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Correlation of the Ghost and the Quark in the Lattice Landau Gauge QCD
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Effects of the quark field on the ghost propagator of the lattice Landau gauge are investigated by using the
unquenched SU(3) configurations produced by the MILC collaboration and compared with quenched gauge
configurations of SU(2) first copy of the overrelaxation gauge fixing, the parallel tempering (PT) gauge fixing
and quenched SU(3) 564 configurations. We measure the color symmetric and the color antisymmetric ghost
propagator and the Binder cumulant of the l1 norm and the l2 norm of color antisymmetric ghost propagators
and investigate deviation from those of Gaussian distributions. In the first copy samples of quenched SU(2) we
observe a large fluctuation in the Binder cumulant at the lowest momentum point. This fluctuation is reduced
in the PT gauge fixed samples. The color anti-symmetric ghost propagator of quenched SU(3) configurations
depends on the lattice size and is small as compared to the symmetric one in the large lattice of 564. The
Binder cumulants of the quenched SU(2) and the N f = 2 + 1 unquenched SU(3) are almost consistent with
3-d and 8-d Gaussian distribution, respectively. A comparison of the SU(3) unquenched configurations and
quenched configurations indicates that the dynamical quarks have the effect of making color antisymmetric
ghost propagator closer to the Gaussian distribution and the Kugo-Ojima color confinement parameter c closer
to 1.
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I. INTRODUCTION

In this presentation, we would like to show our study of
color confinement and dynamical chiral symmetry breaking
via unquenched lattice Landau gauge simulation using con-
figurations given by the MILC collaboration in which Asqtad
Kogut-Susskind (KS) fermions are used[1].

In our study of color confinement mechanism, we measure
1) the Kugo-Ojima confiment parameter c, 2) the A2 conden-
sate in running coupling, gluon propagator and quark propa-
gator and 3) the ghost condensate parameter v and the Binder
cumulant of the color anti-symmetric ghost propagator.

We are interested in the effect of quark fields on these vari-
ables since the confinement and the chiral symmetry breaking
could be related with each other. We show our result of mea-
surement of mass function M(q) of MILCc(203× 64 lattice)
and MILC f (283×96 lattice).

In the Kugo-Ojima theory[2], unphysical longitudinal glu-
ons and ghosts do not appear in the physical spectrum by the
BRST quartet mechanisme. Using arrows as the BRST trans-
formations and B as the Nakanishi-Lautrup auxiliary field, the
BRST transformation in the quark sector can be expressed as

ψ → −ψc → 0
ψc̄ → −ψcc̄−ψB → 0.

Inclusion of fermion gives more restriction on the degrees of
freedom of the ghost and it may change the fluctuation of the
ghost propagator.

The Landau gauge adopted in this theory suffers from the
Gribov problem[3], i.e. the uniqueness of the gauge field is
not guaranteed in the simple gauge fixing procedure and in
general there are gauge copies. In the Lagrangian field theory,
presence of gauge copies is ignored, but in the lattice simu-
lation of the infrared region, importance of the selection of a
unique gauge is qualified[4, 6, 7]. The complete algorithm is

however not known, despite various proposals (smearing [8],
parallel tempering (PT)[6, 7] etc).

This paper is organized as follows. In sect.II, we review
theories of the color confinement in infrared QCD. Results
of Kugo-Ojima confinement parameter in lattice simulation
are shown in sect.III. Simulation results of the ghost propa-
gator, the gluon propagator, the QCD running coupling and
the quark propagator are shown in sect. IV, V, VI and VII,
respectively. Summary and discussion are given in sect. VIII.

II. COLOR CONFINEMENT

Let us summarize developments of the study of color con-
finement which are related to our work. In 1979 Kugo and
Ojima[2] proposed a color confinement criterion, which will
be explained in the following. Gribov[3] and Zwanziger[4, 5]
gave condition of the confinement on the infrared exponents
of the gluon propagator and the ghost propagator. These ex-
ponents define that of the running coupling αs(q) in M̃OM
scheme. A measurement of αs(q) via triple gluon vertex in
quenched SU(3) lattice simulation by the Orsay group sug-
gested infrared suppression and a presence of mass-dimension
2, A2 condensates[9].

The relation between the mass-dimension 2 condensates
and the Zwanziger’s horizon condition generated by the re-
striction of the gauge field in the fundamental modular region
was pointed out by the Gent group[10].

Although A2 is not BRST invariant, a mixed condensates
with c̄c is BRST invariant[11]. The Gent group suggested
in the Local Composite Operator (LCO) approach that the c̄c
condensates would manifest itself in the color antisymmetric
ghost propagator.

The lattice simulation of the color antisymmetric ghost
propagator in SU(2) lattice Landau gauge was performed by
the group of Cucchieri[12].
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A. Kugo-Ojima confinement criterion

The Kugo-Ojima confinement criterion is expressed by the
parameter c defined in the two-point function

(δµν− qµqν

q2 )uab(q2)

=
1
V ∑

x,y
e−iq(x−y)〈tr

(
Λa†Dµ

1
−∂D

[Aν,Λb]
)

xy
〉

as uab(0) =−δabc becomes 1. We adopt the SU(3) color ma-
trix Λ normalized as trΛaΛb = δab.

The parameter c is related to the renormalization factor of
the gluon sector, the ghost sector and the quark sector as

1− c =
Z1

Z3
=

Z̃1

Z̃3
=

Zψ
1

Z2
.

If the finiteness of Z̃1 is proved, divergence of Z̃3 is a sufficient
condition. If Z3 vanishes in the infrared, Z1 should have higher
order 0. If Z2 is finite Zψ

1 should vanish.

B. Zwanziger’s horizon condition

Zwanziger proposed realization of the unique gauge by re-
stricting the configuration in the fundamental modular region.
The condition on his two-point function given below is equiv-
alent to the Kugo-Ojima theory in a naive continuum limit.

∑
x,y

e−iq(x−y)

〈
tr

(
Λa†Dµ

1
−∂D

(−Dν)Λb
)

xy

〉

= Gµν(q)δab =
( e

d

) qµqν

q2 δab−
(

δµν− qµqν

q2

)
uab.

Here e =
〈
∑x,µ tr(Λa†S(Ux,µ)Λa)

〉
/{(N2

c − 1)V}, where
S(Ux,µ) is the coefficient of ∂µ of the covariant derivative.
The horizon condition reads lim

q→0
Gµµ(q) − e = 0, and the

l.h.s. of the condition is
( e

d

)
+ (d − 1)c− e = (d − 1)h

where h = c− e
d

and dimension d = 4, and it follows that
h = 0 → horizon condition, and thus the horizon condition
coincides with Kugo-Ojima criterion provided the covariant
derivative approaches the naive continuum limit, i.e., e/d = 1.

III. LATTICE DATA OF THE KUGO-OJIMA PARAMETER

In our lattice simulation, we adopt two types of the gauge
field definitions: 1) logU type in which the link variable U
and the gauge field are related as Ux,µ = eAx,µ and 2) U−linear
type in which Ax,µ is a traceless part of the difference of Uxµ

and U†
x,µ multiplied by one half.

The optimizing function corresponding to the two defini-
tions are 1) The l2 norm of Ag and 2) tr(2− (Ug

x,µ +Ug
x,µ

†)),
respectively.

Under infinitesimal gauge transformation g−1δg = ε, its
variation reads for either definition as

∆FU (g) =−2〈∂Ag|ε〉+ 〈ε|−∂D(Ug)|ε〉+ · · · ,

where the covariant derivative Dµ(U) for two options reads
commonly as

Dµ(Ux,µ)φ = S(Ux,µ)∂µφ+[Ax,µ, φ̄],

where ∂µφ = φ(x + µ)− φ(x), and φ̄ =
φ(x+µ)+φ(x)

2
The

function S(Ux,µ) in the logU definition is
S(Uxµ) = ad jAx,µ/2

tanh(ad jAx,µ/2) .[13]

Stationality of FU (g) means the Landau gauge, the local
minimum means the Gribov region and the global minimum
means the fundamental modular region[4].

In the quenched Landau gauge QCD simulation, the Kugo-
Ojima parameter saturated at about 0.8, as shown in TABLE
I. The parameter e/d is closer to 1 in the logU definition of
the gauge field.

TABLE I: Kugo-Ojima parameter and Zwanziger parameter in
U−linear(left) and logU(right).

β L c1 e1/d h1 c2 e2/d h2
6.0 16 0.576(79) 0.860(1) -0.28 0.628(94) 0.943(1) -0.32
6.0 24 0.695(63) 0.861(1) -0.17 0.774(76) 0.944(1) -0.17
6.0 32 0.706(39) 0.862(1) -0.15 0.777(46) 0.944(1) -0.16
6.4 32 0.650(39) 0.883(1) -0.23 0.700(42) 0.953(1) -0.25
6.4 48 0.739(65) 0.884(1) -0.15(7) 0.793(61) 0.954(1) -0.16
6.4 56 0.758(52) 0.884(1) -0.13(5) 0.827(27) 0.954(1) -0.12
6.45 56 0.814(89) 0.954(1) -0.14

We measured the corresponding values of the unquenched
configurations of MILCc and MILC f [16]. The lattice specifi-
cations are shown in TABLE II.

TABLE II: βimp, the bare quark mass m0, the inverse lattice spacing
1/a, lattice size and lattice length(fm). Suffices c and f of MILC
correspond to coarse lattice and fine lattice.

βimp m0(ud/s)(MeV) 1/a(GeV) Ls Lt aLs(fm)
MILCc 6.76 11.5/82.2 1.64 20 64 2.41

6.83 65.7/82.2 1.64 20 64 2.41
MILC f 7.09 13.6/68.0 2.19 28 96 2.52

7.11 27.2/68.0 2.19 28 96 2.52

As shown in TABLE III, the Kugo-Ojima parameters of
MILC configurations are consistent with 1. The qualitative
difference from quenched simulations would be due to the dif-
ference of the ghost propagator caused by the quark field.
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TABLE III: The Kugo-Ojima parameter for the polarization along
the spatial directions cx and that along the time direction ct and the
average c, trace divided by the dimension e/d, horizon function devi-
ation h of the unquenched KS fermion (MILCc,MILC f ). The logU
definition of the gauge field is adopted.

βimp cx ct c e/d h
MILCc 6.76 1.04(11) 0.74(3) 0.97(16) 0.9325(1) 0.03(16)

6.83 0.99(14) 0.75(3) 0.93(16) 0.9339(1) -0.00(16)
MILC f 7.09 1.06(13) 0.76(3) 0.99(17) 0.9409(1) 0.04(17)

7.11 1.05(13) 0.76(3) 0.98(17) 0.9412(1) 0.04(17)

IV. THE GHOST PROPAGATOR

The ghost propagator is defined as the Fourier transform
(FT) of the matrix element of the inverse Faddeev-Popov op-
erator.

FT [Dab
G (x,y)] = FT 〈tr(Λa{(M [U ])−1}xyΛb)〉

= δabDG(q2),

where M = −∂µDµ, and {}xy means the matrix value. We
define the ghost dressing function G(q2) as q2DG(q2) and its
exponent at around 0.4GeV as αG.

We calculate the overlap to get the color diagonal ghost
propagator

DG(q) =
1

N2
c −1

1
V

×tr
〈

δab(〈Λa cosq ·x| f b
c (x)〉+ 〈Λa sinq ·x| f b

s (x)〉)
〉

and color anti-symmetric ghost propagator

φc(q) =
1

N
1
V

×tr
〈

f abc(〈Λa cosq ·x| f b
s (x)〉−〈Λa sinq ·x| f b

c (x)〉)
〉

where N = 2 for SU(2) and 6 for SU(3). Here fc
b(x) and

fs
b(x) are the solution of M f b(x) = ρb(x) with ρb(x) =
1√
V

Λb cosq ·x and
1√
V

Λb sinq ·x, respectively.

The ghost dressing function of MILC f βimp = 7.09 and that
of the quenched β = 6.4 and 6.45, the color symmetric and
anti-symmetric ghost propagator of MILCc are shown in [15].
FIG.1 is a fit of the ghost dressing function of MILC f by the

perturbative QCD(pQCD) in M̃OM scheme[16].

A. The ghost condensate

In the LCO approach, preference of a specific direction of
〈 f abcc̄bcc〉 in the color space is regarded as a signal of the
ghost condensate. We define a parameter v ∝ |〈 f abcc̄bcc〉| and
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FIG. 1: The ghost dressing function of MILC f βimp = 7.09(stars)
Dashed line is the 4-loop N f = 2 pQCD result (λG = 3.01,y =
0.0246100)[16]
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FIG. 2: log10 |~φ(q)| as the function of log10(q(GeV)) of MILC f and
the fit using r = 134 and v = 0.026GeV2.

following [12] measure its value as follows. We take into ac-
count the finite size effect of the lattice through a parameter r,
defined as

1
N2

c −1 ∑
a

L2

cos(πq̄/L)
|φa(q)|= r

qz ,

where L is the lattice size and q̄ = 0,1, · · ·L. In our asymmetric
(Lx < Lt) lattice and the momentum q near diagonal in the 4-d
space, we consider the sine momentum

q̃2 =
3

∑
i=1

(2sin
πq̄i

Lx
)2 +(2sin

πq̄4

Lt
)2

and choose L2 in the numerator as the square root of the vol-
ume

√
L3

xLt .
Using this parameter r, the absolute value of the color anti-

symmetric ghost propagator is parameterized as

1
N2

c −1 ∑
a
|φa(q)|= r/L2 + v

q4 + v2 .

We tried to fit |φ(q)| and φ(q)2 of MILC f βimp = 7.09 and
7.11 and found a relatively good parameter fit of |φ(q)| with
use of r = 134 and v = 0.026GeV2, as shown in FIG.2.
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TABLE IV: The fitted parameters r,z and v of the color antisymmetric ghost propagator |φ(q)| of MILCc and MILC f . The parameters r̄, z̄ and
v̄ are those of the color antisymmetric ghost propagator squared φ(q)2. Two values of U of MILC f correspond to the average below q = 1GeV
and the average above 1GeV, respectively.

βimp r z v r̄ z̄ v̄ U
MILCc 6.76 37.5 3.90 0.012 33.5 7.6 0.045 0.53(5)

6.83 38.7 3.85 0.007 33.5 7.6 0.048 0.57(4)
MILC f 7.09 134 3.83 0.026 251 7.35 0.044 0.57(4)/0.56(1)

7.11 112 3.81 0.028 164 7.34 0.002 0.58(2)/0.52(1)

Extraction of v from lattice data is not so easy due to the
finite size effect of the asymmetric lattice. Except MILC f

βimp = 7.09 which had difficulty in the fitted value from~φ(q)2

is larger than that from |φ(q)|.

B. Binder cumulant

Cucchieri et al[12] measured the Binder cumulant of the
color antisymmetric ghost propagator

U(q) = 1− 〈~φ(q)4〉
3〈~φ(q)2〉2 ,

and found that it is about 0.44, which is compatible with the
expectation value of the d-dimensional Gaussian distribution,
〈~φ4〉

(〈~φ2〉)2
=

d +2
d

with d = 3.

The Binder cumulant U(q) of the color anti-symmetric
ghost propagator φ2(q) of MILC f β = 7.09 m0 =
13.6MeV/68MeV and MILCc m0 = 11.5MeV/82MeV are sta-
ble but the data of βimp = 7.11 is rather noisy. In the region
q≥ 1GeV, the Binder cumulant U(q) is 0.52(1) but in the re-
gion q ≤ 1 GeV it is 0.58(3), which is consistent with that of
Gaussian distribution U(q)∼ 0.583. The anomalous momen-
tum dependence occurs also in the mass function of the quark
propagator, which is discussed in the sect. VII.

We compared the Binder cumulant of SU(2) color antisym-
metric ghost propagator of samples which are gauge fixed by
the PT method [6] and the first copy of the overrelaxation.
The first copy shows large fluctuation at the lowest momen-
tum point. The Binder cumulant of quenched SU(3) 564 color
anti-symmetric ghost propagator is small as compared to color
diagonal and its Binder cumulant is noisy.

In [14] we showed the Binder cumulant of MILCc (21 sam-
ples). We increased the statistics of MILCc to βimp = 6.76
and 6.83, 20 samples each and extended the measurement
to MILC f βimp = 7.09 and 7.11. In MILCc β = 6.76, we
found an exceptional sample which we encountered also in
the quenched SU(3) 564 lattice[7]. The ghost propagator of
this sample has large exponent αG. In the case of quenched
simulation such copy had larger ‖Aµ‖2 than the average and
the PT gauge fixing excludes such samples.

V. THE GLUON PROPAGATOR

The gluon propagator is defined as the two-point function

Dab
A,µν(q) = ∑

x=x,t
e−iqx〈Aµ

a(x)Aν
b(0)〉

= (δµν− qµqν

q2 )DA(q2)δab.

The gluon dressing function is defined as Z(q2) = q2DA(q2).
The gluon propagator and the dressing function of MILC f

βimp = 7.09 are calculated in [16]. The data suggest that the
gluon propagator is infrared finite. The infrared exponent of
the gluon dressing function is defined as αD. The exponent κ
of the Dyson-Schwinger equation(DSE) approach is defined
at the lower momentum point, inaccessible in the present lat-
tice simulation. We observe the numerical value of αG is
about κ/2, and the tendency that αD decreases but αD > −1
i.e. the gluon propagator is not infrared vanishing. The com-
bination of αD + 2αG is supposed to approach 0 in the DSE
approach, but on the lattice it is about -0.1 in the MILCc and
-0.2 in the MILC f .

VI. THE QCD RUNNING COUPLING

In the DSE approach, the ghost-gluon coupling in the M̃OM
scheme is calculated by the gluon dressing function Z3 and
the ghost dressing function Z̃3 and the vertex renormalization
factor Z̃1 as

g(q) = Z̃−1
1 Z1/2

3 (µ2,q2)Z̃3(µ2,q2)g(µ).

Our lattice simulation[16] of the gluon propagator and the
ghost propagator of MILCc yields the running coupling shown
in FIG.3. There are deviations from the pQCD (dash-dotted
line) and the DSE approach with κ = 0.5 (long dashed line).
As was done by the Orsay group[9], we consider a correc-
tion including the A2 condensates and obtained 〈A2〉 ∼ a few
GeV2.

The running coupling in the infrared can be estimated from
the quark-gluon coupling

g(q) = Zψ
1
−1

Z1/2
3 (µ2,q2)Z2(µ2,q2)g(µ),

where Z2 is the quark dressing function and Zψ
1 is the vertex

renormalization factor. An evaluation of Z2(µ2,q2) is given in
the next section.
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FIG. 3: The running coupling αs(q) as a function of log10 q(GeV)
of MILCc (a = 0.12fm) βimp = 6.76(triangles) and 6.83(diamonds),
(50 samles each).

VII. THE QUARK PROPAGATOR

We extended the measurement of the quark propagator us-
ing Asqtad action of MILCc [14] to MILC f . In the case of
MILCc, we compared the Asqtad action and the Staple+Naik
action.

Due to long computation time for the convergence of the
conjugate gradient method, the number of samples is of the
order of 10 for each βimp and the bare quark mass m0.

The quark propagator is defined as a statistical average over
Landau gauge fixed samples

Sαβ(p) =
〈
〈χp,α| 1

i /D(U)+m0
|χp,β〉

〉
.

In this expression, the inversion, 1
i /D(U)+m0

, is performed via
conjugate gradient method after preconditioning, and we ob-
tain

Sαβ(q) = Z2(q)
−iγq+M(q)
q2 +M(q)2 .

The mass function M(q) reflects dynamical chiral symmetry
breaking. In high momentum region, it is parameterized as

M(q) = −4π2dM〈ψ̄ψ〉µ[log(q2/Λ2
QCD)]dM−1

3q2[log(µ2/Λ2
QCD)]dM

+
m(µ2)[log(µ2/Λ2

QCD)]dM

[log(q2/Λ2
QCD)]dM

,

where dM = 12/(33−2N f ) and m(µ2) is the running mass.
In the infrared region, we adopt the monopole fit

M(q) =
c̃Λ3

q2 +Λ2 +m0.

The momentum dependence of M(q) and Z2(q) of m0 =
13.6MeV in the infrared region of Asqtad action is smoother
than that of the Staple+Naik action. It could be attributed to
the effect of the tadpole renormalization. The parameters c̃
and Λ in our fit of the mass function are given in TABLE V.

We showed the quark wave function renormalization
Zψ(q2) = g1(µ2)/Z2(q2) of MILC f βimp = 7.11 using the sta-
ple+Naik action in [14], where Z2(q2) is the bare lattice data
and g1(q2) is the coefficient of γµ of the vector current vertex
that compensates artefacts in Z2.

We adopt 〈A2〉 as a fitting parameter and calculate[9]

Zψ(q2) =
g1(µ2)
Z2(q2)

= Zpert
ψ (q2)+

(
α(µ)
α(q)

)(−γ0+γA2 )/β0

q2
〈A2〉µ

4(N2
c −1)

Zpert
ψ (µ2)

+
c2

q4

where α(q) are data calculated in the M̃OM scheme using the
same MILC f gauge configuration[7].

Here N f is chosen to be 2 but the data does not change
much for 3. We choose ΛQCD = 0.691GeV and 〈ψ̄ψ〉µ =
−(0.7ΛQCD)3[17, 18].

Since g1(q2) in the infrared is expected to be given by the
running coupling, the absence of suppression of the quark
wave function renormalization suggests that the infrared sup-
pression of the running coupling obtained by the ghost-gluon
coupling could be an artefact.
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FIG. 4: The wave function renormalization factor Z2(q)
of MILC f (βimp = 7.11 m0 = 27.2MeV, blue diamonds) and
MILC f (βimp = 7.09 m0 = 13.6MeV, red stars).

In [20] the Z2(q) is normalized to 1 at q = 3GeV. In our
simulation without this kind of renormalization, Z2(q) at q =
3GeV is close to 1 and the results are consistent. Our mass
function M(q) of βimp = 7.09 are about 20% larger than those
of [20], but if M(q) is renormalized to the theoretical value of
[20] at q = 3GeV we reproduce their data. Our mass function
is consistent with DSE analysis[22].

In the case of βimp = 7.11, the mass function of m0 =
68MeV is consistent with [20], but that of m0 = 27.2MeV is
suppressed in the infrared and differ from [20]. The momen-
tum dependence is correlated with the momentum dependence
of the Binder cumulant of color anti-symmetric ghost propa-
gator. The disagreements with [20] may be due to Gribov
copies.

In the case of βimp = 7.09, the chiral symmetry breaking
mass measured by using the Staple+Naik action and measured
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TABLE V: The parameters c̃ and Λ of the Staple+Naik action(left) and the Asqtad action.

βimp m0(MeV) c̃ Λ(GeV) c̃Λ(GeV) c̃ Λ(GeV) c̃Λ(GeV)
6.76 11.5 0.44(1) 0.87(2) 0.38 0.45(1) 0.91(2) 0.41

82.2 0.30(1) 1.45(2) 0.43 0.33(1) 1.36(1) 0.46
6.83 65.7 0.33(1) 1.28(2) 0.42 0.35(1) 1.25(1) 0.44

82.2 0.30(1) 1.45(2) 0.43 0.33(1) 1.34(1) 0.45
7.09 13.6 0.45(1) 0.82(2) 0.37 0.50(2) 0.79(2) 0.39

68.0 0.30(1) 1.27(4) 0.38 0.35(1) 1.19(1) 0.41
7.11 27.2 0.43(1) 0.89(2) 0.38 0.20(2) 1.04(3) 0.21

68.0 0.32(1) 1.23(2) 0.40 0.36(1) 1.15(1) 0.42
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FIG. 5: The mass function M(q) of MILC f (βimp = 7.11 m0 =
27.2MeV, blue diamonds) and MILC f (βimp = 7.09 m0 = 13.6MeV,
red stars).

by using the Asqtad action (FIG.5) are consistent within about
5%, and there is no anomaly. Whether the Asqtad action has a
non-QCD like behavior in a certain parameter region is under
investigation.
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FIG. 6: The chiral symmetry breaking mass c̃Λ as a function of bare
mass and its chiral limit. Dotted line is the extrapolation of MILC f
βimp = 7.09 and the dash-dotted line is that of MILCc, Asqtad action.

VIII. SUMMARY AND DISCUSSION

In this presentation, we showed the Kugo-Ojima confine-
ment criterion and the Zwanziger’s horizon condition of lat-

tice Landau gauge QCD. The infrared exponent of the ghost
propagator αG of the lattice is about half of the value κ
of the DSE[5, 21]. The gluon propagator is infrared finite.
The Kugo-Ojima parameter c was saturated at about 0.8 in
the quenched SU(3) but became consistent with 1 in the un-
quenched SU(3).

In β = 6.4,564 quenched SU(3) configurations, we found a
copy whose αG = 0.272 v.s. αG(average)=0.223, and whose
gluon propagator has an axis along which the reflection pos-
itivity is manifestly violated. In the βimp = 6.76,203 × 64
MILCc configurations, we find also an exceptional sample.
The exceptional samples of unquenched configuration cause
fluctuation in the Binder cumulant of color antisymmetric
ghost propagator in the infrared, similar to the SU(2) first
copy.

In the measurement of the running coupling αs(q2) by the
ghost-gluon coupling, we observed infrared suppression. The
quark wave function renormalization Zψ(q) in the infrared
suggests that the infrared suppression is a lattice artefact and
the running coupling in the continuum limit freezes to a finite
value. In the analysis, the artefact inherent to the compactness
of the manifold should also be taken into account[23].

In the ghost sector, the Kugo-Ojima confinement criterion
Z̃1

Z̃3
=

1
∞

= 0 is satisfied. In the gluon sector, the continuum

limit of Z3 in the infrared is unknown, but the finite lattice
data suggests that it is finite and non-zero. The infrared limit
of Z1 is not known, but the behavior of the ghost propagator
suggests that it could be indefinite (fluctuating).

A natural question, ’How do the fixed points of the QCD
renormalization group flow behave in the infrared?’ may
arise. In 1971, Wilson argued that the fixed point of the renor-
malization group flow of QCD could have limit cycle struc-
ture rather than a fixed point[24]. The deviation of the ghost
dressing function from 4-loop pQCD result in the infrared re-
gion shown in FIG.1 suggests that the flow of the ghost wave
function renormalization is not a trivial one and it is corre-
lated with the presence of dynamical quarks. The theorem
on no renormalization effect on the ghost propagator[25] does
not guarantee the validity of the simple extension of the ghost
wave function renormalization from ultraviolet to infrared.

An extension of the analysis to finite temperature is
straightforward. A preliminary simulation using MILC fi-
nite temperature configurations[26] shows that the Binder cu-
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mulant at finite temperature becomes smaller than that of
Gaussian distribution as temperature rises. The effect of
quenching randomness[27] played by quarks in the zero tem-
perature unquenched configurations becomes weak above the
critical temperature Tc. To clarify the nature of the infrared
fixed points, systematic studies of finite size effects and the
Gribov copy effects[7, 28] are necessary.

We observed that differences of the color antisymmetric
ghost propagator in the quenched/unquenched and zero/finite
temperature configurations make differences in the Kugo-
Ojima parameter. The results imply that the quark field and
the ghost field are correlated as the BRST quartet mechanism

suggests.
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