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The Poincaŕe superalgebra is introduced from a generalization of the Cartan’s triality principle based on
the extension of Chevalley product, between semispinor spaces and even subspaces of the extended exterior
algebra over Euclidean spaceR3. The pure spinor formalism and the framework of Clifford algebras are used,
in order to provide the necessary tools to introduce the Poincaré superalgebra where all the operators in space
and superspace are constructed via pure spinors inR3 and the interaction principle, that generalizes the SO(8)
triality principle.

I. INTRODUCTION

The seminal paper of Wess and Zumino [1] treating the 4-
dimensional super-Poincaré algebra, has boosted new investi-
gations on supersymmetry in Lagrangian field theory and in
particle physics. On the other hand, Cartan’s triality principle,
based on the group SO(8) and its double covering Spin(8),
has been applied in recent physical theories, like supergravity
and superstrings. Only in dimension 8, bosons and fermions
have the same number of degrees of freedom. This general-
ized supersymmetry comes from the triality principle, which
asserts that bosons and fermions are equivalent under the trial-
ity map [2–4], based on the Chevalley product [4]. This paper
is presented as follows: in Section 2 the main results involv-
ing the structure of the Chevalley product, giving rise to the
triality principle, are presented [2], and we briefly revisit the
pure spinor formalism. In Section 3 the Poincaré superalgebra
is introduced inR3, via orthosymplectic graded Lie algebras
and via the interaction principle, which generalizes the cyclic
property of the Chevalley product. This work was supported
by CAPES.

II. TRIALITY PRINCIPLE AND PURE SPINORS

Consider a vector spaceV endowed with metricg. The
spinor spaceS can be written as the direct sumS= S+⊕S−,
whereS± denotes semispinor spaces that carry, each one, a
non-equivalent irreducible representation of the even subalge-
braC`+(V,g). Define the spaceE = V ⊕S+⊕S−. In order
to find a vector spaceV such that the semispinor spaceS± of
V has the same dimensionn of V, the conditionn = 8 must
hold. We consider hereonV ' R8,0 [5]. The spaceE is there-
fore 24-dimensional and its elements are hereon denoted by
φ = x + u + v, wherex ∈V, u ∈ S+ andv ∈ S−. The spinor
metrich : S±×S±→ R is defined as

h(u,xv) = h(xu,v) = (xu)χv (1)

where( · )χ is a dual operator fromS± to (S±)∗. A metric
B̆ : E×E → R is defined from the spinor metrich and the
metricg:

B̆(φ1,φ2) = g(x1,x2)+h(u1,u2)+h(v1,v2). (2)

A totally symmetric trilinear tensor is defined as

T(φ1,φ2,φ3) = h(u1,x2v3)+h(u1,x3v2)+h(u2,x3v1)
+ h(u2,x1v3)+h(u3,x2v1)+h(u3,x1v2).

It is possible to endow the vector spaceE with an asso-
ciative and non-commutative productM: E×E → E, called
the Chevalley product, that is implicitly defined by [2, 4]
T(φ1,φ2,φ3) = B̆(φ1 M φ2,φ3). It is immediate to see that
x M u = xu andx M v = xv [2].

I Proposition 1: The inclusionsV M S+ ⊆ S−, S+ M
S− ⊆V, S− M V ⊆ S+ hold. J

Hereonx,u and v are respectively denoted elements of
V, S+ and S−. The spinor representationρ of the Clifford
product inS± and the vector (adjoint) representationχ in V
naturally induce a irreducible representationY in E. Given
s∈ Γ+, that denotes the Clifford group of elements of unit
norm, such representation is defined byY(s)(x + u + v) =
χ(s)x+ρ(s)u+ρ(s)v.

The representationY(s) is shown to be orthogonal in rela-
tion to the metric on̆B [2]. In addition, it can be shown that, if
x0 ∈ V is such thatx2

0 = 1, thenY2(x0) = 1. Now consider a
spinoru0 ∈ S+ of unitary norm, i.e.,h(u0,u0) = 1. A homo-
morphismτ : S+ →V is defined is such a way thatτ(u0)(x) =
x M u0. The mapτ(u0) is clearly orthogonal and is uniquely
extended to an order two automorphism inV⊕S−. If v∈S− is
such thatv = τ(u0)x for a uniquex∈V, definingτ(u0)(v) = x,
and besides, the mapτ(u0) is defined inS+ as a reflection,
given a fixed spinoru0 ∈ S+, asτ(u0)(u) = 2h(u,u0)u0−u.
In order to define an order-three automorphism, that permutes
cyclically the vector spacesS+,S− andV, we can verify that
τ(u0)Y(x0)τ(u0) = Y(x0)τ(u0)Y(x0), and then thetriality op-
eratorΘ is defined asΘ(x0,u0) = Y(x0)τ(u0), which is an
order three automorphism, sinceΘ3(x0,u0) = 1.
I Proposition 2: The subspacesV, S+ andS− of E are cycli-
cally permuted byΘ(x0,u0), in such way thatΘ(x0,u0).V ⊂
S+, Θ(x0,u0).S+ ⊂ S−, Θ(x0,u0).S− ⊂V. J

Now pure spinor formalism is briefly reviewed. For more
details, see e.g. [2–4, 6–8]. Given the complexC2n vector
space and its corresponding Clifford algebraC`(2n,C) with
generatorsxa, a spinoru is a vector of the2n-dimensional rep-
resentation space ofC`(2n,C) = EndS, defined by the Car-
tan’s equationzu = 0. For u 6= 0, z∈ C2n may only be null.
Defining the volume elementz, Weyl spinorsu± are defined
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by z(1±x2n+1)u± = 0, and are elements of the representation
space of the even subalgebraC`+(2n,C). Each Weyl spinor
u± spans a2n−1-dimensional spinor space, and the expres-
sion z(1± x2n+1)u± = 0 definesd-dimensional totally null
planesTd(u±). It may be shown that everyu± ∈ S±, where
C`+(2n,C) = EndS± define such planes. Ford = n, that is,
for maximal dimension of the totally null planesTn(u±) :=
M(u±), the corresponding Weyl spinoru± is named simple or
pure and, as shown by Cartan,M(u±) and±u± are isomor-
phic (modZ2). All Weyl spinors are simple or pure forn≤ 3.

III. POINCAR É SUPERALGEBRA IN R3

In four dimensions the (translational) super-Poincaré alge-
bra [1] is given by

{Qa,Qb} = 2σµ
aḃ

Pµ, [Pµ,Pν] = 0,

{Qa,Qb} = {Qȧ,Qḃ}= [Pµ,Qa] = [Pν,Qḃ] = 0. (3)

The operatorsPµ,Qa can be written, in terms of the superspace
coordinates, asPµ = i∂µ, and

Qa = ∂θa− iσµ
aḃ

θḃ∂µ, Qȧ =−∂θȧ + iθbσµ
bȧ∂µ

We now extend the results in [6], where the Poincaré super-
algebra is extended by generalizing Prop.1. Instead of con-
sidering a vector spaceV, it is possible to consider any sub-
spaceA of the Clifford algebraC`(V,g). DenotingA± ⊆
C`±(V,g), whereC`−(V,g) denotes the subspace of multivec-
tors ofC`(V,g) written as the Clifford product of an odd num-
ber of vectors inV, the proposed generalization in [6] allows
two possibilities: a) If dim(V) = n is such thatn/2 is odd, we
have:A+ M S+ ⊆ S+ S+ M S− ⊆ A+, S− M A+ ⊆ S−; b)
If dim(V) = n is such thatn/2 is even, it follows that
A− M S+ ⊆ S− S+ M S− ⊆ A−, S− M A− ⊆ S+. This is
the so-called interaction principle [6]. Taking a basis of
(R3⊕R3), as being{ej , e̊j}3

j=1, define the vectorsξi as

2ξ0 = e1 + e̊3, 2ξ1 = e2 + e̊1, 2ξ2 = ie3 + e̊1,

2ξ3 = e1− e̊3, 2ξ4 = e2− e̊1, 2ξ5 = ie3− e̊1 (4)

where 2g(ξi ,ξ3+i) = 1 = ξiξ3+i + ξ3+iξi , 0 ≤ i ≤ 2 [6].
Choosing the subspace of the exterior algebra, the underlying
vector space of the Clifford algebra, as

A = Λ2
C(R3⊕R3)⊕Λ6

C(R3⊕R3), (5)

in particular the following products can be obtained:

ξ3ξ4ξ5 M ξ1ξ4 = 2ξ5ξ3, ξ3ξ4ξ5 M ξ2ξ3ξ5 =−2ξ5ξ3,

ξ1ξ2ξ3 M ξ1ξ4ξ5 = 2ξ1ξ3, ξ1ξ2ξ3 M ξ3ξ4 = 2ξ2ξ3. (6)

From the properties{vξ3ξ4ξ5,wξ3ξ4ξ5} = −(vξ3ξ4ξ5) M
(wξ3ξ4ξ5), {vξ3ξ4ξ5,wξ3ξ4ξ5} = {vξ3ξ4ξ5,wξ3ξ4ξ5} =
0, [ψ,φ] = 0, wherev,w ∈A±, ψ,φ = ξAei or ξAe̊i , and using
the results in [6], if we define

Qµ Qµ̇ Pµ

µ= 0 ξ1ξ4ξ3 +ξ0ξ3ξ4 ξ0ξ2ξ4ξ5 +ξ3ξ4ξ5 ξ2ξ4ξ5 +ξ0ξ1 M ξ2ξ3

µ= 1 ξ2ξ4ξ5−ξ1ξ3ξ5 −ξ2ξ3ξ4−ξ1ξ2ξ5 ξ1ξ0ξ5 +ξ3ξ4 M ξ1ξ2ξ5

µ= 2 ξ3ξ4ξ5 +ξ1ξ3ξ4 −ξ3ξ4ξ5 +ξ1ξ2 ξ3ξ4 M ξ1ξ3ξ4ξ5−ξ4

µ= 3 ξ0ξ4ξ5−ξ3ξ4ξ5 ξ3ξ4ξ5 +ξ0ξ2ξ5 ξ2ξ3ξ5 M ξ5−ξ0ξ3ξ5

it can be shown that such operators satisfy eqs.(3), where the
super-Poincaré algebra is derived from a generalization of the
Chevalley product, between even subspaces of a Clifford alge-
bra, pure spinor formalism. Using the triality principle frame-
work and the pure spinor formalism the super-Poincaré alge-
bra is derived, which is shown to have a deep geometrical
structure behind.
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