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The Poincaé superalgebra is introduced from a generalization of the Cartan’s triality principle based on
the extension of Chevalley product, between semispinor spaces and even subspaces of the extended exterior
algebra over Euclidean spaB&. The pure spinor formalism and the framework of Clifford algebras are used,
in order to provide the necessary tools to introduce the Pd@maaperalgebra where all the operators in space
and superspace are constructed via pure spind®sS iand the interaction principle, that generalizes the SO(8)
triality principle.

I. INTRODUCTION A totally symmetric trilinear tensor is defined as

The seminal paper of Wess and Zumino [1] treating the 4- T (@1, ®,®) = h(u1,x2v3) +h(u1,XaV2) + h(uz, Xav1)
dimensional super-Poindaglgebra, has boosted new investi- + h(uz,x1v3) + h(uz,X2v1) + h(uz, X1v2).
gations on supersymmetry in Lagrangian field theory and in
particle physics. On the other hand, Cartan'’s triality principle It is possible to endow the vector spaBewith an asso-
based on the group SO(8) and its double covering Spin(8)iative and non-commutative produst E x E — E, called
has been applied in recent physical theories, like supergravitipe Chevalley produgctthat is implicitly defined by [2, 4]
and superstrings. Only in dimension 8, bosons and fermion$ (@1, @, 93) = B(@1 & @, @3). It is immediate to see that
have the same number of degrees of freedom. This generad-A U= Xxu andx A v =xv [2].
ized supersymmetry comes from the triality principle, which » Proposition 1: The inclusionsV A S* C S, St A
asserts that bosons and fermions are equivalent under the tri@- CV, S~ AV C S' hold. <
ity map [2—4], based on the Chevalley product [4]. This paper Hereonx,u andv are respectively denoted elements of
is presented as follows: in Section 2 the main results involvV, ST andS~. The spinor representatiqm of the Clifford
ing the structure of the Chevalley product, giving rise to theproduct inS* and the vector (adjoint) representatignn V
triality principle, are presented [2], and we briefly revisit the naturally induce a irreducible representatiérin E. Given
pure spinor formalism. In Section 3 the Poineauperalgebra sc '™, that denotes the Clifford group of elements of unit
is introduced inR?, via orthosymplectic graded Lie algebras norm, such representation is defined ¥§g)(x +u + v) =
and via the interaction principle, which generalizes the cyclicx(s)x + p(s)u + p(s)v.
property of the Chevalley product. This work was supported The representatio¥i(s) is shown to be orthogonal in rela-
by CAPES. tion to the metric orB [2]. In addition, it can be shown that, if

Xo € V is such thak3 = 1, thenY?(xo) = 1. Now consider a

spinorug € S* of unitary norm, i.e.h(ug,up) = 1. A homo-
Il. TRIALITY PRINCIPLE AND PURE SPINORS morphisnmm : ST — V is defined is such a way thafug) (x) =

X A Up. The mapt(up) is clearly orthogonal and is uniquely

Consider a vector spadé endowed with metriy. The extended to an order two a_utomorphisn\(i@S*. IfveSis
spinor spacé can be written as the direct sugn= St @S-,  Suchthat =1(up)x fora uniquex € V, definingt (uo)(v) =X,
whereS* denotes semispinor spaces that carry, each one, 3'd besides, the maguo) is defined inS* as a reflection,
non-equivalent irreducible representation of the even subalgdlven a fixed spinotg € S*, ast(uo)(u) = 2h(u, Ug)uo — u.
braC¢+(V,g). Define the spacE =V &S" &S, In order In order to define an order-three automorphism, tha_t permutes
to find a vector space such that the semispinor spage of  cyclically the vector spaceS", S~ andV, we can verify that
V has the same dimensianof V, the conditionn = 8 must ~ T(Uo)Y (Xo)T(Uo) =Y (X0)T(Uo)Y (Xo), and then thériality op-
hold. We consider heredr ~ R80 [5]. The spaceE is there- ~ €rator® is defined ag(xo,Uo) = Y(xo)T(Uo), which is an
fore 24-dimensional and its elements are hereon denoted t8fder three automorphism, sin€(xo, uo) = 1. _
@=X+U+V, wherex €V, u e St andv € S—. The spinor » Proposition 2: The subspaces, S™ andS™ of E are cycli-

metrich: St x S* — R is defined as cally permuted byd(Xg, Up), in such way tha®(xg,ug).V C
ST, O(Xo,Up).S"C ST, O(Xg,Up).S” CV. «
h(u,xv) = h(xu,v) = (xu)Xv (1) Now pure spinor formalism is briefly reviewed. For more

details, see e.g. [2-4, 6-8]. Given the comp@%® vector

where( - )X is a dual operator fron$* to (S*)*. A metric ~ space and its corresponding Clifford alge@&2n,C) with
B: E x E — R is defined from the spinor metric and the generators?®, a spinom is a vector of th@n-dimensional rep-
metricg: resentation space @/(2n,C) = EndS, defined by the Car-
. tan’s equatiorru = 0. Foru # 0, ze C2" may only be null.
B(@1,®2) = 9(X1,X%2) +h(ug,uz2) + h(vy,va). (2)  Defining the volume elememt Weyl spinorsu.. are defined
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by z(1+Xon4+1)us = 0, and are elements of the representation
space of the even subalgel€é&" (2n,C). Each Weyl spinor
u. spans &"~1-dimensional spinor space, and the expres- 280 = e1+8&, 2§1=e+6&, 2&,=ies+8&,

sion z(1 + Xon+1)ur = 0 definesd-dimensional totally null Ao Ao i e
planeéTd(ui). Ii may be shown that eveny, € S*, where s = @—&, Zu=€-f, Zs=ie-a (@)
C(*(2n,C) = EndS* define such planes. Fdr= n, that is,
for maximal dimension of the totally null plandg(u..) :=
M (uy ), the corresponding Weyl spinax. is named simple or
pure and, as shown by Cartav(u,) and+u. are isomor-
phic (modZy). All Weyl spinors are simple or pure for< 3.

where 29(&;,&31i) = 1 = &&34i +&34i&, 0<i < 2 [6].
Choosing the subspace of the exterior algebra, the underlying
vector space of the Clifford algebra, as

A=N(RPaR}) NS (REDRS), (5)

. POINCAR E SUPERALGEBRA IN R3 in particular the following products can be obtained:

In four dimensions the (translational) super-Poikcalge-
bra [1] is given by §38485 A 8184 = 28583, €38a8s A §28385 = —28583,

" §18283 A 818485 = 28183, §18283 A §384 =28283.  (6)
{Qav Qb} = zo-abpuv [Ppla PV] - 07

{Qa, )} = {Qa, Q) =[PuQa] =[P, Q] =0. (3) From the propertiesv&ssés, w&3a€s} = —(v€38sds) A
(0&€38485), {0&384&5,wE38a85} = {0E€384l5, 10838485} =
The operator®,, Qa can be written, in terms of the superspaceO, [y, @] = 0, wherev, o € A%, P, @=Epg oréad, and using
coordinates, aB, =idy,, and the results in [6], if we define

Qa=0g 0% 6%, Qa = —0ga +i6°0l0y

[ Qu Qu Pl
€18483 + 808384 | §08284€5 1+ 838485 |  €284&5+E0&1 A €283
€285 — 18385 | —€28384 — 818285 | §18085 +E384 A §18285
€384€5+ 818384 —&38ués+8&18&2| €384 A &18384€5—&a
€0€4&s5 —&38485| €384&5+&0&285| &283&5 A &5 —&o€aés

We now extend the results in [6], where the Poigcauper-
algebra is extended by generalizing Prop.1. Instead of con-
sidering a vector spacé, it is possible to consider any sub-
spaceA of the Clifford algebraC¢(V,g). Denoting 4+ C
C(*(V,g), whereCr¢~ (V,g) denotes the subspace of multivec-
tors ofC¢(V, g) written as the Clifford product of an odd num-
ber of vectors inV, the proposed generalization in [6] allows it can be shown that such operators satisfy egs.(3), where the
two possibilities: a) If dim{) = nis such that/2is odd, we  super-Poincd algebra is derived from a generalization of the
have:4T ASTCS" StAS CAa", S AA4"CS;b) Chevalley product, between even subspaces of a Clifford alge-
If dim(V) = n is such thatn/2 is even, it follows that bra, pure spinor formalism. Using the triality principle frame-
A-ASTCS StAS CA, S A4 CS'. Thisis work and the pure spinor formalism the super-Poiacige-

the so-called interaction principle [6]. Taking a basis ofbra is derived, which is shown to have a deep geometrical
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(R*®R3), as being{e;, & }°_,, define the vectorg as structure behind.
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