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Dynamical Phase Transition in Vibrational Surface Modes
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We consider the dynamical properties of a simple model of vibrational surface modes. We obtain the exact
spectrum of surface excitations and discuss their dynamical features. In addition to the usually discussed local-
ized and oscillatory regimes we also find a second phase transition where the surface mode frequency becomes
purely imaginary and describes an overdamped regime. Noticeably, this transition has an exact correspondence
to the oscillatory - overdamped transition of the standard oscillator with a frictional force proportional to veloc-
ity.
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I. INTRODUCTION

In a classical oscillator, dissipation is described considering
an equation of motion with a friction term proportional to the
velocity [1]. Ignoring microscopic details, all environmental
effects are summarized phenomenologically in the coefficient
η0 of this term. We propose here a simple and time-reversal
invariant model whose analytical solution yield dissipation in
the thermodynamic limit. We consider a variation of the Ru-
bin model [2, 3] shown in Fig.1: a ”surface” oscillator (repre-
sented as a pendulum) with natural frequency ω0 and mass m0
coupled to an ordered and semi-infinite chain of ”bulk” oscil-
lators whose masses are m. As occurs with a “Brownian bath”
[4], Ohmic dissipation will require α = m/m0 ¿ 1.

FIG. 1: Scheme of the model: a simple pendulum (surface oscillator)
is coupled to the bulk masses.

The equations of motion are,

[
d2

dt2 +ω2
0 +αω2

x

]
u0(t)−αω2

xu1(t) = 0,
[

d2

dt2 −2ω2
x

]
un(t)−ω2

x [un−1(t)+un+1(t)] = 0,

(1)

where ωx =
√

K/m is the exchange frequency between neigh-
bor oscillators and un(t) denotes the nth oscillator displace-
ment from equilibrium. Assuming that the number of bulk os-
cillators is finite, the time-reversal invariance present in these
equations is obvious. We will show below how irreversibility
appears in the thermodynamic limit where the number bulk
oscillators become infinite.

II. FREQUENCY DOMAIN

The equations of motion described above can be solved by
Fourier transforming the displacement:

un(t) =
1

2π

Z ∞

−∞
dωe−iωtun(ω), (2)

and replacing it in Eq.(1):
(
ω2I−M)

u(ω) = 0. (3)

This equation is solved by the eigenfrequencies ωk and
eigenvectors u(ωk) whose site components are expressed, in
bracket notation, in terms of the site versors 〈n| as

un(ωk) = 〈n |ϕk 〉 , (4)

and the dynamical matrix is:

M=




ω2
0 +αω2

x −αω2
x 0 · · ·

−ω2
x 2ω2

x −ω2
x

0 −ω2
x 2ω2

x
...

. . .


 . (5)

We define the Green’s function operator:

D(ω) =
(
ω2I−M)−1

, (6)

whose matrix elements diverge when ω coincides with an
eigenfrequency ωk.

Consider an initial condition with all masses at equilibrium
and an impulsive force m ju̇ j(0)δ(t) applied to the jth mass,
impossing an initial velocity to it. In this case, the Green’s
function provides the time evolution of the ith mass displace-
ment:

ui(t) = Di j(t)u̇ j(0) =
1

2π

Z ∞

−∞
dωe−iωtDi j(ω)u̇ j(0), (7)

representing a position-velocity Green’s function Di j(ω) ≡
D(ui, u̇ j;ω), which is related to the position-position Green’s
function:

D(ui,u j;ω) =−iωD(ui, u̇ j;ω). (8)



964 H. L. Calvo and H. M. Pastawski

This gives the displacement of the ith mass when an initial
displacement u j(0) is imposed by the force:

Fj(t) = m j
u j(0)

τ
[δ(t + 1

2 τ)−δ(t− 1
2 τ)] (9)

at the jth mass, where τ¿ 1/ωx.
In this work, we focus on the surface oscillator through

D00(t). If U is the matrix that performs the change of basis
from sites to diagonal form inM, one has:

Uik = 〈i| ϕk〉 , (10)

that is, the kth eigenmode projection over ith site. In this case
one can write,

D00(ω) = ∑
k

|〈0| ϕk〉|2
ω2−ω2

k
. (11)

By performing the analytical continuation ω → ω + iδ for
D00(ω) and taking its imaginary component, one obtains the
spectral density associated to the surface site. In the case
where α → 0 bulk modes and surface modes have no projec-
tion and oscillations survive undamped.

D00(ω) can be obtained through an infinite order perturba-
tion theory [5] that accounts for the surface mode corrections
due to the presence of the neighbor oscillators. Let us begin
with the surface oscillator and a single bulk mass. If the two
masses are uncoupled (ωx = 0) the surface frequency is sim-
ply ω0 but if ωx 6= 0, Eq.(6) yields

D00(ω) =
1

ω2−ω2
0−αω2

x −α
ω4

x

ω2−ω2
x

. (12)

Here, ω0 is affected by the static correction αω2
x and the

dynamic correction αΠ(ω) due to presence of the other oscil-
lator.

By taking the limit of the oscillators number to infinite, the
dynamic correction becomes

Π(ω) =
ω4

x

ω2−2ω2
x −Π(ω)

. (13)

Because of the presence of an infinite number of oscillators
at the right, a correction on the nth oscillator is just the same
as that in the (n + 1)th oscillator. The solution of Eq.(13) is
complex and its imaginary part gives the decay rate of a sur-
face excitation with frequency ω. Therefore, in the thermody-
namic limit, the temporal recurrences [6] (Mesoscopic Echoes
[7]) disappear.

III. SURFACE MODE FREQUENCY

In the case of a surface oscillator with natural frequency ω0,
coupled to an infinite number of bulk oscillators, the Green’s
function is:

D00(ω) =
1

ω2−ω2
0−αω2

x −αΠ(ω)
. (14)

Hence, in the region of continuous modes (|ω| ≤ 2ωx) one
has

D00(ω) =
1

1− α
2

1
ω2− ω̄2

0 + iη(ω)ω
, (15)

where ω̄0 = ω0/
√

1−α/2 is a first approximation to the res-
onance frequency and

η(ω) =
αωx

1− α
2

√
1−

(
ω

2ωx

)2

(16)

describes the dissipation process. Comparing Eq.(15) with
a standard damped oscillator (frictional force proportional to
velocity), it is easy to see that in the broadband limit (α→ 0,
ωx →∞ and αωx = const.) they have the same behavior taking
η0 ≡ αωx as friction coefficient.

For a dynamic description of the surface oscillator, we look
for the pole structure of D00(ω), equivalent to find ω such that:

ω2− ω̄2
0 + iη(ω)ω = 0. (17)

If we denote the surface mode frequency as ω̃R = ωR + iγR
and p as

p =
ω0−ωx

ωx
√

1−α
, (18)

then one has

ω̃R =





−
√

ω2
0 +δ

[
ω2−+

√
ω4

+−4ω2
xω2

0

]
p <−1

√
ω2

0 +δ
[
ω2−− i

√
4ω2

xω2
0−ω4

+

]
|p| ≤ 1

√
ω2

0 +δ
[
ω2−−

√
ω4

+−4ω2
xω2

0

]
p > 1

where ω2± = ω2
0±αω2

x and δ = α/2(1−α). The dependence
of the pole with ω0 can be seen in Fig.2.

Here, we show the real and imaginary parts of the pole sep-
arately and we find three well-defined regimes that emphasize
the onset of quite different dynamical properties.

IV. DYNAMICAL PHASES

Localized - extended transition. This transition occurs
when ω0 lays close to the upper band edge. There, the real part
of the pole makes an excursion into the band gap conserving
an imaginary component which is lost at the cusp zoomed in
the inset. This is analogous to the virtual states described by
Hogreve [8] for electronic states which are missed under other
approximations [9, 10]. They become real normalized states
which are exponentially localized [11] when the pole touches
back the band edge.

It can be seen in Fig.2 that for large values of surface natural
frequency (ω0 À 2ωx) we only have real component in ω̃R
and the oscillation frequency is approximately ω0. In this lo-
calized regime, displacements are exponentially smaller as the
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FIG. 2: Surface Green’s function pole. Above: real part (resonance).
Below: imaginary part (damping). The case ωR = ω0 is shown in
dotted line. Insets: overdamped - oscillatory transition (left). Local-
ized - extended transition (right).

oscillators increase their distance to the surface. The lack of
an imaginary part implies that the displacement amplitude, in-
dependently of bulk oscillators, survives indefinitely. In other
words, there is no energy propagation towards bulk oscilla-
tors.

As ω0 decreases, below a critical frequency ωc2 = ωx(1 +√
1−α), ω̃R becomes complex. Its real part is the resonance

frequency whereas its imaginary part describes the dissipa-
tion. This is the extended oscillatory regime where surface
oscillations have an ωR frequency and the amplitude of dis-
placement decays with a lifetime proportional to 1/γR.

Oscillatory - overdamped transition. For ω0 ¿ ωx the
system is in the regime where η(ω) ' αωx/(1− α/2) and
hence Eq.(17) yields Ohmic dissipation in which the surface
kinetic energy decays into bulk modes without return. This
describes a frictional force proportional to the velocity. As ω0
goes below the critical frequency ωc1 = ωx(1−

√
1−α), the

pole of the Green’s function ω̃R becomes purely imaginary.
This is the overdamped regime where no oscillations occur.
Notice that γR decreases at both sides of the transition, this
means that a further decrease of ω0 or increase in the friction η
also implies a decrease in the relaxation rate. All this counter
intuitive effect arises from the exact solution of the simple
mechanical model.

Considering Eq.(7), we can complete our previous analysis
obtaining the time evolution of surface displacement by per-
forming a numerical Fourier transform of the analytical ex-
pression for D00(ω). These results coincide with the numer-
ical integration of the equation of motion in the Hamilton-
Jacobi representation which is performed with an ad hoc ver-
sion of the Trotter-Suzuki method [12]. Setting the ratio α be-
tween masses and Fourier transforming for several ω0 values

in the previously mentioned regimes, we obtain the displace-
ment pattern shown in Fig.3.
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FIG. 3: Evolution of the surface displacement. White spaces denote
u0(t) > 0 whereas gray spaces denote u0(t) < 0.

Here, the time evolution of the surface displacement de-
pends on the initial condition. It is easy to see in this picture
how the period of the oscillation (reflected from the edges of
the gray fringes) diverges near the critical frequency ωc1 so
that for smaller ω0 values u0(t) is always positive. On the
other hand, the period shows a cusp at ωc2 where it start to
increase again. This is consistent with the decrease of ωR as
ω0 crosses ωc2 (see inset in Fig.2).

V. CONCLUSIONS

Dynamical features in dissipation processes have been de-
scribed by a simple classical model that contains the essen-
tial properties of a surface oscillator interacting with bulk vi-
brational modes. We arrive to results equivalent to the phe-
nomenological description of dissipation where these effects
are summarized in a single term proportional to the oscillator
velocity. A complete analytical solution of the dynamics al-
lowed us to identify a variety of dynamical phases available
for the vibrational excitations: localized, extended oscillatory
and overdamped. Two numerical methods (FFT and a Trotter-
Suzuki algorithm) have been employed to obtain the dynamics
with equivalent results.

The identification of the different dynamical regimes be-
comes very important in nano-physics when cantilevers [13]
involving a relative small number of atoms fail to satisfy
the standard thermodynamical approximations. Localization,
weak diffusion and recurrences become usual phenomena in
the nanomechanical devices. In a quantum description of fi-
nite size systems, we should consider the quantization of os-
cillation amplitudes. Our formalism, based on the Green’s
functions in discrete but open systems, seems to be the ideal
tool for this purpose.
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