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Electromagnetic Field in Lyra Manifold: A First Order Approach
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We discuss the coupling of the electromagnetic field with a curved and torsioned Lyra manifold using the
Duffin-Kemmer-Petiau theory. We will show how to obtain the equations of motion and energy-momentum and
spin density tensors by means of the Schwinger Variational Principle.
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tonian dynamics becomes more transparent, constrained sys- 1 & 0 | (0}
tems can be dealt with a wide range of methods [1], and CPT +6 Vo @

and spin-statistics theorems can be proved by variational state-

ments [2]. One can define the covariant derivative for a vector field as
Otherwise, the coupling between electromagnetism and the 1 . 1 .

torsion content of spacetime has been an intringuing puz- OA” = ~9A” + T A% A = ~ 0pA — T Aq.

zle for many years. Minimal coupling of the Einstein-Cartan ¢ ¢

gravity with eletromagnetism breaks local gauge covarianc%\/e

by the presence of the torsion interaction [3-5]. .
Here, we want to add another piece to the puzzle, showingntisymmetric part of the connection and?, =

that the torsion coupling problem is related to scale invariancgg°® (0yQvs + 0v0op — 0s9w) for the analogous of the

which we will model together with the gravitational field by Levi-Civita connection.

means of the Lyra geometry. Electromagnetic field will be de- The richness of the Lyra’s geometry is demonstrated by the

scribed by the first order approach of Duffin-Kemmer-Petiaucurvature[7]

(DKP).
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The Lyra manifold [6] is defined giving a tensor metgig, ~ @nd thetorsion
and a positive definite scalar functigmvhich we call the scale 2 _
function. In Lyra geometry, one can change scale and coordi- T P= —76‘[116\,] Ing (1)
nate system in an independent way, to compose what is called ¢
areference systemnansformation: leM C RN andU an open
ballinR", (N > n) and lety : U ~ M. The pair(x,U) defines
a coordinate systemNow, we define a reference system by
(x,U, @) wheregtransforms like

which has intrinsic link with the scale functions and whose
trace is given by

. . 3. -
Tl =T= ?paulnm. 2)

- - ) (]
P(X) = 0o(X(X);0(x(X))) 30 0 In the next section we introduce the behavior of massless
DKP field in the Lyra geometry.

under a reference system transformation.
In the Lyra’s manifold, vectors transform as Ill. THE MASSLESS DKP FIELD IN LYRA MANIFOLD
AV — CP@AH

oo DKP theory describes in a unified way the sgirand 1
X

fields [8-10]. The massless DKP theory can not be obtained
) ] o as a zero mass limit of the massive DKP case, so we consider
In this geometry, the affine connection is the Harish-Chandra Lagrangian density for the massless DKP
theory in the Minkowski space-tim@f*, given by [11]
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where the3? matrices satisfy the usual DKP algebra DKP field minimally coupled [3, 12, 13] to the Lyra manifold,
BAERE 1 (BUER — 37+ e introducing the tetrad field,
+ N+
0" (x) = N ea()€'b(X), G (X) = Nane®(¥)&,°(X) -
andy is asingular matrix satisfying [16] z
4y, Ao T Lo —
By ey, S= _d'xge (Pyep O - 0B —dw) - (7)

whereDu is the Lyra covariant derivative of DKP field defined
From the above lagrangian it follows the massless DKPypqyve.

wave equation

a B
iB%ap—yp =0. IV. EQUATIONS OF MOTION AND THE DESCRIPTION

. . . . . OF MATTER CONTENT
As it was known, the Minkowskian Lagrangian density (3)

in its massless spin 1 sector reproduces the electromagnetic or
Maxwell theory with its respectivd (1) local gauge symme-
try.

To construct the covariant derivative of massless DKP fiel
in Lyra geometry, we follow the standard procedure of ana-
lyzing the behavior of the field under local Lorentz transfor-
mations,

In following we use a classical version of the Schwinger
Action Principle such as it was treated in the context of
lassical Mechanics by Sudarshan and Mukunda [14]. The
chwinger Action Principle is the most general version of
the usual variational principles. It was proposed originally
at the scope of the Quantum Field Theory [2], but its appli-
cation goes beyond this area. Here, we will apply the Action
W(xX) — W (x)=U X)X (4) Principle to derive equations of motion of the Dirac field in
an external Lyra background and expression for the energy-
whereU is a spin representation of Lorentz group charactermomentum and spin density tensors.

izing the DKP field. Now we define spin connectior§, in a Thus, making the variation of the action integral (7) we get
such way that the object Z i P 50
1 Q
O = —ou0+ Sy )
¢ z 4 [ 0e
d — )L 8
transforms like a DKP field in (4), thus, we set 7 * Q xee ( e ) + ®
0,0 — (O0,9)' = U () D + O o [ 1By(5B") D — 0, (3B v | +
and thereforé&transforms like +  dxeg [ ipyBH (S W+iW (dSy) B“yw} +
2
1 . .
§=U QU (X~ S 0U)U () (6) +_dxep’ 3P (IvB O — W+ IS +
z . .
From the covariant derivative of the DKP field (5) and re- +  dxeg [ILEVB“(&?“LIJ) L (d0.P) B“yw}
membering thafy must be a scalar under the transformation Q ® ¢

(4),. it fpllows thatO,p = %aulj_J— (S, Using the covariant —  dx e (i0,0BY+ Py — iDyB S, o

derivative of the DKP current Q

1 Choosing different specializations of the variations, one

Ou (PBYW) = =0, (PR"W) +TV (qj[y\q;) = can easily obtain the equations of motion and the energy-
¢ momentum and spin density tensor.

= (0u0) B' W+ W (OuB") W+ WY (Ouw)

one gets the following expression for the covariant derivative A. Equations of Motion
of BY
1 We choose to make functional variations only in the mass-
OB’ = =0,B" + FVMB" +Sp’' B’ less DKP field thus we sétp= de"y, = duwyanb= 0 and consid-
@ ering 3, au} = 0, from ( 8) we get

A particular solution to this equation is given by 55: . doue(p?’ {UJVB“ (3Y) — (3) B“WJ} 4
1 b cab b z
Su= Fas™, S0 = [p 7). i %dxap (50) [iB 0 + 58— | +
With a covariant derivative of the DKP field well-defined _  dx 0,08 + it OV  + Qv |
we can consider the Lagrangian density (3) of the massless Q QPA{ uip ubyp llJy} v
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Following the action principle we get the generator of the B. Energy-momentum tensor and spin tensor density
variations of the massless DKP field

z I S Now, we only vary the background manifold and we as-

Gow= doy eg’ | { PyB" (dy) — (3W) B VLIJ} sume thabwyap andde!, are independent variations,
z
and its equations of motion in the Lyra’s manifold are 5S=  dxep® [i (PyBOW — CLBBAyY) deiat+
Q
B (Ou+Ty) -y =0 1 s . 1
{ 0P + T pyB! + Py =0 + (eée) L+ (wyB“saqu + msﬁbsuyw) Zawpab} :
The spin 1 projector®(= e*aR* ) and R (= e",e"pR?) First, holding only the variations in the tetrad fiefdy,an =

[10, 15] are such tha®'yp and Ry transform respectively 0, we found for the variation of the action

as a vector and a second rank tensor under general coordinate z

transformation. Thus, using the projectors we have 8S= dx gp4 { | (DYBROuW — OWRyw) — qf‘L} oet,
Q

R 0y (RPW) +1T (RPw) ~Rip =0 Defining the energy-momentum density tensor as

multiplying by (1 —y) we get 1 &S
d= — — =ipypP0O —i0,PpRPW — e 2L
(O %) (RMy) = 0 " gledes A *
and which can be written in coordinates as
V _ AV a__ iIn \V 1 TRV _ \Y
R — i0p (RBPY) +i, (RVBPYVY) — Ry =0 e A

On the mass shell,
Tuv = inVBVDulI—' - iDuLI_JBVWJ - 5;1\}@/1]—'

RV =i (Op +Toy) [0 (R'W) — g™ (R'Y)]
) ) ) Now, making functional variations only in the components
from the above equations we get the equation of motion fogs e spin connectiorie, = 0, we found for the action vari-

the massless vector fieRMY ation
z
% % o (RMW) — oPH (RVW)] = 1 L
(DV +TV)(DD +pr) [g (R lIJ) g (R LIJ)] 07 5S= de Gp4 é (60)pab) ILIJ (yBLls’:lb+SabBHy) lu’
We use a specific representation of the DKP algebra in . ) ) )
which the singulay matrix is we define the spin tensor density as being
y=diag(0,0,0,0,1,1,1,1,1,1) . gab_ % 668 _ itv(yﬁpsab_i_ Sabey> P
€ 0Wyab
Then in this representation the DKP field is now a 10- ) )
component column vector The spin 1 component of DKP energy momentum tensor is
i
lIJ — ( LIJO, qu’ LIJZ, LIJ3, l.|J23, qJ3l’ quZ’ LIJ].O7 qJZO’ quO )T , Tuv — 5 LIJ*V(X (DHLIJG _ Dd LIJp.) +
where? (a = 0,1,2,3) and §?® behave, respectively, as a —Lye (Du W — g ll—'fl) +
4-vector and an antisymmetric tensor unterentztransfor- 2
mations on the Minkowski tangent space. And we also get -3, (LIJ*GB%B)
T which coincides with the first order energy momentum tensor
vy = (10,0,0,0, %3, 3%, @12, @10, 20 y30) of the electromagnetic field in the real case.
R = (14,0,0,0,0,0,0,0,0,0)"
RVy = (y*,0,0,0,0,0,0,0,0,0)" V. FINAL REMARKS

due toR'y = yR* and Ry = (1 —y)RM. Then, we get the

X ) The coupling between torsion and massless vectorial field
following relations among components

was showed to be related to scale transformations in Lyra
Wi = Oy — O background. Since this scale transformations are governed by
Wy ny vWy : ; ; .
an arbitrary functiorp, it seems plausible that the problem of
which leads to the equation of motion for the sfiisector of  breaking the local gauge invariance associated with this cou-
the massless DKP field in Lyra space-time pling could be removed from the theory if we had chosen an
. W v gauge transformations to be linked to scale invariance in Lyra
(Ou+T) (0%" - 0"gH) = 0. manifold. A deeper study of this line is under construction.
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