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The spin dynamics of a two dimensional XY ferromagnet are reexamined at low temper-
atures in the framework of the Mori continued fraction formalism using the Gaussian ap-
proximation. In this formalism, the terms on denominators for the Laplace transform of
the relaxation function R(t) are related to the frequency moments < !n

q > of the relaxation
shape function R(q; !). In the Gaussian approximation scheme, we truncate the continued
fraction for R(t) on the second stage. Adopting this approximation, we calculated up to the
sixth moment. The moments are written in terms of the static spin correlation functions.
In the estimation of the fourth and sixth moment at �nite temperature, the four and six-
spin correlation functions may be approximated by a sum of products of appropriate pair
correlation functions (mode-mode decoupling). In this work we calculated the static spin
correlation functions for the expressions to the fourth and sixth moments, needed in the
study of the dynamics.

I Introduction

It is well known that, in two dimensional (2D) pla-

nar magnetic spin systems, a topological phase tran-

sition referred to generally as Kosterlitz-Thouless(KT)

transition is expected to occur at a temperature [1, 2]

TkT 6= 0. This transition is associated with the unbind

of pair of vortices, which bind together to form vortex

pairs of zero net helicity, as the temperature is raised

above TKT . The classical two-dimensional ferromag-

netic models, the XY and the planar model, described

by the same Hamiltonian

H = �J

2

X
r;a

(Sx
r S

x
r+a + Sy

r S
y
r+a); (1)

where J is the exchange constant, have been studied in

literature. In the XY model ~Sr (the spin at site r) is

a three-dimensional classical rotor, while for the plane

rotor model ~Sr is again a classical rotor but now it is

constrained to two dimensions, having no z component,

and therefore no dynamics. In this paper we will take

j ~Srj = S = 1. This produces no loss of generality when

a classical system is under investigation, as the case of

generic spin S is easily brought back by the rescaling of

the exchange constant J ! JS2.

For the XY model, as vortices and antivortices un-

bind they di�use as a vortex gas [3, 4]. The autocorrela-

tions of the di�using vortices give rise to a characteristic

central (quasi elastic) peak in the dynamic structure

factor S(~q; !). Above TKT the dynamics of Hamilto-
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nian (1) has been extensively studied by Mertens et

al.[5, 6].

In the low temperature regime the dynamics of (1)

has been studied theoretically[7, 8] and numerically[4,

9] with di�erent predictions for the nature of the dy-

namics structure factor S(~q; !). The model was �rst

analyzed by Villain[7] using the harmonic approxima-

tion. He found that S(~q; !) had a spin wave peak of

the form

S(q; !) � j! � !q j�1+�=2 (2)

where � is the critical exponent describing the decay

of the static spin-spin correlation function and !q is

the spin wave energy. Nelson and Fisher[10] treated

the model in a �xed length hydrodynamic description.

They obtained the following expression around the spin

wave peak

S(q; !) � 1

q3��
1

j1� !2=!2
q j1��

; (3)

where, for small q, !q = cq with c = 2J . Re-

cently Menezes et al.[8] have performed a low temper-

ature calculation using the projection operator tech-

nique. Besides a spin-wave peak, similar to that

of Nelson and Fisher, they have found a logarithmi-

cally diverging central peak. In this paper we use

the Mori-memory function formalism[11] in a Gaussian

approximation[GA][12] to investigate the spin dynamics

of Hamiltonian (1) at low temperatures. Our calcula-

tion remove the divergence obtained in pevius calcula-

tion. Recently Wang et al used Mori formalism and the

decoupling of the four-spin correlation to investigate

the spin 1/2 Heisenberg antiferromagnet on a square

lattice[13]. In Sect.II we calculate the static two-spin

correlation functions, needed to study the dynamics.

In Sect.III we present the calculation of S(~q; !) and in

Sect.IV our conclusions.

II Static Correlation Functions

In order to calculate the static two-spin correlation

functions for Hamiltonian (1) we start by using the po-

lar representation for the spin at site r:

~Sr = (
p
1� (Sz

r )
2cos�r ;

p
1� (Sz

r )
2sin�r ; S

z
r ) (4)

where we have taken S = 1. Substituting(4) into (1),

we �nd that keeping only terms of second order the

Hamiltonian becomes

Ho =
J

2

X
r;a

[
1

2
(�r+a � �r)

2 + (Sz
r )

2]; (5)

It is easy to derive from the Fourier transform of (5)

the following correlation functions

< (Sz
r )

2 > = T=4J; (6)

< �q��q > =
T

4J

1

(1� 
q)
; (7)

where 
q =
1
2(cosqx + cosqy) and T is the temperature.

De�ning the in-plane symmetrized two-spin correla-

tions function

Skr = < Sx
o S

x
r + Sy

oS
y
r >; (8)

it is easily seen that[7]

Skr = (1� < (Sz
o )

2 >)exp[�(T=4J)g(r)]; (9)

where

g(r) = g(n;m) =
1

(2�)2

Z
d ~K(1� cosKxncosKym)

1� 1
2(cosKx + cosKy)

:

(10)

and r =
p
n2 +m2 in units of lattice spacing.

Calculating the integral numerically for the pair

(n,m) which will be used in static correlation function,

we obtain

g(0,0)=0.00; g(0,1)=1.00; g(1,1)=1.27;

g(1,2)=1.54; g(0,2)=1.45; g(2,2)=1.70;

g(0,3)=1.72; g(1,3)=1.76; g(0,4)=1.90.

Of course < Sx
oS

x
r >=< Sy

0S
y
r >= S

k
r =2.

The q-dependent correlation function is given by

Skq =
X
r

ei~q:~rSkr = (1 � T=4J) ~S(q); (11)

where
~S(q) =

X
r

ei~q:~rS(r); (12)

and

S(r) = e�Tg(r)=4J ; (13)

which leads to
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c

~S(q) =

Z 1
0

Z +�

��
eiqrcos�e�Tg(r)=4Jrdrd� = 2�

Z 1
0

J0(qr)re�Tg(r)=4Jdr; (14)

d

where J0 is the zeroth order Bessel function. At large

distance g(r) can be approximated by [14]

g(r) =
2

�
ln(r=r0); (15)

where r0 � 0:2, which leads to the well know result

S(r) = (r0=r)
�; (16)

where � = T=2�J . In Fig. 1 we show g(r) given by

Eq.15 with m=0, i.e, g(n,0), for simplicity and no loss

of generality, calculated numerically as a function of

ln(n). As we can see the approximation (15) works

reasonably even for a few sites apart. Thus the power-

law decay of the correlation is not strictly an asymp-

totic form for larger r, but works well also for small r.

Therefore a more rapidly decaying portion, if present

in addition to the r��-dependent term-, should not be

important. This �nding cost doubt in statement pre-

sented by Wiesler et al [2] that the presence of a more

rapidly decaying portion could explain some discrepan-

cies between theory and experimental data. Eq.(14),

for small q, can be written as

~S(q) =
2�r�0
q2��

Z 1
0

J0(x)x1��dx: (17)

Figure 1. g(n; 0) as a function of ln n. The �rst point cor-
responds to n=3, the second to n=4, and so on.

Evaluating the integral we �nd

~S(~q) =
4(r0=2)�

q2��
�2(1� �=2)sin(��=2); (18)

where � is the Gamma function.

III Dynamics

In this Mori's formalism the Laplace transform of the

relaxation function R(t) = (Sx
q (t); S

x
�q)=(S

x
q ; S

x
�q) is

written as a continued fraction [11, 12] and given by

c

R(z) =
Z 1
0

R(t)e�ztdt =
1

z + �1=[z + �2=(z + �3=(z + :::)]
; (19)

where �1; �2; �3; ::: are related to the frequency moments < !n
q > of the relaxation shape function

~R(q; !) =
1

2�

Z 1
�1

e�i!tR(t)dt =
1

�(< Sx
q S

x
�q >)

ReR(z = i!); (20)

d

through

�1 =< !2
q >; (21)

�2 =< !4
q > = < !2

q > � < !2
q >; (22)
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�3 = (< !6
q > = < !2

q > � < !4
q >

2 = < !2
q >

2)=�2:

(23)

The dynamics structure factor, de�ned by

S(q; !) =
1

2�

Z 1
�1

dte�i!t < Sx
q (t)S

x
�q(0) >; (24)

is related to ~R(q; !) by

S(q; !) = �q!(1 � e��!)�1 ~R(q; !); (25)

where �q is the static susceptibility, which for a classical

system is given by �q = � < Sx
q S

x
�q >, where � = 1=T

and we have taken the Boltzman constant equals to the

unity. Within the GA scheme the continued fraction

(19) is truncated to the second stage, yielding[12, 15]

~R(q; !) =
1

�

�1�2a2(!)

[![! � �2b2(!)] � �1]2 + [!�2a2(!)]2

(26)

with

a2 =
�

(2�3)1=2
exp(�!2=2�3) (27)

b2 =
exp(�!2=2�3)

(�3=2)1=2

Z s

0

ex
2

dx (28)

s = !=(2�3)
1=2 (29)

The integral in (28) was calculated numerically.

The moments for Hamiltonian (1) can be calculated

using standard procedure[12, 17]. The second moment

has the exact relation with the two-spin correlation

function

< !2
q > = 4JT < Sx

0S
x
a > = < Sx

q S
x
�q > (30)

The fourth moment is expressed in terms of static cor-

relation functions of four spin operators

< !4
q > = TM4(q)= < Sx

q S
x
�q >; (31)

with

M4 = �
X
q;p;t

JqJpJt(< Sx
�pS

x
�q+t�kS

y
p+q+k >

+ < Sx
�pS

x
p+q+tS

y
�qS

y
�t >

�2 < Sx
p+q+kS

x
�q+t�kS

y
�pS

y
�t >

� < Sy
�qS

y
�tS

y
p+q+kS

y
�p+t�K >

+ < Sy
�pS

y
�qS

y
�tS

y
p+q+t >

+ < Sy
�qS

y
p+q+kS

z
t�kS

z
�p�t >

� < Sy
�pS

y
�qS

z
t�kS

z
p+q+k�t >

+ < Sy
�tS

y
�p+t�kS

z
q+kS

z
p�q >

� < Sz
q+kS

z
p�qS

z
�p�tS

z
t�k >

+ < Sx
�pS

x
p�q�tS

z
q+kS

z
t�k >

+ < Sx
�pS

x
q+KT

Sz
p�qS

z
t�k >); : (32)

where

Jq = 2J(cosqx + cosqy): (33)

The estimation of the fourth and sixth moment at

�nite temperature is complicated and an approxima-

tion is needed since there is no simple way in evaluating

the four and six-spin correlation functions which are in-

volved in the expression (32) and in a similar one for the

sixth moment[16]. Let us, therefore, assume that the

four and six-spin correlation functions may be approx-

imated by a sum of products of appropriate pair cor-

relation functions[17, 18, 19](mode-mode decoupling).

Adopting this approximation we �nd

c

M4 = �2[�32 < Sx
0S

x
01 > (< (Sx

0 )
2 > + < Sx

0S
x
02 > +2 < Sx

0S
x
11 >)

�8 < Sx
0S

x
01 >< (Sz

0 )
2 > +(< Sx

0S
x
01 > (18 < Sx

0S
x
12 >

+3 < Sx
0S

x
03 > +43 < Sx

0S
x
01 >)+ < (Sz

0 )
2 >2)(cosqx + cosqy)

� < (Sz
0 )

2 > (< (Sx
0 )

2 > +2 < Sx
0S

x
11 >

+ < Sx
0S

x
02 >)(cos2qx + cos2qy)]; (34)
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(where the following notation has been used: 10-nearest

neighbor, 02 and 11 next nearest neighbor, and 12 and

03 third nearest neighbor).

At very low temperatures, we obtain the asymptotic

expression:

�1 = c2q2; (35)

�2 = 8t � c2q2t; (36)

which leads to

< !4
q > � < !2 >2 (37)

< !6
q > � < !2 >3 ; (38)

where t=T/4J, and c=2J. As T ! 0, �2 ! 0, ndR(q; !)

becomes a pair of delta functions at ! = �cq, the spin
wave frequency.

IV Results

The structure of S(q; !) is ilustrated in Fig.2 and Fig.3

for T/J=0.05 and T/J=0.10 respectively and three val-

ues of the wave vector q(in reciprocal lattice units). For

the largest wave vector the collective mode dominates

S(q; !) but for small q there is considerable weight in

S(q; !) around ! = 0. The GA rounds o� the diver-

gence, found in former calculations[7, 8], of S(q; !) at

the spin wave frequency. The height of the resulting

peaks will, however, diverge as q and ! tend to zero.

The divergence described in [7, 8] appears because an

arbitrary number of "spin waves" contribute coherently

to the dynamic structure factor. This happens became

in those calculations the linewidt of a single magnon

was not taken into account [20]. The behavior of the

spin-wave peak is best described by Fig.4, where we

show the peak position !q and the half-width at half-

height � as a function of q for T/J=0.01, and Fig.5

where we show !q and � as a function of T at q = �=10.

Figure 2. S(q; !) is show for three wave vectors, q =
�=10; �=30; �=40 and for T/J=0.05.

Figure 3. S(q; !) is shown for three wave vectors, q =
�=10; �=30; �=40 and for T/J=0.10.

As in similar calculations the use of the GA and 4-6-

spin correlation function decoupling can be questioned.

However the theory developed here should provide, at

least qualitatively, a description of the dynamics of the

two dimensional XY model at low temperatures, and

be a �rst step to a more elaborated calculation.

Up to now we do not know of any molecular dynam-

ics simulation at low temperatures(to be compared with

the theory here developed) but simulations at higher

temperatures[9] shows a �nite spin wave peak and the

presence of a central peak.
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Figure 4. The spin-wave peak position !q(a), and the half-
width at half-height �(b) are show for T/J=0.01 and for
wave vector in the range 0:01 � q=� � 0:1.

Figure 5. !p(a) and �(b) are shown for q = �=10, for tem-
peratures in the range 0:0 � T=J � 0:02.
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