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We review uses of Tsallis statistical mechanics in the protein folding problem. Monte Carlo simu-
lated annealing algorithm and generalized-ensemble algorithm with both Monte Carlo and stochastic
dynamics algorithms are discussed. Simulations by these algorithms are performed for a penta pep-
tide, Met-enkephalin. In particular, for generalized-ensemble algorithms, it is shown that from only
one simulation run one can �nd the global-minimum-energy conformation and obtain probability
distributions in canonical ensemble for a wide temperature range, which allows the calculation of
any thermodynamic quantity as a function of temperature.

I. Introduction

For many important physical systems like biolog-

ical macromolecules it is very di�cult to obtain the

accurate canonical distribution at low temperatures by

conventional simulation methods. This is because the

energy function has a huge number of local minima sep-

arated by high energy barriers, and at low temperatures

simulations will necessarily get trapped in the con�g-

urations corresponding to one of these local minima.

In order to overcome this multiple-minima problem,

many methods have been proposed. Simulated anneal-

ing [1] is probably the most widely used algorithm that

can alleviate the di�culty. Generalized-ensemble algo-

rithms, most well-known of which is the multicanonical

approach [2, 3], are also powerful ones, and were �rst

introduced to the protein-folding problem in Ref. [4].

Simulations in the multicanonical ensemble perform 1D

random walk in energy space, which allows the sys-

tem to overcome any energy barrier. Besides multi-

canonical algorithms, simulated tempering [5, 6] and

1/k-sampling [7] have been shown to be equally e�ec-

tive generalized-ensemble methods in the protein fold-

ing problem [8]. The simulations are usually performed

with Monte Carlo (MC) scheme, but recently molecu-

lar dynamics (MD) version of multicanonical algorithm

was also developed [9]-[11].

The generalized-ensemble approach is based on non-

Boltzmann probability weight factors, and in the above

three methods the determination of the weight fac-

tors is non-trivial. We have shown that a particular

choice of the Tsallis weight factor [12] can be used for

generalized-ensemble simulations [13, 14]. The advan-

tage of this ensemble is that it greatly simpli�es the

determination of the weight factor.

In this article, we review simulated annealing and

generalized-ensemble algorithms based on Tsallis statis-
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tics. The performances of the algorithms are tested

with the system of an oligopeptide, Met-enkephalin.

II. Methods

II.1 Energy Function of Protein Systems

The total potential energy function Etot for the pro-

tein systems that we used is one of the standard ones.

Namely, it is given by the sum of the electrostatic term

EC , 12-6 Lennard-Jones term ELJ , and hydrogen-bond

termEHB for all pairs of atoms in the molecule together

with the torsion term Etor for all torsion angles:

EP = EC +ELJ +EHB + Etor ;

EC =
X
(i;j)

332 qiqj
� rij

;

ELJ =
X
(i;j)

 
Aij

r12ij
�
Bij

r6ij

!
; (1)

EHB =
X
(i;j)

 
Cij
r12ij

�
Dij

r10ij

!
;

Etor =
X
i

Ui
�
1� cos(ni�

i)
�
:

Here, rij is the distance (in �A) between atoms i and j, �

is the dielectric constant, and �i is the torsion angle for

the chemical bond i. Each atom is expressed by a point

at its center of mass, and the partial charge qi (in units

of electronic charges) is assumed to be concentrated

at that point. The factor 332 in EC is a constant to

express energy in units of kcal/mol. These parameters

in the energy function as well as the molecular geome-

try were adopted from ECEPP/2 [15]. The computer

code KONF90 [16] was used for the MC simulations

and SMC [17] was used for the MD simulations. We

neglected the solvent contributions for simplicity and

set the dielectric constant � equal to 2. The peptide-

bond dihedral angles ! were �xed at the value 180� for

simplicity. So, the remaining dihedral angles � and  

in the main chain and � in the side chains constitute

the variables to be updated in the simulations. One

MC sweep consists of updating all these angles once

with Metropolis evaluation [18] for each update.

II.2 Simulated Annealing Algorithm with Tsal-

lis Statistics

In the canonical ensemble at temperature T each state

with potential energy E is weighted by the Boltzmann

factor

wB(E; T ) = e��E ; (2)

where the inverse temperature is given by � = 1=kBT

with Boltzmann constant kB. This weight factor gives

the usual bell-shaped canonical probability distribution

of energy:

PB(E; T ) / n(E) wB(E; T ) ; (3)

where n(E) is the density of states. For systems with

many degrees of freedom, it is usually very di�cult to

generate a canonical distribution at low temperatures.

This is because there are many local minima in the en-

ergy function, and simulations will get trapped in states

of these local minima.

A now almost classical way to alleviate this di�-

culty is simulated annealing [1]. Its underlying idea of

modeling the crystal grow process in nature is easy to

understand and simple to implement. Any MC or MD

technique can be converted into a simulated annealing

algorithm in a straightforward manner. During a sim-

ulation temperature is lowered very slowly from a su�-

ciently high initial temperature TI where the structure

changes freely with MC or MD updates to a \freez-

ing" temperature TF where the system undergoes no

signi�cant changes with respect to the MC sweeps or

MD steps. If the rate of temperature decrease is slow

enough for the system to stay in thermodynamic equi-

librium, then it is ensured that the system can avoid

getting trapped in local minima and that the global

minimumwill be found.

The performance of simulated annealing depends

crucially on the annealing schedule. It could be shown

that convergence to the global minimumcan be secured

for a logarithmic annealing schedule [19], but this is of

little use in applications of the method. Constraints in

available computer time enforce the choice of faster an-

nealing schedules where success is no longer guaranteed.

As in the growth of real crystals, which can hardly be
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achieved by a simple cooling process, elaborated and

system-speci�c annealing schedules are often necessary

to obtain the global minimum within the CPU time

available. In our simulations the temperature was low-

ered exponentially in NS (number of total MC sweeps)

steps by setting the inverse temperature � = 1=kBT at

k-th MC sweep to [16, 20]

�k = �I

k�1 : (4)

Here, �I is the initial inverse temperature and 
 is given

in terms of initial and �nal temperatures by


 =

�
�F
�I

� 1

NS�1

=

�
TI
TF

� 1

NS�1

: (5)

For a �xed value of the total MC sweeps NS , the initial

and �nal temperatures (TI and TF ) are free parameters

and have to be tuned in such a way that the annealing

process is optimized for the speci�c problem.

Simulated annealing was �rst successfully used to

predict the global minimum-energy conformations of

polypeptides and proteins in Refs. [21]-[23] and to re-

�ne protein structures from NMR and X-ray data in

Refs. [24, 25]. Since then many promising results have

been obtained. Latest applications include Refs. [26]-

[29].

Attempts have been made to improve the perfor-

mance of simulated annealing in practical applications,

see for instance Refs. [30, 20, 8]. More recent attempts

[31]-[34] are inspired by Tsallis generalized statistical

mechanics [12].

In the Tsallis formalism [12], a generalized statisti-

cal mechanics is constructed by maximizing a general-

ized entropy

S = �kB
1�

P
i p

q
i

q � 1
(6)

with the constraints

X
i

pi = 1 ;
X
i

pqiEi = const : (7)

Here, q is a real number. A generalized probability

weight

w(E) / [1 + (q � 1)�E]�
1

q�1 (8)

follows, which tends to the Boltzmann factor of Eq. (2)

for q! 1, and therefore regular statistical mechanics is

recovered in this limit. The important feature of Tsallis

generalized statistical mechanics for optimization prob-

lems is that the probability distribution of energy does

no longer decrease exponentially with energy but ac-

cording to a power law, where the exponent is deter-

mined by the free parameter q (compare Eqs. (2) and

(8)). The resulting probability distribution has a tail

to higher energies for q > 1, which enhances the ex-

cursion into high-energy regions and escape from local-

minimum states.

This observation inspired the construction of vari-

ous generalized simulated annealing algorithms based

on Tsallis weight factors [31]-[34]. As an example we

present here the generalized simulated annealing tech-

nique proposed in Ref. [34]. The con�gurations are

weighted with

w(E) = [1 + (q � 1) � (E �EGS)]
�

q

q�1 ; (9)

where EGS is the ground-state energy and the Tsallis

parameter q has been set to be: q = 1 + 1
nF

. Here,

nF is the number of degrees of freedom. Note that

through the substraction of EGS it is ensured that the

weights will always be positive de�nite. However, in

general EGS is not known. We therefore approximate

EGS in the course of a simulated annealing simulation

by E0 � Emin � c, where Emin is the lowest energy

ever encountered in the simulation and c a small num-

ber. E0 is reset every time a new value for Emin is

found. Changing the value of E0 is a disturbance of

the Markov chain and while we expect the disturbance

to be small, we clearly cannot use our algorithm to

calculate thermodynamic averages. Moreover, because

of the �nite step size of the temperature annealing

we cannot assume convergence against an equilibrium

distribution. As in the regular simulated annealing

algorithm, our method is thus valid only as a global

optimization method.

II.3 Generalized-Ensemble Algorithm with

Tsallis Statistics

Generalized-ensemble algorithms are the methods that

perform randomwalks in energy space, allowing simula-

tions to escape from any state of energy local minimum.

To name a few, multicanonical algorithms [2, 3], sim-

ulated tempering [5, 6], and 1/k-sampling [7] are such
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algorithms. Here, we discuss one of the latest exam-

ples of simulation techniques in generalized ensemble

[13, 14]. The probability weight factor of this method

is given by

w(E) =

�
1 + �0

E � EGS

m

�
�m

; (10)

where T0 = 1=kB�0 is a low temperature, EGS is the

global-minimum potential energy, and m(> 0) is a free

parameter the optimal value of which will be given be-

low. This is the Tsallis weight of Eq. (8) at a �xed

temperature T0 with the following choice of q:

q = 1 +
1

m
: (11)

The above choice of the weight was motivated by the

following reasoning [13]. We are interested in an ensem-

ble where not only the low-energy region can be sam-

pled e�ciently but also the high-energy states can be

visited with �nite probability. In this way the simula-

tion can overcome energy barriers and escape from local

minima. The probability distribution of energy should

resemble that of an ideal low-temperature canonical

distribution, but with a tail to higher energies. The

Tsallis weight of Eq. (10) at low temperature T0 has

the required properties when the parameter m is care-

fully chosen. Namely, for suitable m > 0 it is a good

approximation of the Boltzmann weight wB(E; T0) =

exp(��0(E�EGS)) for �0(E�EGS)=m� 1 , while at

high energies it is no longer exponentially suppressed

but only according to a power law with the exponent

m.

In this work we consider a system with continuous

degrees of freedom. At low temperatures the harmonic

approximation holds, and the density of states is given

by

n(E) / (E �EGS)
nF
2 ; (12)

where nF is the number of degrees of freedom of the sys-

tem under consideration. Hence, by Eqs. (10) and (12)

the probability distribution of energy for the present

ensemble is given by

P (E) / n(E)w(E) / (E �EGS)
nF
2
�m ; (13)

for �0
E�EGS

m � 1. This implies that we need m > nF
2 .

For, otherwise, the sampling of high-energy con�gura-

tions will be enhanced too much. On the other hand,

in the limitm!1 our weight tends for all energies to

the Boltzmann weight and high-energy con�gurations

will not be sampled.

In order for low-temperature simulations to be able

to escape from energy local minima, the weight should

start deviating from the (exponentially damped) Boltz-

mann weight at the energy near its mean value (because

at low temperatures there are only small 
uctuations of

energy around its mean). In Eq. (10) we may thus set

�0
< E >T �EGS

m
=

1

2
: (14)

The mean value at low temperatures is given by the

harmonic approximation:

< E >T = EGS +
nF
2
kBT0 = EGS +

nF
2�0

: (15)

Substituting this value into Eq. (14), we obtain the op-

timal value for the exponent m:

mopt = nF : (16)

Hence, the optimal weight factor is given by

w(E) =

�
1 + �0

E � E0

nF

�
�nF

; (17)

where E0 is the best estimate of the global-minimum

energy EGS .

We remark that the calculation of the weight factor

is much easier than in other generalized-ensemble tech-

niques, since it requires one to �nd only an estimator

for the ground-state energy EGS.

As in the case of other generalized ensembles, we can

use the reweighting techniques [35] to construct canon-

ical distributions at various temperatures T . This is

because the simulation by the present algorithm sam-

ples a large range of energies. The thermodynamic av-

erage of any physical quantity A can be calculated over

a wide temperature range by

< A >T =

Z
dx A(x) w�1(E(x)) e��E(x)Z
dx w�1(E(x)) e��E(x)

; (18)

where w(E) is the weight in Eq. (17) and x stands for

con�gurations.
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Once the weight factor is given, we can implement

the Metropolis MC algorithm [18] in a straightforward

manner.

We now describe MD algorithm in the new ensem-

ble de�ned by the weight of Eq. (17). We remark that

similar stochastic dynamics algorithms were also devel-

oped in the context of Tsallis statistical mechanics in

Refs. [36, 37].

The classical MD algorithm is based on a Hamilto-

nian

H(q; �) =
1

2

NX
i=1

�2i + E(q1; � � � ; qN) ; (19)

where �i are the conjugate momenta corresponding to

the coordinates qi. Hamilton's equations of motion are

then given by

8><
>:

_qi =
@H

@�i
= �i ;

_�i = �
@H

@qi
= �

@E

@qi
= fi ;

(20)

and they are used to generate representative ensembles

of con�gurations. For numerical work the time is dis-

cretized with a step �t and the equations are integrated

according to the leapfrog (or other time reversible inte-

gration) scheme:8>><
>>:

qi(t+�t) = qi(t) + �t �i

�
t+

�t

2

�
;

�i

�
t+

3

2
�t

�
= �i

�
t+

�t

2

�
+�t fi(t+�t) :

(21)

The initial momenta f�i(
�t
2 )g for the iteration are pre-

pared by

�i

�
�t

2

�
= �i(0) +

�t

2
fi(0) ; (22)

with appropriately chosen qi(0) and �i(0) (�i(0) is from

a Gaussian distribution).

In order to generalize this widely used technique to

simulations in our generalized ensemble, we rewrite the

weight factor in Eq. (17) as

w(E) = exp

�
��0

�
nF
�0

ln

�
1 + �0

E �EGS

nF

���
;

(23)

We then de�ne an e�ective potential energy by [36, 37]

Eeff (E) =
nF
�0

ln

�
1 + �0

E � EGS

nF

�
: (24)

We can see that MD simulations in the new ensemble

can be performed by replacing E by Eeff (of Eq. (24))

in Eq. (20). A new set of Hamilton's equations of mo-

tion are now given by

c

8>><
>>:

_qi = �i ;

_�i = �
@Eeff

@qi
= �

@Eeff

@E

@E

@qi
=

1

1 +
�0
nF

(E �EGS)
fi : (25)

d

This is the set of equations we adopt for MD simulations

in our new ensemble [14]. For numerical work the time

is again discretized with a step �t and the equations

are integrated according to the leapfrog scheme.

Langevin algorithm [38] and hybrid Monte Carlo

algorithm [39] in the new ensemble can likewise be in-

troduced. It was shown that the performances of these

three stochastic dynamics algorithms and that of MC

version are similar (for details, see Ref. [14]).

III. Results

III.1 Simulated Annealing Algorithm

The e�ectiveness of the algorithms presented in the

previous section is tested for the system of an oligopep-

tide, Met-enkephalin. This peptide has the amino-acid

sequence Tyr-Gly-Gly-Phe-Met.

We have compared the performance of Tsallis sim-

ulated annealing algorithm with that of regular sim-
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ulated annealing method [34]. As in an earlier work

on Met-enkephalin [20] we made 20 runs of 50,000

MC sweeps for various annealing schedules. Each run

started from completely random conformations. One

of the quantities we monitored to evaluate the perfor-

mance was the average < Emin > (taken over all 20

runs) of the lowest energies Emin obtained in each sin-

gle run. The other quantity was the number nGS of

ground-state conformations found in the 20 indepen-

dent runs. In Ref. [40] it was shown that with the en-

ergy function KONF90, conformations of energy less

than �11:0 kcal/mol have essentially the same three-

dimensional structure. Hence, we consider any confor-

mation with E � �11:0 kcal/mol as the ground-state

conformation.

In Table 1 we show the results for our implementa-

tion of Tsallis weight in simulated annealing algorithms

using the acceptance probability of Eq. (9). E0 is reset

every time to E0 = Emin�1 kcal/mol when a new con-

formation with lower energy Emin than any previous

conformation is found. We found for both canonical

and generalized simulated annealing simulations an op-

timal performance for the initial temperature TI = 500

K and �nal temperature TF = 50 K. With this anneal-

ing schedule the ground-state conformation was found

8 out of 20 runs for regular simulated annealing and 12

out of 20 runs for generalized simulated annealing. This

is a modest improvement of the new algorithm over the

canonical simulated annealing. The improvement can

also be seen in the estimate for < Emin > which is 0:6

kcal/mol lower for the new algorithm and has a smaller

standard deviation than regular simulated annealing.

Table 1. Number of times that reached the ground state (nGS) and average of the lowest energy (< Emin >) (in

kcal/mol) obtained by the 20 runs of various regular and Tsallis simulated annealing simulations.

TI (K) TF (K) Regular Simulated Annealing Tsallis Simulated Annealing

nG < Emin > nG < Emin >

1000 50 6 �10:0 (1.3) 7 �10:7 (0.9)
1000 1 8 �10:0 (2.2) 7 �10:7 (1.3)
500 50 8 �10:5 (1.3) 12 �11:1 (0.9))
500 1 2 �9:3 (1.3) 11 �10:9 (1.3))
300 50 5 �10:1 (1.3) 13 �11:0 (0.9)
300 1 3 �9:6 (1.4) 11 �11:0 (1.1)

Moreover, we notice that the new simulated anneal-

ing algorithm allows one to start simulations at lower

temperatures. While regular simulated annealing works

best with initial temperatures over 500 K, the perfor-

mance of the new algorithm depends only little on the

initial temperature and rather favors TI � 500 K. This

follows from the form of the Tsallis distributions which

have a tail to high energies for q > 1. Equilibrization

at lower temperatures is therefore enhanced.

III.2 Generalized-Ensemble Algorithm

In this subsection we present the results of our

generalized-ensemble simulations based on Tsallis

statistics [13, 41]. It is known from our previous

work that the global-minimum value of KONF90 en-

ergy for Met-enkephalin is EGS = �12:2 kcal/mol [20].

The peptide has essentially a unique three-dimensional

structure at temperatures T � 50 K, and the average

energy is about �11 kcal/mol at T = 50 K [40, 4].

Hence, in the present work we always set T = 50 K

(or, � = 10:1 [ 1
kcal=mol ]) in our new probability weight

factor. All simulations were started from completely

random initial con�gurations (Hot Start).

To demonstrate that thermalization is greatly en-

hanced in our ensemble, we �rst compare the \time se-

ries" of energy as a function of MC sweep. In Fig. 1 we
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show the results from a regular canonical MC simula-

tion at temperature T = 50 K (dotted curve) and those

from a generalized-ensemble simulation of the new al-

gorithm (solid curve). Here, the weight we used for the

latter simulation is given by Eq. (17) with nF = 19

and E0 = EGS = �12:2 kcal/mol. For the canon-

ical run the curve stays around the value E = �7

kcal/mol with small thermal 
uctuations, re
ecting the

low-temperature nature. The run has apparently been

trapped in a local minimum, since the mean energy at

this temperature is < E >T= �11:1 kcal/mol as found

by a multicanonical simulation in Ref. [20]. On the

other hand, the simulation based on the new weight

covers a much wider energy range than the canonical

run. It is a random walk in energy space, which keeps

the simulation from getting trapped in a local mini-

mum. It indeed visits the ground-state region several

times in 1,000,000 MC sweeps. These properties are

common features of generalized-ensemble methods.

Figure 1. Time series of the total energy Etot (kcal/mol)
from a regular canonical simulation at temperature T = 50
K (dotted curve) and that from a simulation of the present
method with the parameters: E0 = �12:2 kcal/mol, nF =
19, and T = 50 K (solid curve).

We now examine the dependence of the simulations

on the values of the exponent m in our weight (see

Eqs. (10) and (17)) and demonstrate that m = nF is

indeed the optimal choice. Setting E0 = EGS = �12:2

kcal/mol, we performed 10 independent simulation runs

of 50,000 MC sweeps with various choices of m. In Ta-

ble 2 we list the lowest energies obtained during each

of the 10 runs for �ve choices of m values: 9:5 (= nF
2 ),

14, 19 (= nF ), 50, and 100. The results from regu-

lar canonical simulations at T = 50 K with 50,000 MC

sweeps are also listed in the Table for comparison. If

m is chosen to be too small (e.g., m = 9:5), then the

weight follows a power law in which the suppression for

higher energy region is insu�cient (see Eq. (13)). As a

result, the simulations tend to stay at high energies and

fail to sample low-energy con�gurations. On the other

hand, for too large a value of m (e.g., m = 100), the

weight is too close to the canonical weight, and there-

fore the simulations will get trapped in local minima.

It is clear from the Table that m = nF is the optimal

choice. In this case the simulations found the ground-

state con�gurations 80 % of the time (8 runs out of 10

runs). This should be compared with 90 % and 40 %

for multicanonical annealing and simulated annealing

algorithms, respectively, in simulations with the same

number of MC sweeps [20].

The weight factor of the present algorithm just de-

pends on the knowledge of the global-minimum energy

EGS (see Eq. (17)). If its value is known, which is

the case for some systems, the weight is completely

determined. However, if EGS is not known, we have

to obtain its best estimate E0. In Table 3 we list

the lowest energies obtained during each of 10 inde-

pendent simulation runs of 200,000 MC sweeps with

m = nF = 19. Four choices were considered for the

E0 value: �12:2; �13:2; �14:2, and �15:2 kcal/mol.

We remark that E0 has to underestimate EGS to en-

sure that E � E0 cannot become negative. Our data

show that an accuracy of 1 � 2 kcal/mol in the es-

timate of the global-minimum energy is required for

Met-enkephalin.

Since the simulation by the present algorithm sam-

ples a large range of energies (see Fig. 1), we can use

the reweighting techniques [35] to construct canonical

distributions and calculate thermodynamic quantities

as a function of temperature over a wide temperature

range.

All thermodynamic quantities were then calculated

from a single production run of 1,000,000 MC sweeps

which followed 10,000 sweeps for thermalization. At the

end of every fourth sweep we stored the energies of the

conformation, the corresponding volume, and the over-

lap of the conformation with the (known) ground state

for further analyses. Here, we approximate the volume

of the peptide by its solvent excluded volume (in �A3)
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which is calculated by a variant [42] of the double cu-

bic lattice method [43]. Our de�nition of the overlap,

which measures how much a given conformation di�ers

from the ground state, is given by

O(t) = 1�
1

90 nF

nFX
i=1

j�
(t)
i � �

(GS)
i j ; (26)

where �
(t)
i and �

(GS)
i (in degrees) stand for the nF dihe-

dral angles of the conformation at t-th MC sweep and

the ground-state conformation, respectively. Symme-

tries for the side-chain angles were taken into account

and the di�erence �
(t)
i � �

(GS)
i was always projected

into the interval [�180�; 180�]. Our de�nition guaran-

tees that we have

0 � < O >T � 1 ; (27)

with the limiting values�
< O(t) >T ! 1 ; T ! 0 ;
< O(t) >T ! 0 ; T !1 :

(28)

We expect the folding of proteins and peptides to

occur in a multi-stage process. A common scenario

for folding may be that �rst the polypeptide chain col-

lapses from a random coil to a compact state. This

coil-to-globular transition is characterized by the col-

lapse transition temperature T�. In the second stage,

a set of compact structures are explored. The �nal

stage involves a transition from one of the many local

minima in the set of compact structures to the native

(ground-state) conformation. This �nal transition is

characterized by the folding temperature Tf (� T�).

The �rst process is connected with a collapse of the

extended coil structure into an ensemble of compact

structures. This transition should be connected with a

pronounced change in the average potential energy as a

function of temperature. At the transition temperature

we therefore expect a peak in the speci�c heat. Both

quantities are shown in Fig. 2. We clearly observe a

steep decrease in total potential energy around 300 K

and the corresponding peak in the speci�c heat de�ned

by

C �
1

N kB

d (< Etot >T )

dT
= �2

< E2
tot >T � < Etot >

2
T

N
;

(29)

where N (= 5) is the number of amino-acid residues

in the peptide. In Fig. 3 we display the average values

of each of the component terms of the potential energy

(de�ned in Eq. (2)) as a function of temperature. As

one can see in the Figure, the change in average po-

tential energy is mainly caused by the Lennard-Jones

term and therefore is connected to a decrease of the

volume occupied by the peptide. This can be seen in

Fig. 4, where we display the average volume as a func-

tion of temperature. As expected, the volume decreases

rapidly in the same temperature range as the potential

energy.

Figure 2. Average total potential energy < Etot >T and
speci�c heat C as a function of temperature. The dotted
vertical line is added to aid the eyes in locating the peak of
speci�c heat. The results were obtained from a generalized-
ensemble simulation of 1,000,000 MC sweeps.

Figure 3. Average potential energies as a function of tem-
perature. The results were obtained from a generalized-
ensemble simulation of 1,000,000 MC sweeps.
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Figure 4. Average volume < V >T and its derivative
d < V >T =dT as a function of temperature. The dotted
vertical line is added to aid the eyes in locating the peak of
the derivative of volume. The results were obtained from a
generalized-ensemble simulation of 1,000,000 MC sweeps.

If both energy and volume decrease are correlated,

then the transition temperature T� can be located both

from the position where the speci�c heat has its maxi-

mum and from the position of the maximum of

d < V >T

dT
� �2 (< V Etot >T � < V >T< Etot >T ) ;

(30)

which is also displayed in Fig. 4. The second quantity

measures the steepness of the decrease in volume in

the same way as the speci�c heat measures the steep-

ness of decrease of potential energy. To quantify its

value we divided our time series in 4 bins correspond-

ing to 250,000 sweeps each, determined the position of

the maximum for both quantities in each bin and aver-

aged over the bins. In this way we found a transition

temperature T� = 280� 20 K from the location of the

peak in speci�c heat and T� = 310 � 20 K from the

maximum in d < V >T =dT . Both temperatures are

indeed consistent with each other within the error bars.

Table 2. Lowest energy (in kcal/mol) obtained by the present method with several di�erent choices of the exponent
m. The case for m = 1 stands for a regular canonical run at T = 50 K. < Emin > is the average of the lowest
energy obtained by the 10 runs (with the standard deviations in parentheses), and nGS is the number of runs in
which a conformation with E � �11:0 kcal/mol (the average energy at T = 50 K) was obtained.

E0 EGS = �12:2 �12:2 �12:2 �12:2 �12:2

m nF
2 = 9:5 14 nF = 19 50 100 1

Run
1 0.8 �5:2 �11:8 �6:9 �6:8 �4:2
2 �1:4 �2:6 �11:5 �7:1 �7:7 �5:2
3 0.1 �6:8 �11:5 �6:9 �4:9 �11:8
4 0.5 �5:5 �11:7 �8:2 �9:9 �7:1
5 �1:0 �3:4 �11:6 �7:4 �12:0 �3:3
6 1.1 �6:4 �11:6 �10:1 �8:8 0.9
7 �1:3 �5:1 �8:5 �8:7 �8:7 �5:3
8 0.4 �3:3 �9:7 �10:8 �9:5 �6:3
9 1.2 �8:1 �11:6 �12:0 �6:8 �6:4
10 1.2 �3:3 �11:9 �10:8 �9:5 �4:7

< Emin > 0:2 (1:0) �5:0 (1:8) �11:1 (1:1) �8:9 (1:9) �8:5 (2:0) �5:3 (3.2)

nGS 0/10 0/10 8/10 1/10 1/10 1/10
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Table 3. Lowest energy (in kcal/mol) obtained by the present method with several di�erent choices of the free
parameter E0. < Emin > and nGS are the same as in Table 2.

E0 EGS = �12:2 �13:2 �14:2 �15:2

m nF = 19 19 19 19

Run
1 �11:8 �11:1 �10:5 �9:0
2 �11:9 �10:8 �8:3 �10:3
3 �11:9 �11:3 �11:6 �9:7
4 �11:9 �10:2 �10:9 �10:8
5 �11:8 �11:2 �6:9 �9:2
6 �11:3 �11:5 �10:8 �9:6
7 �11:9 �11:3 �8:3 �10:3
8 �11:8 �11:4 �5:9 �6:8
9 �12:0 �11:5 �10:6 �8:6
10 �11:7 �10:0 �10:3 �8:9

< Emin > �11:8 (0:2) �11:0 (0:5) �9:4 (1:9) �9:3 (1:1)

nGS 10/10 7/10 1/10 0/10

Figure 5. Average overlap < O >T and its derivative
d < O >T =dT as a function of temperature. The dotted
vertical line is added to aid the eyes in locating the peak of
the derivative of overlap. The results were obtained from a
generalized-ensemble simulation of 1,000,000 MC sweeps.

The second transition which should occur at a lower

temperature Tf is that from a set of compact structures

to the \native conformation" that is considered to be

the ground state of the peptide. Since these compact

conformations are expected to be all of similar volume

and energy, we do not expect to see this transition by

pronounced changes in < Etot >T or to �nd another

peak in the speci�c heat. Instead this transition should

be characterized by a rapid change in the average over-

lap < O >T with the ground-state conformation (see

Eq. (26)) and a corresponding maximum in

d < O >T

dT
� �2 (< OEtot >T � < O >T< Etot >T ) :

(31)

Both quantities are displayed in Fig. 5, and we indeed

�nd the expected behavior. The change in the order

parameter is clearly visible and occurs at a tempera-

ture lower than the �rst transition temperature T�. We

again try to determine its value by searching for the

peak in d < O >T =dT in each of the 4 bins and av-

eraging over the obtained values. In this way we �nd

a transition temperature of Tf = 230 � 30 K. We re-

mark that the average overlap < O >T approaches its

limiting value zero only very slowly as the temperature

increases. This is because < O >T = 0 corresponds

to a completely random distribution of dihedral angles

which is energetically highly unfavorable because of the
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steric hindrance of both main and side chains.

We remark that the above algorithm was also suc-

cesfully applied to a more direct evaluation of the free-

energy landscape of small peptides [44], which allowed

us to visualize the folding funnel of the molecule.

IV. Conclusions

In this article we have reviewed the uses of Tsal-

lis statistical mechanics in the protein folding prob-

lem. Monte Carlo simulated annealing algorithm and

generalized-ensemble algorithm with both Monte Carlo

and stochastic dynamics algorithms were introduced.

A penta peptide, Met-enkephalin was used to study

the performances of these algorithms. While other

generalized-ensemble algorithms su�er from the di�-

culty that the determination of the optimal weight fac-

tor is non-trivial and tedious, it was shown that its

determination in the Tsallis generalized-ensemble algo-

rithm is much simpler than other versions.
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