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Low-dimensional non-linear maps are prototype models to study the emergence of complex behavior
in nature. They may exhibit power-law sensitivity to initial conditions at the edge of chaos which can
be naturally formulated within the generalized Tsallis statistics prescription which is characterized
by the entropic index q. General scaling arguments provide a direct relation between the entropic
index q and the scaling exponents associated with the extremal sets of the multifractal critical
attractor. The above result comes in favor of recent conjectures that Tsallis statistics is the natural
frame for studying systems with a fractal-like structure in the phase-space. Power-law sensitivity in
high-dimensional dissipative and Hamiltonian systems are also discussed within the present picture.

I Introduction

Low-dimensional non-linear maps are the prototype

models to study the emergence of complex behavior in

dynamical systems. Their typical behavior include the

occurrence of bifurcation instabilities, long-range cor-

related sequences, fractal structures and chaos, which

are commonly observed in a great variety of systems

ranging from 
uids, magnetism, biology, social sciences

and many others[1].

The study of the sensitivity to initial conditions of

non-linear systems is one of the most important tools

used to investigate the nature of the phase-space attrac-

tor. It is usually characterized by the Liapunov expo-

nent �, de�ned for the simple case of a one-dimensional

dynamical variable x as

�x(t) � �x(0)e�t (�x(0)! 0; t!1) (1)

where �x(0) is the distance between two initially

nearby orbits (in an equivalent point of view, it is the

uncertainty on the precise initial condition). If � > 0

the system is said to be strongly sensitive to the ini-

tial condition with the uncertainty on the dynamical

variable growing exponentially in time and this char-

acterizes a chaotic motion in the phase-space. On the

other hand, if � < 0 the system becomes strongly in-

sensitive to the initial condition which is expected for

any state whose dynamical attractor is an orbit with a

�nite period.

The problem of the sensitivity to initial conditions

can be reformulated in an entropic language as a process

of information loss (in the case of chaotic behavior) or

recovery (for periodic attractors). Within this context,

it is useful to introduce the Kolmogorov-Sinai entropy

K. It is basically the rate of variation of the Boltzmann-

Gibbs (BG) entropy S = �
PW

i=1 pi ln pi where W is

the total number of possible con�gurations and fpig

the associated probabilities[2]. Considering the evolu-

tion of an ensemble of identical copies of the system

under investigation, pi stands for the fractional num-

ber of points of the ensemble that are in the i cell of a

suitable partition of the phase space in cells of size l.

The Kolmogorov-Sinai entropy can be represented as

K � lim
�!0

lim
l!0

lim
N!1

1

N�
[S(N ) � S(0)] ; (2)

where S(0) and S(N ) are the entropies of the system

evaluated at times t = 0 and t = N� (for maps � = 1).

With the simplifying assumption that at time t there

areW (t) occupied cells with the same occupation num-

ber, we have from equation (2) that

W (t) = W (0)eKt ; (3)

which is equivalent to equation (1) for the sensitivity

to initial condition and provides the well-known Pesin
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equality, K = �[3].

However, the above picture does not suitably de-

scribe the sensitivity to initial conditions at bifurca-

tion points and at the threshold to chaos which are the

marginal cases where � = 0. At these points, the BG

entropy does not vary at a constant rate and there-

fore does not provide a useful tool to characterize the

rhythm of information loss or recovery. The failure of

the above prescription to characterize these points is re-

lated to the fact that the extensive BG entropy can not

properly deal with the underlying fractality (and there-

fore non-extensivity) of the phase-space attractor. In

this work we will review some recent works which have

shown that the Tsallis generalized q-entropies can give

a proper description of these marginal points. Further-

more they have provided some enlightening relations

between the q-entropic factor and the scaling proper-

ties of the dynamical attractor[4, 5, 6, 7, 8]

This work is organized as follows. In section 2, we

numerically illustrate the behavior of BG entropy and

sensitivity to initial conditions in the standard logistic

map. In section 3, we show how the power-law sen-

sitivity at bifurcation and critical points can be natu-

rally derived within the generalized Tsallis entropy for-

malism characterized by the index q which is associ-

ated with the degree of non-extensivity. In section 4,

we review the scaling properties of critical dynamical

attractors that can be characterized as a multifractal

measure. In section 5, we show how scaling arguments

can be used to predict a direct relationship between

the entropic index q and the scaling exponents asso-

ciated with the extremal sets of the critical attractor.

We also illustrate the accuracy of the predicted scaling

relation using two distinct families of one-dimensional

dissipative maps. In section 6, we discuss the emer-

gence of power-law sensitivity in high dimensional dis-

sipative and Hamiltonian systems. Finally, in section

7, we summarize and draw some perspectives on future

developments.

II BG entropy and Sensitivity

to initial conditions in the lo-

gistic map

From the Kolmogorov-Sinai entropic representation of

the sensitivity to initial conditions problem, we learn

that the exponential sensitivity to initial conditions

is directly associated to the fact that the Boltzmann-

Gibbs-Shannon entropy exhibits a constant asymptotic

variation rate per unit time. Lets illustrate the above

mentioned point using the standard logistic map

xt+1 = 1� ax2t (4)

with xt 2 [�1; 1]; a 2 [0; 2]; t = 0; 1; 2; :::. The dynam-

ical attractor as a function of a is shown in Fig. 1a.

For small a it exhibits periodic orbits which bifurcate

as a increases and the bifurcation points accumulate

at a critical value ac = 1:40115518909::: above which

chaotic orbits emerge. The Liapunov exponent � as

a function of the parameter a is displayed in Fig. 1b.

The predicted trend, i.e., � < 0 (� > 0) for periodic

(chaotic) orbits is clearly observed. Notice that � = 0

describes indistinctly the bifurcation points and chaos

threshold. To numerically estimate the BG entropy, we

perform a �ne partitioning of the phase space. Then

we follow the temporal evolution of a large number of

initial conditions regularly distributed around x = 0

which corresponds to the extremal point of this map.

Assuming equiprobability, we can directly estimate the

BG entropy as a function of the number of iterations

of the map by recording the number of distinct parti-

tions visited by these systems and using that S = lnW .

Therefore, an exponential time dependence of W will

be equivalent to a constant rate of variation of BG en-

tropy. In Fig. 2 we show some numerical estimates of

W (N ) for the logistic map at values of a for which the

dynamical attractor is a �xed point and a chaotic orbit.

Notice that the exponential time dependence is veri�ed

at the points were the Liapunov is expected to be �-

nite. However, for marginal cases were � = 0, as for

example in a period doubling bifurcation point and at

the chaos threshold (see Fig. 3), we observe a power-

law time evolution of the phase space volume visited by

the ensemble. Therefore, the BG entropy form fails in

providing a good information measure that exhibits a

constant variation rate at these marginal points.

An equivalent but numerically more precise study

can be made directly on the sensitivity to initial condi-

tions. The sensitivity function is de�ned as

�(t) � lim
�x(0)!0

�x(t)=�x(0) �
dx(t)

dx(0)
; (5)

from which we can directly follow the time evolution

of the distance between two systems with nearby ini-

tial conditions. In Fig. 4, we show the sensitivity as

a function of time for typical values of the non-linear

parameter a which show trends similar to the ones ob-

served for the phase-space volume visited W (N ).
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Figure 1. a) The dynamical attractor of the logistic map
as a function of the parameter a. The attractor exhibits
a series of bifurcations as a increases that accumulate at
ac = 1:40115518909:::, above which chaotic orbits emerge;
b) The Liapunov exponent � versus a. Notice that � < 0
for periodic orbits, � > 0 for chaotic orbits and � = 0 at
bifurcation and critical points. Strong 
uctuations of � for
a > ac re
ects the presence of periodic windows at all scales.

Figure 2. The temporal evolution of the phase space vol-
ume visited by an ensemble of logistic maps with initially
nearby initial conditions for typical values of the nonlinear
parameter a at which the Liapunov is �nite. a) a = 0:5,
corresponding to a �xed point attractor (� < 0, exponen-
tially converging orbits). Data were obtained from 105 ini-
tial conditions distributed in the interval [�0:2; 0:2] using
a partition with 107 boxes. b) a = 1:45, corresponding to
a chaotic attractor (� > 0, exponentially diverging orbits).
Data were obtained from 107 initial conditions spread in the
interval [�10�4; 104] using a partition with 107 boxes. The
saturation for large times is due to the �nite partition of the
phase space.

Figure 3. The temporal evolution of the phase space vol-
ume visited by an ensemble of logistic maps with initially
nearby initial conditions for typical values of the nonlinear
parameter a at which the Liapunov is zero. a) a = 0:75, cor-
responding to a period doubling bifurcation (power-law con-
verging orbits). Data were obtained from 105 initial condi-
tions distributed in the interval [�0:2; 0:2] using a partition
with 106 boxes. b) a = 1:40115518909:::, corresponding to
the onset of chaos (power-law diverging orbits). Data were
obtained from 105 initial conditions spread in the interval
[�10�3; 103] using a partition with 107 boxes. The pattern
observed re
ects the fractal-like structure of the critical at-
tractor.

III Power-law sensitivity and

generalized entropies

Power-law sensitivity, as observed at bifurcation and

critical points, has been shown to be naturally de-

rived from the assumption that a proper non-extensive

entropy exhibits a constant variation rate at these

points[4, 5]. Namely, using Tsallis entropy form

Sq =
1�
PW

i=1 p
q
i

q � 1
(6)

a generalized Kolmogorov-Sinai entropy can be de�ned

as

Kq � lim
�!0

lim
l!0

lim
N!1

1

N�
[Sq(t)� Sq(0)] : (7)
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Figure 4. The sensitivity function at typical points of the
logistic map. a) a = 0:5 which has a �xed point attractor;
b) a = 1:45 which has a chaotic attractor; c) a = 0:75 which
is a period doubling bifurcation; d) a = 1:401155::: corre-
sponding to the chaos threshold. The trends are similar to
the ones shown in Figures 2 and 3 for W (N).

Assuming equiprobability and a constant Kq , it can be

readily obtained that the volume on the phase space

shall evolve in time as

W (t) = W (0)[1 + (1� q)Kqt]
1=(1�q) (8)

consistent with the asymptotic power-law behavior at

marginal points where � = 0. Assuming a generalized

Pesin equality Kq = �q, we can also write the sensitiv-

ity function within the present formalism as

�(t) = [1 + (1 � q)�qt]
1=(1�q) : (9)

The above relation provides a direct relationship be-

tween the entropic index q and the sensitivity power-law

exponent. For q > 1 the system becomes weakly insen-

sitive to the initial conditions once the visited volume

on the phase space slowly shrinks as the system evolves

in time. This is the case for period doubling bifurcation

points of the logistic map where 1=(1� q) = �3=2 and

therefore q = 5=3. On the other hand, for q < 1 the sys-

tem becomes weakly sensitive to the initial conditions

asW (t) slowly grows with time. This is observed at the

onset of chaos of the standard logistic map, where it was

obtained 1=(1� q) = 1:325 and therefore q = 0:2445[4].

The close relationship between the entropic index

q of Tsallis entropies and the sensitivity to initial con-

ditions at the onset of chaos of such non-linear low-

dimensional dissipative maps provides a useful recipe

to estimate the proper entropic index from the sys-

tem dynamical rules. This relationship has been fur-

ther used to investigate a recent conjecture that the

non-extensive Tsallis statistics is the natural framework

for studying systems with a fractal-like structure in the

phase space[9]. The critical dynamical attractor of such

non-linear dissipative systems can be associated with

a multifractal measure whose scaling exponents can be

obtained from traditional methods. Therefore, both the

entropic index q and the scaling properties of the criti-

cal attractor can be estimated independently and their

relation revealed.

IV Multifractal scaling of criti-

cal attractors

In order to completely describe the scaling behavior of

critical dynamical attractors it is necessary to intro-

duce a multifractal formalism[10]. The partition func-

tion �Q(N ) =
PN

i=1 p
Q
i is a central quantity within
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this formalism, where pi represents the probability (in-

tegrated measure) on the i-th box among the N boxes

of the measure (we use Q instead of the standard no-

tation q in order to avoid confusion with the entropic

index q).

In chaotic systems pi is the fraction of times the tra-

jectory visits the box i. In the N !1 limit, the con-

tribution to �Q(N ) / N��(Q), with a given Q, comes

from a subset of all possible boxes, whose number scales

with N as NQ / N f(Q), where f(Q) is the fractal di-

mension of the subset (f(Q = 0) is the fractal dimen-

sion df of the support of the measure). The content on

each contributing box is roughly constant and scales as

PQ / N��(Q). These exponents are all related by a

Legendre transformation

� (Q) = Q�(Q)� f(Q) (10)

�(Q) =
d

dQ
� (Q): (11)

The multifractal object is then characterized by the

continuous function f(�), which re
ects the di�erent

dimensions of the subsets with singularity strength �.

f(�) is usually shaped like an asymmetric \. The

� values at the end points of the f(�) curve are the

singularity strength associated with the regions in the

set where the measure is most concentrated (�min =

�(Q = +1)) and most rare�ed (�max = �(Q = �1)).

Halsey et al have shown how the singularity spec-

trum of measures possessing an exact dynamical rule

can be obtained from a simple procedure[10] that con-

siders a non-uniform grid of the phase space. First,

one shall consider the original support with normal-

ized measure and size. Then, one divides the region in

N pieces, each one with measure pi and size li. The

proper values of N are dictated by the natural scaling

factor inherent to the recursive relations. After that, it

is computed the partition function

�(Q; �; l) =
X
i

(pi)
Q

(li)�
: (12)

From the recursive structure of the measure, it

can be shown that the proper � (Q) is de�ned by

�(Q; � (Q); l) = 1, and the singularity spectrum follows

from the Legendre relations.

The end points of the f(�) curves of the critical

attractor of one-dimensional dissipative maps can be

inferred theoretically from well known scaling proper-

ties related to the most concentrated and most rar-

e�ed intervals in the attractor. Feigenbaum has shown

that, after N = !n iterations (! is a natural scaling

factor inherent to the recursive relations), the size of

these intervals scale respectively as l�1 � [�F ]�n and

l+1 � [�F (z)]
�zn, where �F is a universal scaling fac-

tor [11] and z is the in
exion at the vicinity of the

extremal point of the map. Since the measures in each

box are simply pi = 1=N = !�n, the end points are

expected to be

�max = ln pi= ln l+1 =
ln!

ln�F (z)
(13)

�min = ln pi= ln l�1 =
ln!

z ln�F (z)
(14)

V The entropic index and the

extremal sets

Scaling arguments applied to the most rare�ed and

most concentrated regions of the attractor provide a

precise relationship between the singularity spectrum

extremals and the entropic index q[6, 7]. Considers

an ensemble of identical systems whose initial condi-

tions spread over a region of the order of the typical

box size in the most concentrated region l+1. In other

words, we are considering that our uncertainty on the

precise initial conditions is �x(t = 0) � l+1. After N

time steps these systems will be spread over a region

whose size is at most of the order of the typical size of

the boxes in the most rare�ed region (�x(N ) � l�1).

Therefore, assuming power-law sensitivity on the initial

conditions on the critical state, we can write Eq. 9 for

large N as

�(N ) � lim
�x())!0

�x(N )

�x(0)
=

l�1
l+1

� N1=(1�q); (15)

and using Eqs. (13-14) it follows immediately that

1

1� q
=

1

�min
�

1

�max
: (16)

The above relation indicates that the proper nonex-

tensive statistics can be inferred from the knowledge of

the scaling properties associated with the extremal sets

of the dynamical attractor. This relation follows from

very usual and general scaling arguments and therefore

shall be applicable to a large class of nonlinear dynam-

ical systems irrespective of the underlying topological

and metrical properties.

The above relation has been numerically observed to

hold with very high accuracy for the critical attractors

of the family of generalized Logistic maps[6]
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xt+1 = 1� ajxtj
z ; (z > 1 ; 0 < a < 2 ;

t = 0; 1; 2; ::: ; xt 2 [�1; 1]) : (17)

Here z is the in
exion of the map in the neighborhood

of the extremal point �x = 0. These maps are well

known[12, 13] to have the topological properties (such

as the sequence of bifurcations while varying the param-

eter a) not dependent of z, but the metric properties

(such as Feigenbaum's exponents and multifractal sin-

gularity spectra of the attractors) do depend on z. The

scaling relation has also been checked to hold for the

family of circular maps[8]

�t+1 = 
+K

�
�t �

1

2�
sin(2��t)

�z=3
; mod(1);

(17)

with 0 < 
 < 1 ; 0 < K < 1. For K = 1 these maps

exhibit critical orbits for which the renormalized wind-

ing number ! = limt!1(�t+1��t) equals to the golden

mean[14]. The above two family of maps belong to dis-

tinct universality classes and therefore exhibit distinct

scaling behavior for the same value of the in
exion z.

The multifractal singularity spectra for these two fami-

lies were numerically obtained and the extremal values

of the singularity strength �min and �max estimated for

a wide range of z values (see Fig. 5). From the power-

law exponent of the sensitivity function the value of

1=(1� q) could be independently estimated. In the ta-

bles, we summarize the results obtained for both fam-

ilies which show that the proposed scaling relation is

satis�ed.

Table 1 - z-generalized family of logistic maps. Numerical values for several in
exions z of: i) the critical parameter

ac at the onset of chaos; ii) �min; iii) �max; iv) q as predicted by the scaling relation Eq. 16 and v) q from the

sensitivity function.

z ac �min �max q q
(Eq.(16)) (Eq.(9))

1:10 1:1249885::: 0:302 0:332 �2:34� 0:02 �2:33� 0:02
1:25 1:2095137::: 0:355 0:443 �0:79� 0:01 �0:78� 0:01
1:50 1:2955099::: 0:380 0:568 �0:15� 0:01 �0:15� 0:01
1:75 1:3550607::: 0:383 0:667 0:10� 0:01 0:11� 0:01
2:00 1:4011551::: 0:380 0:755 0:23� 0:01 0:24� 0:01
2:50 1:4705500::: 0:367 0:912 0:39� 0:01 0:39� 0:01
3:00 1:5218787::: 0:354 1:054 0:47� 0:01 0:47� 0:01
5:00 1:6455339::: 0:315 1:561 0:61� 0:01 0:61� 0:01

Table 2 - z-generalized family of circle maps. Numerical values for several in
exions z of: i) the critical parameter


c at the onset of chaos; ii) �min; iii) �max; iv) q as predicted by the scaling relation Eq. 16 and v) q from the

sensitivity function.

z 
c �min �max q q
(Eq.(16)) (Eq.(9))

3:0 0:606661063469::: 0:632 1:895 0:05� 0:01 0:05� 0:01
3:5 0:629593799039::: 0:599 2:097 0:16� 0:01 0:15� 0:01
4:0 0:648669091983::: 0:572 2:289 0:24� 0:01 0:24� 0:01
4:5 0:664861001064::: 0:542 2:440 0:30� 0:01 0:30� 0:01
5:0 0:678831756505::: 0:516 2:581 0:36� 0:01 0:36� 0:01
5:5 0:691048981515::: 0:491 2:701 0:40� 0:01 0:40� 0:01
6:0 0:701853340894::: 0:473 2:838 0:43� 0:01 0:44� 0:01
7:0 0:720182442561::: 0:438 3:065 0:49� 0:01 0:50� 0:01
8:0 0:735233625356::: 0:410 3:280 0:53� 0:01 0:53� 0:01
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VI Power-law sensitivity in

higher dimensional dissipa-

tive and Hamiltonian sys-

tems

The predicted scaling relation between the entropic in-

dex q of generalized entropies and the scaling exponents

related to the most extremal sets in the dynamical at-

tractor provides an important clue for how to estimate

the proper non-extensive entropy for systems with long-

range spatio-temporal correlations. For these systems,

one shall expect a power-law sensitivity to initial condi-

tions whose exponent is directly related to q. Therefore,

q can be estimated if we are able to follow a critical dy-

namical trajectory. Furthermore, if only the dynamical

attractor is accessible, q can also be obtained from its

multifractal singularity spectrum.

Usually, for systems with a large number of degrees

of freedom, the scaling properties of the dynamical at-

tractor in the phase space are hardly accessible due to

computational limitations. However, a dynamical tra-

jectory can be easily followed and the sensitivity to ini-

tial conditions estimated by computing the time evolu-

tion of the distance between two initially nearby orbits.

Power-law sensitivity to initial conditions has been ob-

served in a series of high dimensional dissipative sys-

tems which are naturally driven to a critical attrac-

tor, usually referred in the literature as self-organized

critical systems. These systems range from the Bak-

Sneppen model of biological evolution[15], the rice pile

model[16] and coupled logistic maps[17]. Therefore, in

all these dissipative extended model systems, there is

a proper non-extensive generalized entropy that during

the dynamical evolution exhibits a constant variation

rate.

On the other hand, Hamiltonian systems are ex-

pected to be ergodic in the thermodynamical limit

whenever the interactions are short-ranged. In other

words, all trajectories becomes chaotic in the thermo-

dynamical limit. However, Hamiltonian systems with

just a few degrees of freedom may have a �nite volume

of the phase-space on which quasi-periodic orbits exist.

In this case, one expects power-law sensitivity to initial

conditions to take place. Usually, as further degrees of

freedom are included and short-range interactions are

present, the phase space volume with quasi-periodic or-

bits vanish. Let's illustrate the power-law sensitivity to

initial conditions in the Hamiltonian map[18, 19]

c

xi(t+ 1) = xi(t) + yi(t) (18)

yi(t+ 1) = yi(t) +K sinxi(t+ 1) +CK sin [xi(t+ 1)� xi�1(t + 1)]

+CK sin [xi(t+ 1)� xi+1(t+ 1)] (19)

d

where the indices go from 1 to N , periodic boundary

conditions are assumed and xi, yi are taken modulo

2�. Here C is the coupling parameter between nearest

neighbors. For N = 1 the system is regular and the Li-

apunov exponent is zero for any initial condition. For

N = 2 it has been observed that, for C = 0:5 and K =

0:15, 40% of the phase space still has a zero Liapunov

exponent (quasi-periodic orbits)[19]. In Fig. 6 we show

some results for the sensitivity function for distinct ini-

tial conditions. Notice that, besides the exponentially

diverging ones, some orbits exhibit a power-law (lin-

ear) time evolution. For these initial conditions Sq ,

with q = 0 is the proper dynamical entropy. The frac-

tion of the phase-space with zero Liapunov exponent

vanishes exponentially as further degrees of freedom

are included and therefore, the system becomes ergodic

(fully chaotic with positive maximum Liapunov expo-

nent for any initial condition)[18]. However, recent re-

sults have indicated that Hamiltonian maps with long-

range interactions may have zero Liapunov exponent,
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i.e., power-law diverging orbits, even in the thermody-

namic limit[20]. This fact may be related to the break-

down of the standard BG prescription in describing

some statistical distributions of a variety of long-range

interacting Hamiltonian systems[21, 22, 23, 24, 25].

VII Summary and perspectives

We brie
y revised some recent results concerning the

power-law sensitivity to initial conditions of dynamical

systems at criticality and how it can be naturally for-

mulated within the Tsallis nonextensive statistics pre-

scription. The power-law sensitivity has been shown to

provide a simple tool for estimating the proper entropic

index q of critical systems tuned at criticality as well as

of systems exhibiting a self-organized critical state.

The critical dynamical attractor of nonlinear dy-

namical systems usually presents a multifractal char-

acter. It has been shown that quite general scaling

arguments applied to the most rare�ed and most con-

centrated regions of the attractor provide a direct link

between the entropic index q and the critical exponents

associated with the scaling behavior of the extremal

sets of the attractor. This result gives support for the

recent conjecture that Tsallis statistics is the natural

frame for studying systems with a fractal-like structure

in the phase-space[9].

Figure 5. Multifractal singularity spectra of the critical at-
tractor of generalized logistic and circle maps with z = 3.
The maximum of the f(�) curves gives the fractal dimen-
sion of the support (df = 0:605 for the (z = 3)-logistic map
and df = 1 for the circle map). The curves were obtained
after N = 2048 (logistic) and N = 2584 (circle) iterations
starting from the extremal point �x = 0 and following Halsey
et al prescription[10]. For details see also[6, 7, 8].

Figure 6. The sensitivity function for two coupled Hamil-
tonian maps as described in Eqs. 18-19 for C = 0:5 and
K = 0:15 and several initial conditions. For these param-
eters there are regions (of the order of 0:40 of the four-
dimensional phase-space) with zero Liapunov exponent at
which power-law sensitivity is observed, as shown in the
main �gure. The inset shows the same data in Linear-Log
scale which explicitly exhibit the exponential sensitivity of
chaotic orbits.

The predicted scaling relation has been numerically

checked to hold in one-dimensional dissipative maps

independently of the topological and metrical proper-

ties of the dynamical attractor and is expected to hold

for a very large class of non-linear dynamical systems.

Particularly, it would be of great interest to verify its

validity for Hamiltonian systems with few degrees of

freedom where power-law sensitivity has been observed

as well as for Hamiltonian systems with long-range in-

teractions for which the non-extensive Tsallis statistics

has successfully reproduced some unusual distribution

functions. Further work along these directions would

certainly be valuable.
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