. Using (18) we see that the currents supported by
the longest stretches exceed c=4 by an amount of the
order of c=`max, and therefore

�j � c ln(1=�)

ln �
: (21)

Inserting this into (17) the leading order coarsening law
is obtained as

�(t) � t=t0
ln(t=t0)

(22)

with a characteristic time scale t0 � (1�2�c)=c ln(1=�).
This argument was formulated earlier in the context of
phase-disordered growth models, where also numerical
evidence in favor of the coarsening law (22) was pre-
sented [30, 31].

For continuous disorder distributions f(p) the iden-
ti�cation of the relevant bottlenecks is a little more sub-
tle. Consider a region of size ` where all rates satisfy
p(x) � c + �. The maximum current through such a
region can then be estimated as

jmax � c+ �

4

�
1 +

a

`

�
� c=4 + �=4 + ca=4` � c=4 + j:

(23)
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If f(p) behaves as in (5) for p ! c the probability of
the region is of the order of �(n+1)`. The probability
distribution of j can then be written as

P (j) �
Z

d`

Z
d� �(n+1)`�(j � (� + ca=`)=4) �

Z
d� exp[�(n+ 1)ca ln(1=�)=(4j � �)]: (24)

Evaluating the last integral at the saddle point yields

P (j) � exp[�(n+ 1)ca ln2(1=j)=j]: (25)

The current scale �j of the most restrictive among �
bottlenecks is obtained by setting P (�j) � 1=�, which
gives

�j � [ln(ln �)]2

ln �
; (26)

and the corresponding coarsening law reads, to leading
order in t,

�(t) � t[ln(ln t)]2

ln t
(27)

which, for most purposes, is indistinguishable from
(22).

III.3.2 Type II and III disorder

For type II disorder with a continuous probability
distribution f(p), characterized by (9), the expression
(23) for the maximum current supported by a slow
stretch of length ` applies with c = 0. The distribu-
tion of jmax then becomes

P (jmax) �
Z

d`

Z
d� �(n+1)`�(jmax � �(1 + a=`)=4) �

Z
d` exp[�(n+ 1)` ln((1 + a=`)=4jmax)]: (28)

Now the maximum of the exponent evidently occurs at
` = 1, i.e. the dominant bottlenecks are individual slow
sites. The distribution of the currents supported by the
bottlenecks is then simply given by the jump rate dis-
tribution f(p) itself, and the situation reduces to that
analyzed in the case of particlewise disorder, Section
II.2. In particular, the coarsening exponent z for type
II sitewise disorder is also given by (7).

For type III disorder with distribution (10) the dom-
inant bottlenecks are long backbends, i.e. stretches of
minority sites at which the local bias is directed against
the mean 
ow direction. The maximum current that
can be driven through a backbend of length ` is expo-
nentially small in `, and is given by [24, 28]

jmax(`) � exp[�(1=2)` ln(b=(1� b))]: (29)

Combining this with the probability distribution (19)
of backbend lengths it follows that jmax is distributed
according to a power law,

P (jmax) � (jmax)
2��1�1 (30)

where

� =
ln[b=(1� b)]

ln[1=�]
: (31)

Since the largest backbend in a region of size � is of
length ` � ln � � �, we can employ a coarse grained
picture in which the backbends are shrunk to individ-
ual sites with a jump rate distribution given by (30),
thus e�ectively reducing the problem to type II disor-
der with the exponent n in (9) given by n = 2=� � 1.
The coarsening exponent for the disorder distribution
(10) is then obtained from (7) as

z = 1 + �=2: (32)

III.4 Relation to directed polymers

Using the waiting time approach [35] the site disor-
dered ASEP can be mapped to a zero temperature di-
rected polymer (DP) with point and columnar disorder
[36]. In that context the coarsening law �(t) describes
the disorder-induced transverse wandering of the poly-
mer, which can be estimated using variable range hop-
ping arguments [36] and the analogy to Lifshitz tails for
one-dimensional disordered Schr�odinger operators [37].

To see that the results derived for the DP are con-
sistent with those obtained above, it is important the
recall [35] that the waiting time mapping transforms
the time t of the ASEP into the energy of DP. For type
I disorder the transverse wandering �x of the DP was
found to increase with its length L as [36]

�x � L=(lnL)2; (33)

while the ground state energy behaves as E � L= lnL
to leading order. Combining the two results and iden-
tifying E � t the coarsening law (22) follows.

For type II disorder the power law (9) of the prob-
ability distribution at small p translates into a power
law tail

P (� ) � ��(2+n); � !1 (34)

in the distribution of waiting times or energies � = 1=p.
Directed polymers in the presence of columnar disor-
der with a power law distribution were considered in
Ref.[37], where it was shown that the wandering is typ-
ically ballistic, �x � L, while the ground state energy
scales with length as

E � L(n+2)=(n+1) (35)

in agreement with (7). It is worthwhile to point out
that in the DP context the scaling laws (33) and (35)
were also con�rmed numerically [36, 37].
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IV Summary and open ques-

tions

In this paper I have described some recent progress
in our understanding of disorder e�ects in asymmet-
ric simple exclusion models. A common feature of both
particlewise and sitewise disordered systems is the ap-
pearance of phase separation in an interval of densities,
which is macroscopically characterized by a linear por-
tion in the current-density relation J(�); in the parti-
clewise case J(�) = c� for � < �c, while in the sitewise
case J(�) � c=4 for �c � � � 1 � �c. An interesting
open question concerns the connection between phase
separation and linearity of J(�), which is reminiscent
of the role that the convexity of thermodynamic po-
tentials plays for the stability of equilibrium systems.
While it is obvious that phase separation implies a lin-
ear segment in J(�), the converse statement has, to my
knowledge, not been established. To prove that it is
false, it would be su�cient to �nd a (noisy!) exclusion
type model with a homogeneous stationary state and
a linear current-density relation (deterministic systems
with linear J(�) are well known [7, 38]).

The dynamics of phase separation has been explored
in the framework of scaling arguments, which can be
formulated in a similar way both for particlewise and
sitewise disorder. In the particlewise case the relevant
bottlenecks which determine the positions of domain
boundaries are always individual slow particles, while
in the sitewise case with type I and III disorder the bot-
tlenecks are formed collectively by many defects. For
type I disorder this implies a certain universality of the
coarsening law, in the sense that the exponent z in (1)
is z = 1 independent of the underlying disorder distri-
bution; the additional logarithmic corrections in (22,27)
ensure the consistency with the rigorous result (6). This
is somewhat analogous to the case of �nite temperature

directed polymers with columnar defects, where univer-
sal scaling laws arise from the thermal averaging over
large spatial regions [37].

A numerical con�rmation of the predictions for the
coarsening dynamics in the case of sitewise disorder
would be most welcome. For type II disorder this
should be relatively straightforward, however in the
cases of type I and III disorder the behavior is dom-
inated by exponentially rare regions, which may make
it hard to reach asymptopia.
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