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The effect of nonlocal electrodynamics is considered in finite samples. It is found for such samples that non-
locality modifies not only the in-plane penetration depthλ‖, as predicted by Kosztin and Leggett, but also the
out-of-plane penetration depthλ⊥. The Sr2RuO4 data are reinterpreted taking into account the contribution
from λ⊥.

1 Introduction

Penetration depth measurements have played a very fun-
damental role in the study of the gap symmetry of all un-
conventional superconductors. For instance, from magnetic
penetration depth measurements it was first suggested thed-
wave symmetry for the energy gap in high critical tempera-
ture superconductors (HTSC) [1]. It is expected that, for su-
perconducting energy gaps with nodes on the Fermi surface,
the deviation of the magnetic penetration depthλ(T ) from
its zero temperature value goes as a power law in tempera-
ture,∆λ(T ) = λ(T )−λ(0) ∝ Tα, at temperatures well be-
low the critical temperatureTc. The exponentα depends on
gap geometry, dimensionality and the rate at which the gap
vanishes near the zeroes. For line nodes in three dimensional
systems, like those with ad-wave symmetry,∆λ(T ) ∝ T
(the same conclusion holds for point nodes in two dimen-
sional systems). In these systems, however, the penetration
depth has been found in some cases to cross over from lin-
ear to quadratic temperature dependence at a temperature
T ∗ << Tc. Such a crossover has been explained theoret-
ically as due to impurities [2] or nonlocal electrodynamics
[3].

The impurity model considers that a dilute concentration
of strong scatterers in the unitary limit in unconventional su-
perconductors with line nodes causes a finite residual den-
sity of states near the nodes and negligible suppression of
Tc. Thus, asT → 0 a ”gapless” temperature behavior [4]
∆λ(T ) ∝ T 2 should be expected for such superconduc-
tors, and the crossover in∆λ(T ) is predicted to occur at
T ∗ ∼ √

Γ∆0. Here,Γ is the scattering rate and∆0 is the
energy gap maximum. The nonlocal model supposes that
the local conditionλ(0)/ξ0 >> 1, for which the spatial
variation of the electromagnetic field over the extent of the
Cooper pair is neglected and the pair is taken as a point ob-
ject, is not satisfied at temperatures well belowTc in most
unconventional superconductors. Hereξ0 ≡ ~νF /π∆0 is
the BCS coherence length. The nonlocal model is based on
the fact that in superconductors with an anisotropic energy

gap with nodes on the Fermi surface the coherence length
ξ0(k) = ~νF /π∆(k). Kosztin and Leggett (KL) [3] sug-
gested for the local condition

λ(0)
ξ0(k)

=
λ(0)
ξ0

|∆(k)|
∆0

>> 1 , (1)

Thus near the nodes, where∆(k) → 0, the local condition
would no longer hold, and the superconductor would be-
come nonlocal. KL predicted for very clean, semi-infinite
superconductors with line nodes that nonlocal electrody-
namics would affect the magnetic penetration depthonly
when the exciting field is applied perpendicular to theab
plane; that is to say, onlyλ‖(T ) would be perturbed by
nonlocality. They proposed that∆λ‖(T ) ∝ T 2 below a
T ∗NL = ∆0 ξ0/λ(0) << Tc.

The impurity effect has been confirmed in Zn-doped
YBCO [5] and has been used to explain data from organic
superconductors [6] and various HTSC [7]. On the other
hand, the KL nonlocal effect has been difficult to prove, and
only recently some evidence for its existence has been ob-
tained. The importance of testing experimentally the valid-
ity of the KL effect is because it would provide a mech-
anism for the observed crossover from linear to quadratic
temperature dependence of the magnetic penetration depth
in very clean (impurity effect unapplicable) superconduc-
tors with nodes in the energy gap. Here the KL nonlocal
effect is discussed in finite superconductors with line nodes.
It is found that the out-of-plane component of the penetra-
tion depth,λ⊥, is also affected by nonlocality, and not only
the in-plane component as predicted by KL. A discussion is
given of some experimental results.

2 The Kosztin-Leggett nonlocal effect

The penetration depth would depend in some cases on the
orientation of the sample with respect to the applied mag-
netic field. If the sample is aligned so that theab plane
is perpendicular to the exciting field, screening currents are
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generated in theab plane and one measures the in-plane pen-
etration depthλ||(T ). When the field is parallel to theab
plane the measured signal is a combination ofλ|| andλ⊥:
∆λ(T )
λ(0) = λ‖

t + λ⊥
w . Hereλ⊥, the out-of-plane penetration

depth, corresponds to screening currents along the interlayer
c direction. The parameterst andw are the thickness and
width of the sample, respectively.

To study the effect of nonlocal electrodynamics on the
magnetic penetration depth, KL considered a weak, homo-
geneous magnetic fieldH applied along thec axis of a semi-
infinite HTSC with a plane boundary perpendicular to theb
axis (see Fig. 1). For a specular boundary

λ(T )
λ(0)

=
2
π

∫ ∞

0

dq

K(q, T ) + q2
, (2)

whereK(q, T ) is the response function to a weak, transverse
vector potential. For a weak coupling, anisotropic supercon-
ductor [3]

K(q, T ) = 2πT
∑

k

〈
k2
||∆

2
k√

w2
n + ∆2

k(w2
n + ∆2

k + γ2)

〉
.

(3)
Here,wn are the Matsubara frequencies,∆k is the gap func-
tion, k2

|| is the projection ofk on the plane boundary,〈...〉 is
an average over the Fermi surface, andγ = (qνF /2) q · k.
The parameterγ determines the relevance of nonlocal elec-
trodynamics: ifγ 6= 0 (γ = 0) nonlocality is (not) im-
portant. In the current configuration, screening currents are
generated only in the planes, and beingγ 6= 0 KL predicted
that ∆λ||(T ) ∝ ∆λ||L(T ) T at temperaturesT < T ∗NL.
Here, ∆λ||L is the deviation of the in-plane penetration
depth in the local approximation. Thus because∆λ||L ∝ T
in d-wave superconductors, there should be in such super-
conductor a crossover from their characteristic linearT be-
havior at low temperatures to a quadraticT dependence at
even lower temperatures. On the other hand, if the exciting
field is oriented along theb axis, as shown in Fig. 1, because
of the semi-infinite space the only parameter would be again
λ||(T ). However, in this caseγ = 0 and the in-plane pene-
tration depth would not be affected by nonlocality. That is,
for this orientation∆λ||(T ) = ∆λ||L(T ) ∝ T .
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Figure 1

Figure 1. Magnetic field penetration and screening currents in a
semi-infinite HTSC, as supposed by Kosztin and Leggett.

Consider now what happens in finite samples, which
were not evaluated by KL. This is a quite important case,
because the experimental samples are in fact small. IfH||c,
as shown in Fig. 2, the KL prediction for semi-infinite sam-
ples in this orientation holds. IfH ⊥ c, as indicated in
Fig. 3, the prediction would be different from the one stated
by KL for semi-infinite samples. In this orientation,∆λ(T )
is a combination ofλ||(T ) and λ⊥(T ), in the way men-
tioned above. The deviation of the in-plane penetration
depth would follow∆λ||(T ) = ∆λ||L(T ) ∝ T , because
γ = 0 for screening currents along the plane. Butγ 6= 0
for interlayer currents, so thatλ⊥(T ) should be modified by
nonlocality. Thus, the statement that the effect of nonlocal
electrodynamics is only relevant toλ||(T ) is no longer sus-
tained in finite samples. Assuming that for an anisotropicd-
wave superconductor (or any superconductor with nodes in
the gap) the effect of nonlocal electrodynamics on the tem-
perature dependence ofλ⊥ is similar to that ofλ‖, one has
∆λ⊥(T ) ∝ ∆λ⊥L(T )T at temperaturesT < T ∗NL. It must
be pointed out that theT ∗NL for the in- and out-of-plane com-
ponents should be in general different. This indeed would be
the case for anisotropic superconductors.
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Figure 2. Magnetic field penetration and screening currents in a
semi-infinite HTSC when H ⊥ c.
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Figure 3. Magnetic field penetration and screening currents in a
finite superconducting sample when H ‖ c.
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Figure 4. Magnetic field penetration and screening currents in a
finite superconducting sample when H ⊥ c.

3 The sr2ruo4 experimental data

Although the KL effect was predicted with HTSC in
mind, no studies of it using these superconductors have
been reported. This is mainly due to limitations on the
experimental resolution for λ(T ) in HTSC below 1 K
(T ∗

‖NL
∼ 2K in YBCO for example).

The Sr2RuO4 penetration depth data [8] were the first
showing some evidence for the KL nonlocal effect. These
data, taken from samples with Tc very close to the impurity-
free Tc = 1.5 K, can be reanalyzed by considering the
contribution of the out-of-plane penetration depth when
H ⊥ c. It is worth to mention that Sr2RuO4 has nodes in
the energy gap, although the exact symmetry of the gap is
at the present time highly controversial. This material is a
marginal local superconductor in the ab plane, which leads
to the expected T ∗

‖NL

 1 K. Measurements of ∆λ‖(T )

down to 30 mK yielded a quadratic T dependence below
0.8 K, as shown in Fig. 4. When the field was applied
perpendicular to the c axis, it was found ∆λ(T ) ∝ T 2 below
0.8 K (see Fig. 5). Considering that λ⊥ 
 20λ‖, one could
suppose that the signal was dominated by the out-of-plane
penetration depth. That is, ∆λ(T ) ∼ ∆λ⊥(T ) ∝ T 2.
Assuming that the local λ⊥(T ) is linear in T , this result
would imply the presence of nonlocal effects. However,
using the value λ⊥(0)/ξ0⊥ = 1123 T ∗

⊥NL
= 2.4 mK, which

is far below the observed 0.8 K. This suggests that nonlocal
effects on the out-of-plane λ(T ) in Sr2RuO4 should not
be observed in the temperature range of the experiment
(T > 30 mK). Thus, nonlocal effects may be discarded as a
possible explanation for the T 2 dependence of the magnetic
penetration depth of Sr2RuO4.
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Figure 5. Low temperature dependence of the in-plane penetration
depth in Sr2RuO4. (From Bonalde et al. [8]).
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Figure 6. Low temperature dependence of the penetration depth in
Sr2RuO4 when H ⊥ c.

4 Conclusions

The effect of nonlocal electrodynamics on the magnetic
penetration depth in superconductors with nodes in the gap
has been revised for finite samples. It is found that not only
the in-plane penetration depth λ‖(T ) is affected by nonlocal
electrodynamics, but also the out-of-plane penetration depth
λ⊥(T ). However, the temperature at which the nonlocal
effect should be detected in λ⊥(T ) could be much smaller
than the one expected for λ‖(T ).
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