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Limit distributions are not limited to uncorrelated variables but can be constructively derived for a large class
of correlated random variables, as was shown e.g. in the context of large deviation theory [1], and recently
in a very general setting by Hilhorst and Schehr [2]. At the same time it has been conjectured, based on
numerical evidence, that several limit distributions originating from specific correlated random processes follow
q-Gaussians. It could be shown that this is not the case for some of these situations, and more complicated limit
distributions are necessary. In this work we show the derivation of the analytical form of entropy which —under
the maximum entropy principle, imposing ordinary constraints— provides exactly these limit distributions. This
is a concrete example for the necessity of more general entropy functionals beyond g statistics.
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1. INTRODUCTION

The importance of non-exponential distributions arising
from an impressive number of complex statistical systems is
by now beyond any doubt. Clearly, for most of these systems
the classical approach of statistical mechanics is highly un-
justified and bound to fail. Since many complex systems are
statistical in nature it should, in some cases, be possible to
keep a generalized H-theorem or a ’'maximum entropy prin-
ciple’ (MEP), however with a modified entropy functional. It
has been known now for the past two decades that, for vari-
ables following asymptotic power-laws, an associated maxi-
mum entropy principle can be formulated in terms of gener-
alized entropies where the usual logarithm of the Boltzmann
H-function gets replaced by the so called g-logarithm [3] !.
However, in many complex systems distribution functions are
observed which do not fit into the framework of the class of
such generalized entropies. This calls for a more general set-
ting, which has been explored lately from several distinct di-
rections. In [5] a more general 3-parameter logarithm was de-
rived on the basis of the MEP, applicable to a special type of
distribution functions. Also based on the MEP a very general
form was derived in [6-8], suitable for practically all reason-
able piecewise monotonous distribution functions. In [9, 10]
information theoretic aspects have led to the same class of en-
tropy functionals, as is the case for [11, 12], where a very sim-
ilar entropic form was derived on convexity arguments. For
these entropies we showed that for every reasonable class of
distribution functions it is not only possible to derive a unique
entropy functional, which guarantees not only the correct re-
sults under the maximum entropy principle [6], but it is also
fully compatible with the first and the second law of thermo-
dynamics [13]. The necessity of these entropy formulations
can be demonstrated in several important examples, some of
which are discussed in [14]. Since these entropies can be seen
as a generalization of previous generalizations of Boltzmann-
Gibbs entropies we therefore refer to them in the following as
generalized-generalized entropies, Sg,.

! Note that the traditional Tsallis entropy replaces the ordinary logarithm
with the dual g-logarithm. For the definition of the dual, see [4].

Classical statistical mechanics is tightly related to the
central limit theorem (CLT). From the later the Maxwell-
Boltzmann distribution immediately follows if one assumes
the velocity of gas particles being the result of N — co random
collisions with other particles, given the velocity distribution
being centered, stable and having a second moment. Com-
plementary to this mathematical approach the same distribu-
tion can be derived from a physical principle (MEP), where
Boltzmann’s H-function is maximized under the constraint
that average kinetic energy is proportional to a measurable
constraint, the temperature kg7. While the above is obvi-
ous for gases with short range interactions and for indepen-
dent random numbers, as soon as correlations are considered
things become more involved on both sides. Limit theorems
for correlated random numbers have lately regained consider-
able interest [15—-19]. Recently a general and transparent way
of constructing limit distributions of such continuous random
numbers was reported for the class of one dimensional ex-
changeable processes [2], i.e. all N-point distribution func-
tions are totally symmetric. This is relevant for example if
systems behave as if they were mean field. For many phys-
ical, biological, or sociological systems, generically only a
small fraction of the relevant microscopic system variables
and the interactions between them are known or accessible
to measurement. Assume, e.g. a Hamiltonian system where
only the momentum variables are observable. Interactions be-
tween the unknown state variables, which can be treated as
mean field, will cause observable, totally symmetric corre-
lations between the momentum variables. Similarly, differ-
ent shapes of nails used on Galton’s Board, a physical model
usually demonstrating Gaussian limit distributions, introduce
correlations of the binary process, i.e. bias the chances of a
ball to bounce to the left or the right, producing non Gaus-
sian limit distributions. It is interesting to note, that one of
the recently proposed limit distributions leads to g-Gaussian
[19, 20], while many others explicitly lead to more compli-
cated distributions [2, 15, 18].

Following recent work [8] we show that limit distributions
and the MEP can be brought into a consistent framework also
for correlated variables. By doing so we show how limit the-
orems for strongly correlated random variables — as recently
introduced by Hilhorst and Schehr [2] — make a further level
of generalization of entropy functionals necessary, which then
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is also able to explicitly take scaling relations in the distribu-
tion functions into account. We start by reviewing the deriva-
tion of the entropy functional necessary for arbitrary distri-
bution functions following [8], and review limit distributions
for sums of correlated random numbers, following [2]. Fi-
nally, we give the explicit form of the entropy leading to limit
distributions used in [2].

2. GENERALIZED-GENERALIZED ENTROPY

Maybe the simplest way to derive the most general form of
entropies, consistent with the maximum entropy condition, is
by the following argument. Any (generalized or not) maxi-
mum entropy method, given the existence of some arbitrary
stationary distribution function, P(z;), is formulated as

6G
3P (z;) Ip=p =0 M
with
G=SglPl—0q Y Pai) 10 =By Y f@)P@)—Up
2

where o and J are Lagrange multipliers, z; are state variables
indexed by state i, and U denotes the expectation of function
f, which depending on the problem may be a particular mo-
ment of z. Suppose that the distribution function is known
(e.g. by experiment), and is parametrized as

P(z) = éf(—oc—ﬁﬂzi)) , 3

where E(x) is a generalized exponential *.
The most general Ansatz for an entropy is that Sg, is some
additive functional of the probability distributions

Sge ==Y L(P(z)) - “

Variation g—g = 0 directly leads to —L'(P(z;)) —a.— Bf(z) =

0,or L(P(z)) = _[(f (@) dx A(Cx), meaning that the entropy has

2 For the exponential function both parameters o and { which can be used to
normalize the distribution P can be combined into a single normalization
constant Z = {exp(), the partition function. For generalized exponentials
‘E it is not a priori clear how normalization should be performed. Usually
normalization of non-exponential distributions — with the g-exponential
distributions as probably the most prominent example — is performed by
means of the Lagrange multiplier o.. This choice is compatible with ther-
modynamic reasoning and produces no pathologic results. The situation
gets much more difficult when C is used for normalization and is not kept
constant. This then raises questions including thermodynamic stability,
potential phase-transitions in the parameter-space and the physical inter-
pretation of quantities. A detailed discussion is beyond the scope of this
paper and will be presented elsewhere. However, here we use the max-
imum entropy principle to describe distribution functions of averages of
continuous correlated random variables. With foresight of Eq. (16) we see
that multiplicative normalization is required when studying sets of corre-
lated continuous random variables under scaling transformations. Inverse
temperature 3 then basically is the parameter fixing the scale of the system.
The reason for introducing £ and its implicit § dependence is therefore not
arbitrary but a strict consequence of the stochastic model.
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to be
P(z)
Seg = _Z/o dxA(Cx) . )

P(z;) is a normalized distribution function of some param-
eter set z 3, which could be e.g. energy or velocity. A(x)
is integrable in each interval [0,P(z;)]. It can be seen as a
generalized logarithm satisfying A(x) < 0 and dA(x)/dx > 0
for 0 <x < 1, and xA(x) — 0 (x — 04), making Sg,[P]
non-negative and concave. A is the inverse function of E:
E(A(x)) = A(E(x)) = x. In other words, A(x) needed for
the entropy in Eq. (5) is chosen as the inverse function of
the stationary (observed) distribution function. ¢ is a con-
stant, which ensures that Sg, [Py] = 0 for a completely ordered
state, i.e. ¢ = — fol dxA(x). Through Ansatz (4) together with
See[Po] =0, Sgq is uniquely determined according to its expo-
nential family E, see also [21].

For the discussion below note that the scaling factor { in
the argument of A generates distributions of the form of Eq.
(3), where { and o can be seen as two alternative normaliza-
tion parameters, tightly related to each other. The condition
{ = 1 leads to a normalization of the distribution as typically
discussed in [6, 7, 9—12]. It has been shown explicitly that the
first and second laws of thermodynamics are robust under this
generalization of entropy for { = 1 in [13]. Condition ot = 0
leads to a normalization of P where { plays the role of the
partition function. This case is of importance e.g. for [8].

3. LIMIT DISTRIBUTIONS OF CORRELATED RANDOM
NUMBERS

Hilhorst and Schehr [2] consider a totally symmetric cor-
related Gaussian N-point process

Pu(2) e~z(zM7'2) ©
)= ——

N )N det (M)

with z = (z1,...,zy) and M the covariance matrix. This

stochastic process is used as a reference process for some
other totally symmetric N-point distribution Py () which is
related to Py(z) by a simple transformation of variables u; =
h(z;), foralli=1,...,N. Total symmetry dictates the form of
the covariance matrix

M;; =8 +p(1-8;) @)

for p € (0, 1] with the inverse, Ml.;l =ad;j —b(1—29§;;), where

1+(N-2)p _ p

o v- 1) 14 & = pyrey—yp) - Note that the
symmetry requirement condenses all information on correla-
tion into the single parameter p. A short calculation yields

that the marginal probability is a unit variance Gaussian,

a =

PlGauss(Zl):/dZZ~~-dZNPN(11722a~--aZN) . (®

3 For continuous variables z replace ¥; — Jdz.
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which allows to construct the set of variables u; from z; via
the transformation of variables

/ il Py (u / a7 pOauss () ©)

P, is the one-point distribution of the u variables. Conse-
quently, a function &, describing the variable transformation

u=h(z;) (10)

is defined through Eq. (9). The distribution of the average of
the u variables,

== \

N
Z (11)

is thus found in terms of an integration over all z;

N
i) = /dz Py(z) § (ﬁ— jlvl_zlh(zo> . (2

where dz = dz; .. .dzy. After some calculation one arrives at
the general result [2],

(@) = (1%;’) W) exp (2@ "

where V., is defined as the zero of the function

1 ‘1"2
k(v :ﬁ——/dwe_Th( wv)/T=p) (14
(v) Wir (w+v) P (14)
and k' (x) = d /dx k(x). For symmetric one-point distributions

Py, h and v, are both antisymmetric. Moreover it is seen that
V., (1) = —K (v.(r)) "' > 0, so that

P(i1) = éjﬁerf<1 /lz_ppv*(a)> . (15)

4. ENTROPY FOR LIMIT DISTRIBUTIONS

All that remains to be done is to identify the distributions
P and P from Eqgs. (13) and (3). Since limit distributions
in [2] are centered and symmetric, the first moment provides
no information, and f from Eq. (2) is taken to be the second
moment, f(z) = z2. The one point distribution P; has fixed
variance and so does P(i1) in Eq. (13), whereas distributions
obtained through the MEP, Eq. (3), scale with a function of
the “inverse temperature”, . To take this into consideration
for the identification of P and 2 a simple scale transforma-
tion & = Az is needed, where A(B) depends explicitly on [3.
Consequently, P(i1) — AMP(Az) and

AMP(Az) = - E (—a—PB?) . (16)

1
It can be shown that this particular identification and the inde-
pendence of Lagrange multipliers requires the normalization
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condition oL = const. for the limit distribution Eq. (3). With-
out loss of generality we choose ow = 0 *. To determine {
and A the two conditions valid for generalized exponentials
functions are used, Z(0) = 1 and ‘E'(0) = 1. This leads to

1

1—p)\2
- :x( mp") V.(0) and A=y/B . (D)
with > = 20v.(0) 3. The generalized exponential

(0)3(1—p)—vZ'(0)p

can now be 1dent1ﬁed as

vi(r/=x) 1-p e
Z:( ) V{k (0) exXp | — 2p [v* (’Y —X)} ) (18)
where we have substituted x = —Bz? in Eq. (16) . This

uniquely defines E on the domain (—e,0]. Finally, the gen-
eralized logarithm A is uniquely defined on the domain (0, 1]
as the inverse function of £ and can be given explicitly for
specific examples.

Example: 1In [2] the special case of a block function
Pi(uj) =1 for —% <u; < % was discussed, implying

Ke Y’ K_( 1-p >%
Ve 2(2-p)

k(v) = ﬁ—%erf(Kv) . Ve=xlerf1(2a). (19)

K(v) = —

Thus the limit distribution Eq. (13) becomes

(i) = (pr)% Xp <2<lpp)[erf_1(2ﬁ)]2> . (20)

The block function has been used earlier [18] where it was
conjectured on numerical evidence that the limiting distribu-
tion would be a g-Gaussian. This is obviously ruled out by
Eq. (20), however, actual discrepancy is small, see Fig. 1.
For this example Eq. (18) becomes

£(x) —exp( ()" [erf( 2yf)]) @D

where Y= +/p/(2n(1 —p)). The associated generalized log-
arithm is given on the domain (0, 1] by

Alx)=—

{(Zy)’lerf (ym)} P

The difference when compared to g-logarithms in Fig. 1 is
small but visible.

4 Choosing o # 0 has the consequence that — due to the form invariance
P(z) — AP(Az) under scaling transformation z — Az — o effectively has to
be subtracted again and renders no consequence.

5 Here we explicitly see how Eq. (16) requires the introduction of the mul-
tiplicative normalization term { and how its B dependency follows as a
consequence. The introduction of { therefore is indeed a consequence of
the model and not an ad hoc invention.



416

Stefan Thurner and Rudolf Hanel

FIG. 1: Top: Limit distributions al la Hilhorst-Schehr for p = 0.7 (lines). Broken lines are g-Gaussians with a g from the reported best-fit

1-3
value of ¢ = 173pp

, [2]. Bottom: Generalized logarithms needed to derive Hilhorst-Schehr distribution functions under the maximum entropy

principle (lines). Broken lines are g-logarithms Ing(x) = (x! 77 — 1) /(1 — g) for the same g values.

5. DISCUSSION

Correlations between observable sets of microscopic state
variables of physical systems can have considerable effect on
the distribution of associate macroscopic variables, i.e. av-
erages. Such correlations may enter physical processes e.g.
in biased subsequent decision making (e.g. Galton’s Board
with biased nails) or through disregarded, unobservable, or
unknown subspaces of microscopic state variables of a sys-
tem affecting the observable state variables (e.g. spacial
mean field interactions affecting momentum distributions).
Chronologically, based on numerical evidence [18] it was
conjectured that several [15, 18] limit distributions of sums
of correlated random numbers, such as in Eq. (8), are ¢-
Gaussians, which would have established a direct connection
to Tsallis entropy. In [2] it was shown for these examples
that this is not the case. As an explicit example for the ne-

cessity of generalized entropies extending beyond traditional
g-statistics, in this work we have treated the question that if
Tsallis entropy does not lead to the exact limit distributions
under the MEP, which entropy functional does? The impor-
tance of this question gains momentum by the fact that dif-
ferent choices of the function 4 in Eq. (10) may lead to dis-
tributions that substantially deviate from g-Gaussians, much
more drastically than for the case of the bloc function exam-
ple shown in Fig. 1. We constructively answered the ques-
tion by building on a recently proposed generalization of g-
generalized entropy [6], which allows to treat scaling rela-
tions within generalized families of exponential functions [8].
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