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Electromagnetic Field in Lyra Manifold: A First Order Approach
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We discuss the coupling of the electromagnetic field with a curved and torsioned Lyra manifold using the
Duffin-Kemmer-Petiau theory. We will show how to obtain the equations of motion and energy-momentum and
spin density tensors by means of the Schwinger Variational Principle.

I. INTRODUCTION

First order Lagrangians are one of the most profitable tools
in Field Theory. By means of first order approach, Hamil-
tonian dynamics becomes more transparent, constrained sys-
tems can be dealt with a wide range of methods [1], and CPT
and spin-statistics theorems can be proved by variational state-
ments [2].

Otherwise, the coupling between electromagnetism and the
torsion content of spacetime has been an intringuing puz-
zle for many years. Minimal coupling of the Einstein-Cartan
gravity with eletromagnetism breaks local gauge covariance
by the presence of the torsion interaction [3–5].

Here, we want to add another piece to the puzzle, showing
that the torsion coupling problem is related to scale invariance
which we will model together with the gravitational field by
means of the Lyra geometry. Electromagnetic field will be de-
scribed by the first order approach of Duffin-Kemmer-Petiau
(DKP).

II. THE LYRA GEOMETRY

The Lyra manifold [6] is defined giving a tensor metricgµν
and a positive definite scalar functionφ which we call the scale
function. In Lyra geometry, one can change scale and coordi-
nate system in an independent way, to compose what is called
a reference systemtransformation: letM ⊆RN andU an open
ball inRn, (N≥ n) and letχ : U yM. The pair(χ,U) defines
a coordinate system. Now, we define a reference system by
(χ,U,φ) whereφ transforms like

φ̄(x̄) = φ̄(x(x̄) ;φ(x(x̄))) ,
∂φ̄
∂φ
6= 0

under a reference system transformation.
In the Lyra’s manifold, vectors transform as

Āν =
φ̄
φ

∂x̄ν

∂xµ Aµ

In this geometry, the affine connection is

Γ̃ρ
µν =

1
φ

Γ̊ρ
µν +

1
φ

[
δρ

µ∂ν ln

(
φ
φ̄

)
−gµνgρσ∂σ ln

(
φ
φ̄

)]

whose transformation law is given by

Γ̃ρ
µν =

φ̄
φ

Γ̄σ
λε

∂xρ

∂x̄σ
∂x̄λ

∂xµ

∂x̄ε

∂xν +
1
φ

∂xρ

∂x̄σ
∂2x̄σ

∂xµ∂xν +

+
1
φ

δρ
ν

∂
∂xµ ln

(
φ̄
φ

)
.

One can define the covariant derivative for a vector field as

∇µAν =
1
φ

∂µAν + Γ̃ν
µαAα , ∇µAν =

1
φ

∂µAν− Γ̃α
µνAα .

We use the notationΓν
[αµ] = 1

2

(
Γν

αµ−Γν
µα

)
for the

antisymmetric part of the connection and̊Γρ
µν ≡

1
2gρσ (∂µgνσ +∂νgσµ−∂σgµν) for the analogous of the
Levi-Civita connection.

The richness of the Lyra’s geometry is demonstrated by the
curvature[7]

R̃ρ
βασ ≡ 1

φ2

[
∂β

(
φΓ̃ρ

ασ
)−∂α

(
φΓ̃ρ

βσ

)]
+

+
1
φ2

[
φΓ̃ρ

βλφΓ̃λ
ασ−φΓ̃ρ

αλφΓ̃λ
βσ

]

and thetorsion

τ̃ ρ
µν =−2

φ
δρ

[µ∂ν] ln φ̄ (1)

which has intrinsic link with the scale functions and whose
trace is given by

τ̃ ρ
µρ ≡ τ̃µ =

3
φ

∂µ ln φ̄ . (2)

In the next section we introduce the behavior of massless
DKP field in the Lyra geometry.

III. THE MASSLESS DKP FIELD IN LYRA MANIFOLD

DKP theory describes in a unified way the spin0 and 1
fields [8–10]. The massless DKP theory can not be obtained
as a zero mass limit of the massive DKP case, so we consider
the Harish-Chandra Lagrangian density for the massless DKP
theory in the Minkowski space-timeM 4, given by [11]

LM = iψ̄γβa∂aψ− i∂aψ̄βaγψ− ψ̄γψ , (3)
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where theβa matrices satisfy the usual DKP algebra

βaβbβc +βcβbβa = βaηbc+βcηba

andγ is asingularmatrix satisfying [16]

βaγ+ γβa = βa , γ2 = γ .

From the above lagrangian it follows the massless DKP
wave equation

iβa∂aψ− γψ = 0 .

As it was known, the Minkowskian Lagrangian density (3)
in its massless spin 1 sector reproduces the electromagnetic or
Maxwell theory with its respectiveU(1) local gauge symme-
try.

To construct the covariant derivative of massless DKP field
in Lyra geometry, we follow the standard procedure of ana-
lyzing the behavior of the field under local Lorentz transfor-
mations,

ψ(x)→ ψ′(x) = U (x)ψ(x) (4)

whereU is a spin representation of Lorentz group character-
izing the DKP field. Now we define aspin connectionSµ in a
such way that the object

∇µψ≡ 1
φ

∂µψ+Sµψ (5)

transforms like a DKP field in (4), thus, we set

∇µψ→ (∇µψ)′ = U (x)∇µψ

and thereforeS transforms like

S′µ = U (x)SµU
−1 (x)− 1

φ
(∂µU)U−1 (x) (6)

From the covariant derivative of the DKP field (5) and re-
membering that̄ψψ must be a scalar under the transformation
(4), it follows that∇µψ̄ = 1

φ ∂µψ̄− ψ̄Sµ. Using the covariant
derivative of the DKP current

∇µ(ψ̄βνψ) =
1
φ

∂µ(ψ̄βνψ)+Γν
µλ

(
ψ̄βλψ

)
=

= (∇µψ̄)βνψ+ ψ̄(∇µβν)ψ+ ψ̄βν (∇µψ)

one gets the following expression for the covariant derivative
of βν

∇µβν =
1
φ

∂µβν +Γν
µλβλ +Sµβν−βνSµ

A particular solution to this equation is given by

Sµ =
1
2

ωµabS
ab , Sab =

[
βa,βb

]
.

With a covariant derivative of the DKP field well-defined
we can consider the Lagrangian density (3) of the massless

DKP field minimally coupled [3, 12, 13] to the Lyra manifold,
introducing the tetrad field,

gµν(x) = ηabeµ
a(x)eν

b(x) , gµν(x) = ηabeµ
a(x)eν

b(x) .

S=
Z

Ω
d4x φ4e (i ψ̄γeµ

aβa∇µψ− i∇µψ̄βaeµ
aγψ− ψ̄γψ) . (7)

where∇µ is the Lyra covariant derivative of DKP field defined
above.

IV. EQUATIONS OF MOTION AND THE DESCRIPTION
OF MATTER CONTENT

In following we use a classical version of the Schwinger
Action Principle such as it was treated in the context of
Classical Mechanics by Sudarshan and Mukunda [14]. The
Schwinger Action Principle is the most general version of
the usual variational principles. It was proposed originally
at the scope of the Quantum Field Theory [2], but its appli-
cation goes beyond this area. Here, we will apply the Action
Principle to derive equations of motion of the Dirac field in
an external Lyra background and expression for the energy-
momentum and spin density tensors.

Thus, making the variation of the action integral (7) we get

δS=
Z

Ω
dx eφ4

[
4L− i

φ
ψ̄γβµ∂µψ+

i
φ

∂µψ̄βµγψ
](

δφ
φ

)
+

+
Z

Ω
dx φ4e

(
δe
e

)
L + (8)

+
Z

Ω
dx eφ4

[
iψ̄γ(δβµ)∇µψ− i∇µψ̄(δβµ)γψ

]
+

+
Z

Ω
dx eφ4

[
iψ̄γβµ(δSµ)ψ+ iψ̄(δSµ)βµγψ

]
+

+
Z

Ω
dx eφ4 δψ̄(iγβµ∇µψ− γψ+ iSµβµγψ)+

+
Z

Ω
dx eφ4

[
i
φ

ψ̄γβµ(δ∂µψ)− i
φ

(δ∂µψ̄)βµγψ
]

−
Z

Ω
dx eφ4 (i∇µψ̄βµγ+ ψ̄γ− iψ̄γβµSµ)δψ

Choosing different specializations of the variations, one
can easily obtain the equations of motion and the energy-
momentum and spin density tensor.

A. Equations of Motion

We choose to make functional variations only in the mass-
less DKP field thus we setδφ = δeµ

b = δωµab= 0 and consid-
ering[δ,∂µ] = 0, from ( 8) we get

δS=
Z

∂Ω
dσµ eφ3 i

[
ψ̄γβµ(δψ)− (δψ̄)βµγψ

]
+

+i
Z

Ω
dx eφ4 (δψ̄)

[
iβµ∇µψ+ iτ̃µβµγψ− γψ

]
+

−
Z

Ω
dx eφ4

[
i∇µψ̄βµ+ iτ̃µψ̄γβµ+ ψ̄γ

]
δψ
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Following the action principle we get the generator of the
variations of the massless DKP field

Gδψ =
Z

∂Ω
dσµ eφ3 i

[
ψ̄γβµ(δψ)− (δψ̄)βµγψ

]

and its equations of motion in the Lyra’s manifold are
{

iβµ(∇µ+ τ̃µγ)ψ− γψ = 0
i∇µψ̄βµ+ iτ̃µψ̄γβµ+ ψ̄γ = 0

The spin 1 projectorsRµ(= eµ
aRa ) andRµν(= eµ

aeν
bRab)

[10, 15] are such thatRµψ andRµνψ transform respectively
as a vector and a second rank tensor under general coordinate
transformation. Thus, using the projectors we have

Rµ → i∇ν (Rµνψ)+ iτ̃ν (Rµνγψ)−Rµγψ = 0

multiplying by (1− γ) we get

i (∇ν + τ̃ν)(Rµνγψ) = 0

and

Rµν → i∇ρ (Rµνβρψ)+ iτ̃ρ (Rµνβργψ)−Rµνγψ = 0

Rµνγψ = i
(
∇ρ + τ̃ργ

)
[gρν (Rµψ)−gρµ(Rνψ)]

from the above equations we get the equation of motion for
the massless vector fieldRµψ

(∇ν + τ̃ν)(∇ρ + τ̃ργ) [gρν (Rµψ)−gρµ(Rνψ)] = 0,

We use a specific representation of the DKP algebra in
which the singularγ matrix is

γ = diag(0,0,0,0,1,1,1,1,1,1) .

Then in this representation the DKP fieldψ is now a 10-
component column vector

ψ =
(

ψ0,ψ1,ψ2,ψ3,ψ23,ψ31,ψ12,ψ10,ψ20,ψ30
)T

,

whereψa (a = 0,1,2,3) and ψab behave, respectively, as a
4-vector and an antisymmetric tensor underLorentztransfor-
mations on the Minkowski tangent space. And we also get

γψ =
(

0,0,0,0,ψ23,ψ31,ψ12,ψ10,ψ20,ψ30
)T

Rµψ =
(

ψµ,0,0,0,0,0,0,0,0,0
)T

Rµνψ =
(

ψµν,0,0,0,0,0,0,0,0,0
)T

due toRµγ = γRµ andRµνγ = (1− γ)Rµν. Then, we get the
following relations amongψ components

i ψµν = ∇µψν−∇νψµ

which leads to the equation of motion for the spin1 sector of
the massless DKP field in Lyra space-time

(∇µ+ τ̃µ)(∇µψν−∇νψµ) = 0.

B. Energy-momentum tensor and spin tensor density

Now, we only vary the background manifold and we as-
sume thatδωµab andδeµ

a are independent variations,

δS=
Z

Ω
dxeφ4 [i (ψ̄γβa∇µψ−∇µψ̄βaγψ)δeµ

a+

+
(

1
e

δe

)
L + i

(
ψ̄γβµSabψ+ ψ̄Sabβµγψ

) 1
2

δωµab

]
.

First, holding only the variations in the tetrad field,δωµab=
0, we found for the variation of the action

δS=
Z

Ω
dx eφ4

[
i (ψ̄γβa∇µψ−∇µψ̄βaγψ)−eµ

aL
]

δeµ
a

Defining the energy-momentum density tensor as

Tµ
a ≡ 1

φ4e
δS

δeµ
a

= iψ̄γβa∇µψ− i∇µψ̄βaγψ−eµ
aL

which can be written in coordinates as

Tµ
ν ≡ eν

aTµ
a = iψ̄γβν∇µψ− i∇µψ̄βνγψ−δµ

νL

On the mass shell,

Tµ
ν = iψ̄γβν∇µψ− i∇µψ̄βνγψ−δµ

νψ̄γψ

Now, making functional variations only in the components
of the spin connection,δeµ

a = 0, we found for the action vari-
ation

δS=
Z

Ω
dx eφ4 1

2

(
δωµab

)
iψ̄

(
γβµSab+Sabβµγ

)
ψ,

we define the spin tensor density as being

Sµab≡ 2
φ4e

δS
δωµab

= iψ̄
(

γβµSab+Sabβµγ
)

ψ

The spin 1 component of DKP energy momentum tensor is

Tµ
ν =

i
2

ψ∗να (∇µψα−∇α ψµ)+

− i
2

ψνβ
(

∇µψ∗β−∇β ψ∗µ
)

+

−δµ
ν
(

ψ∗αβψαβ

)

which coincides with the first order energy momentum tensor
of the electromagnetic field in the real case.

V. FINAL REMARKS

The coupling between torsion and massless vectorial field
was showed to be related to scale transformations in Lyra
background. Since this scale transformations are governed by
an arbitrary functionφ, it seems plausible that the problem of
breaking the local gauge invariance associated with this cou-
pling could be removed from the theory if we had chosen an
gauge transformations to be linked to scale invariance in Lyra
manifold. A deeper study of this line is under construction.
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E. Gonçalves and B. M. Pimentel; World Scientific, Singapore
(2001), p. 111. Also available as [gr-qc/9909033].

[11] Harish-Chandra, Proc. Roy. Soc. Lond.A 186, 502 (1946).
[12] C. W. Misner, K. S. Thorne and J. A. Wheeler,Gravitation,

Freeman, San Francisco (1973).
[13] F. W. Hehl, P. von der Heyde and G. D. Kerlick, Rev. Mod.

Phys.48, 393 (1976).
[14] E. C. G. Sudarshan and N. Mukunda,Classical Dynamics: A

Modern Perspective(Wiley, 1974).
[15] H. Umezawa,Quantum Field Theory, North-Holland (1956).

[16] We choose a representation in whichβ0† = β0, βi† = −βi and
γ† = γ .


