Acessibilidade / Reportar erro

Dynamic scaling in vacancy-mediated disordering

We consider the disordering dynamics of an interacting binary alloy with a small admixture of vacancies which mediate atom-atom exchanges. Starting from a perfectly phase-segregated state, the system is rapidly heated to a temperature in the disordered phase. A suitable disorder parameter, namely, the number of broken bonds, is monitored as a function of time. Using Monte Carlo simulations and a coarse-grained field theory, we show that the late stages of this process exhibit dynamic scaling, characterized by a set of scaling functions and exponents. We discuss the universality of these exponents and comment on some subtleties in the early stages of the disordering process.


Sociedade Brasileira de Física Caixa Postal 66328, 05315-970 São Paulo SP - Brazil, Tel.: +55 11 3091-6922, Fax: (55 11) 3816-2063 - São Paulo - SP - Brazil
E-mail: sbfisica@sbfisica.org.br