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We take arbitrary gravitational perturbations of a 5d spacetime and reduce it to the form an axially symmetric
warped braneworld. Then, we write the filed equations for the linearized gravity perturbations. We obtain the
equations that describes the graviton, gravivector and the graviscalar fluctuations and analyse the effects of the
Schibdinger potentials that appear in these equations.

. INTRODUCTION lll. LOCAL FRAME GRAVITATIONAL FLUCTUATIONS

In the almost all works on the Randall-Sundrum (RS)We work in the conformal frame where
braneworlds [1], the axial gauge is used to derive the lin- _
earized gravity dynamics. In this gauge there are no fluctu- ds* = e "@[g ) dxWdx") + e2dZ]. ()
ations transverse to the brane, and the scenario is axially Symrhe equations for the gravitational fluctuations are derived
metric. An other important gauge is the harmonic (de Donyjth Y = e@)eﬁ,)g/xs and, da(...) = e?A)GB(---), with
der) gauge for which, in 5D, thiess-graviscalar and this,- - = e B c :
gravivector 4D fluctuations can be non zero, breaking the axiaf(®):9(®)] # 0. Thehag satisfies?®hag = 0, g = 0, which
symmetry. However, as pointed out in [2], a new coordinatd"€ans that
frame in 5D can be found, where the metric becomes axially hd = —¢,
symmetric even withhss, hs, # 0. By following [2], we call
such coordinate frame tHecal frame Here, we analyse the The the “prime” represeng. The field equations are
field equations for the vacuum fluctuations that arise in the 2 L (m)
local frame, using the 5D de Donder gauge. Co +12f%¢ +3f'¢" = —KTgg ", 9)

au Pq == _¢/7 aahuu - _Pl/l' (8)

DR+ 6(f2+ £)Pu+ 30,0 — 200y, 0(5)] f = —KT,i”,

(10)
0 hy + 31 (0uR, +0uRy) — 31/hfy, +12(12 — )y
o z[a(u),a(\})]f — _KTLEvm)7 (12)

II.  AXIALLY SYMMETRIC BRANEWORLD

The 5D metric is expanded amg = Nas + hag Where
A,B=0,1,2,35, nag = diag(—1,1,1,1,1) and hag small
gravity fluctuations. The 5D line element is

dS = (N + hy)dXdX’ + 2hs, dXd>® 4 (14 hss) (dx°)2. where = n*Bdads. The local frame equations depends on

(1) the comutator of partial derivatives of the warp function. The
The above spacetime take the axially symmetric form equation for the scalar do not changes [3].
_ 2
ds” = gy dxPdx") +e?dy? (2 Extended KK-gravity: As =0 = 0. The system (9)-

)

wherex® = efVxB, with theels” given by

&) =5 o, -8

(5) — 0, el(JS) = 5_1Ppa (3)

_ 65 _1t9/2 &

)
€w="Puv & e b

_1-9/2

€

(4)

wherePy, = hs, ¢ = hss, y=x® ande? = —1,1. The physical
4D metric can be given by ), Or Gyw) = e*ng(u)(v). If
f = f(y), we have

ds = e 2/Wg, , dXWdxXY) + e2dy?. (5)
Then, we agsume that (5) satisfies the action

S= dXv=0(K *R+Ns+Lm)+v/—00],  (6)

whereg = det(g(a)g)). Gb = det(g,v)) andk = M. The
vacuum solution gived’(y)2 = —k?As(y)/12 and f"(y) =
K%a(y)/12

(11) decouples to

Op= kT, OR,= —kT"

o, (12)

Ohyy = —kT4". (13)

The scenario is an extended Kaluza-Klein gravity with a no
compact extra dimension. The gauge conditions enable us to
write the 4D tensohy, in terms of spin-2, spin-1 and spin-0
fluctuations. The vacuum is flat.

IV. WARPED GEOMETRY FLUCTUATIONS

Graviscalar. ConsiderTs(g") = 0. The ¢ is re-scaled to
d(x,2) = e 37@/2§(x,2) and we look for solution$(x,z) =
d(X)Ws(2), with 3%94® (x) = m2d(x). Then, (9) implies

[_ag +Vs(2)|Ws(2) = mg'-le(Z)a (14)
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with Vs(z) = —(3 7 — 32'2). The vacuum solutions farare ~ whereVg = —(3f2— 2{”). This potential reproduces the
of no interest, because the compatibility condition between (9RSII result forf (z) = Log(k|z| + 1).

and (10) force us to sét=0[3].

Gravivector. With ¢ = 0, eq. (10) in vacuum gives

(02 +W(2)]¥v(2) = MG (2) (15)
WhereVV( ) = 5(f/2+ f”) for Yy deﬁned byISH(X, Z) = V. CONCLUSIONS

For RS Warp, the potent|al M,( 2) = —10&6( z). Then, we

have masive solutions with = —25k?, whereasn; = —36k? In the no warped scenario, the vacuum fluctuations are de-
in the coordinate frame [3]. scribed by three independent wave equations which describes
The compatibility condition between (10) and (11) is the 4D scalar, vector and tensor fluctuations on|the0 3-

brane. In warped scenarios, there are no scalar propagation on
0

[—26(f3+ 1)+ 61"]P,+ (8f" —4f?)F=0.  (16)

If f=_Log(klz+ 1), we have -200¢
( — 10k3(2)sgr(2) + 3k¥ (2) +3m>wv(z) ~400;
k2 ooy 600+
+ (4k6(z) - BW) W,(2) =0 (17)
-800r

For|z > 0, (17) is satisfied by, = 25a,(k|z| + 1), wherea,
is a constant. Az =0, (17) implies,a, = 0. With the smooth ‘ ‘ ‘ ‘ ‘ ‘
warp, f(z) = Log(k?Z® + 1), eq. (16) becomes -0.6 -0.4 -0.2 0 0.2 0.4 0.6

6K 11k3z
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3k32 , FIG. 1: The squared tachyonic mas$,(z), in the vertical axis. The
- 71+ K2 1|y, =0. (18) horizontal axis i <z< z* andk=1

At z= 0, we havey;,(0) = 0. A solution of (15) that sat-
isfy (18), is the massive mode described by

oL tanir(1/34 422 3) the 3-brane vacuum. For the RS warp, there are no gravivec-

Wy = (19) tor on the 3-brane. For the smoothed warped braneworld, we
(—1+ K222 4 2k4Z4)5/8’ obtain a tachyonic mass solution for the gravivector, that also
satisfies the compatibility condition. This solution becomes a
with massmg = —3k? (7+ 25k%2%) / (1 — 2k222)2. massless spin-1 fluctuation/As — O.

The Fig. 1 shows the variation @f¢ with the extra co-
ordinate. It is almost constant for smalland diverges for
z— +7* = £1/(vV2k). On the|z = 0 3-brane,P,(x) =
cue’ B (1/3)gpa e i ¥ wherep? = ng(0) = —21k? and,
pHcy = 0.

Graviton. To obtain the graviton potential we take= 0 and
T.\" = 0. Then, the eq. (11) implies
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