1052 Brazilian Journal of Physics, vol. 35, no. 4B, December, 2005

Exact Solutions of Brans-Dicke Cosmology and the Cosmic Coincidence Problem
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We present some cosmological solutions of Brans-Dicke theory, characterized by a decaying vacuum energy
density and by a constant relative matter density. With these features, they shed light on the cosmological
constant problems, leading to a presently small vacuum term, and to a constant ratio between the vacuum and
matter energy densities. By fixing the only free parameter of our solutions, we obtain cosmological parameters
in accordance with observations of the relative matter density, the universe age and redshift-distance relations.

Several authors have been considering the possibility of a p=-3H(p+p)=—3Hpm, (4)
varying cosmological term in order to fit the observed non-
decelerated expansion of the universe and, at the same time, to . )
explain the small value of the cosmological constant observed H2 — 8mp oy + Qf (5)

at present [1]-[13]. Such a variation of the vacuum density 3p o 6 ¢*’
has found support in some quantum field approaches (see, for, B . . .
example, [6, 9]), in which context an induced variation of thewherep_ Pm+ Pa is the total pressurey is the Brans-Dicke

L | i | 1 para.me_ter, and the Brans-Dicke scalar f'rpid relatgd to the
?rlavlltgaitlona coupling consta@may also be expected [5, 10, gravitational constant by = Go/G, Go being a positive con-

Our goal in this contribution is to present some cosmolog—St"’I‘:r;tO?]: g]jr%f:;tgf(llj)mg') we obtain

ical solutions with decaying vacuum in the realm of Brans-
Dicke theory. For this purpose, we will consider an em- 0 = 30AH (6)
pirical variation law forG, given by the Weinberg relation ’
G~ H/m3, whereH = a/a s the Hubble parameter, ama);

is the energy scale of the QCD chiral symmetry breaking, the o 8M\Go

latest cosmological vacuum phase transition. Such a relation, H 7
originally based on the Eddington-Dirac large number coinci-
dence, can find some support on theoretical, holographic ar- .
guments [11, 14]. Let us write it as ¢=8MGo(1+0), (®)
H whereq = —ad/a? is the deceleration parameter.
G= s\’ @) By using (6)-(8), we can rewrite equations (3)-(5) in the
form

where the constantis positive and has the order .

With this variation law forG, we will form an empirical (34 2w)AGp[g+ 3(1+qg)H] = 3aAH + 3pa, 9)
ansatz to be used in Brans-Dicke equations. It is fulfilled by
the additional constraint

Pm=0A(1+q)H, (10)
3aH?
=BG @
4 2iq-21+92 (11)
wherep = pm+ pa is the total energy density, awndis a pos- Gy a 6 '

itive constant of the order of unity. As we know, in the con-
text of scalar-tensor theories, even for zero spatial curvaturé::
the total energy density is not necessarily equal to the criti- .
cal densityp. = 3H2/(8nG). Therefore, the above equation (3+20)AGo(1+a)H = aAH +pp. (12)
should also be considered an empirical coincidence, suggestedUSing (6) and (10), we obtain a decaying vacuum density,
by observation. Our point is that, since (1) and (2) are Va"dgiven by
nowadays, they may be valid for any time, or at least in the
limit of late times. pA = aA(2—Q)H. (13)

Let us find solutions for this limit, by considering a spatially
flat FLRW space-time, with a cosmic fluid formed by dust Leading (1) into (13), and usingy = A/8NG, we see that the
matter (i.e. pm = 0) plus a vacuum term with equation of state cosmological term scales as

pa = —pa. The Brans-Dicke equations are then given by [15,
16] A=a(2—q)H?2 (14)

d(ga®)  8m
dt ~ 3+2w

quation (11) shows thatis a constant, and (9) reduces to

3 Equations (13) and (14) are curious results, because they
= 3+2w(p+3p/\)a, () can also be derived on the basis of theoretical reasoning

(p—3p)a’
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[4, 6, 8, 9, 11], with no use of the empirical relations we areobservations [18]. Finally, a coasting expansion wijth 0 is

considering here. We will see that relations (13) or (14) carconsistent with observations of distance-redshift relations for

be used to form a second ansatz, with a larger set of solutionsupernova la and compact radius sources [19-21].
Substituting (6) and (10) into (4), we obtain a first order As to the Brans-Dicke parametersandGg are concerned,

differential equation foH, which solution is given by they are positive and of the order of unity. This could be con-
sidered a bad result, in view of the high lower limits imposed
H— (1) } (15) to w by astronomical tests in the Solar System. Nevertheless,
1+q/t let us remember that we are concerned here to a vacuum den-

. i i sity variation (and to a corresponding indudgdariation) at
Here, an integration constant was made zero in order to obtaipe cosmological scale, variations that cannot be ruled out by
the divergence off att = 0. A second integration leads t0 @ gpservations at the local scale (where the metric is station-
scale factor evolving as ary, and where any spatial dependenc&pfelated to some
1 spatial dependence of the vacuum density, is negligible). In
a=AtTa, (16)  this sense, the Brans-Dicke theory we are using here, with
) ) _ _ constantw, must be considered an effective description, valid
whereAis an arbitrary integration constant. only in the cosmological limit [13]. A more general approach
With the help of (1), one can write the critical density as can pe based on scalar-tensor theories in whickepends on
Pc = 3\H. Therefore, from (10) we obtain a relative matter the scale, being very high in the weak field approximation of
density Solar System.
om (140 Another point_ to be conside_red is the constant character
Qn=—-= . (17)  of the deceleration parameter in our solutions. Although the
Pe 3 present observations indicate a non-decelerating expansion,

This is perhaps the most interesting feature of the present s&1! earlier decelerateq phase IS usually expected in order to
lutions. It means that, in the limit of late times we are con-2oW Structure formation. In spite of the claim of some au-
sidering here, the relative matter density is a constant. Thi@_orrls [ilg) about Fhe p0?5|b|_llty of a coasting expansion (i.e.,
is a consequence of the conservation of the total energy, e>¥‘—"t. q~ 0) even for earlier times, a more conservative View-
pressed by equation (4). The vacuum decay is only possible point would' bg to cons!der our empirical ansatz (1)-(2) valid
associated to a process of matter production (a general featu?81 In the limit of late times, as we have been done.

of vacuum states in non-stationary space-times). On the other W& can also replace our original ansatz by a more general
hand, since in our ansatz= ap. (see (2)), the constancy of ONé (in the sense of presenting a larger set of solutions). We
Qm is a possible solution to the cosmic coincidence problemhave seen that our results (13) and (14) (with consfphave

that is, the unexpected approximate coincidence between trheen justified in different theoretical approaches to the vac-
matter density and the dark energy density. We will see belo/AUM energy in curved space-'gmes (for instance, in [6, 9]). We
that (17) is in accordance with present observations. can therefore substitute= BH< (or, equivalentlypy = BAH,

Substitutingpa from (13) into (12), one has wheref is a constant) for our empirical relation (2), retaining
the Weinberg relation (1). As this last one may also be un-

derstood on the basis of theoretical arguments (as in [11], for
example), this new ansatz should be considered more justified
from a theoretical viewpoint.

Comparing the values ai/Gg given by (11) and (18), we The set of solutions we can find leading the new ansatz into
obtain a relation between andq; Brans-Dicke equations (3)-(5) will be shown in a forthcom-
ing publication. Let us just mention that we re-obtain, as a

(34+2w)(1+q) = |2+q— 9(1+ q)Z] (3—q). (19) particular case, the same solutions we have obtained with the

6 former ansatz. In addition, we have three other cosmological

We can also, by eliminating from (11) and (18), derive solutions, for which the Brans-Dicke parameteris= —1,

a  (3+2w)(1+q)
T (18)

a/Go as a function ofy; and the vacuum energy density is negative. In two of these ad-
ditional solutions, the deceleration parameter is always highly
o 12(2+q)+3(1+0)? positive or always highly negative, being them therefore ruled
G~ (A+9@-q+i2" (20)  out by observations.

The third new solution has an initial singularity, an early

With all these results we can estimate corresponding valuedecelerating phase followed by an accelerated one, and a “big-
for the cosmological parameters. For examplegfer0 (that  rip” singularity, witha, H andpy, diverging at a finite time in
is, for a = At) we obtain, from equation (19 = 6/5; from  the future (but withQm remaining finite). So, it is an interest-
(20) we haven/Go = 9/5; from (15) it follows Ht = 1; and  ing solution from a theoretical perspective. Unfortunately, for
from (17) one obtain®y, = a/3. g in the range given by the present observationt £ q < 1),

Asa ~ 1, we see that in this cag®y, ~ 0.3, aresult corrob-  the age parameter for this solution is less thHr 0.5, out-
orated by astronomical estimations [17]. On the other hand, aside the observed limits.
age parametéfit ~ 1 has been suggested by globular clusters
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