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Limitation of Electron Mobility in Modulation-Doped In 0.53Ga0.47As/InP
Quantum Wells at Low Temperatures
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The low-temperature electron mobility is investigated here for electrons confined in modulation-doped
In0.53Ga0.47As/InP single symmetric quantum wells. The subband structure calculation is developed via varia-
tional method, both Schrödinger and Poisson equations being solved simultaneously with adequate heterointer-
face matching conditions. With this in hands, the main electron scattering rates are computed, namely alloy dis-
order, remote ionized impurity, and interface roughness. As a result, interesting interchanges in these scattering
rates were found by varying the well width and the spacer width, which show that some scattering mechanisms
can surpass the alloy disorder scattering rate and come to limit the electron mobility, a behavior not reported in
the literature.
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I. INTRODUCTION

The evolution of epitaxial growth techniques for III-V
semiconductor heterostructures has allowed an excellent con-
trol on both composition and doping, furnishing high-quality
samples with almost abrupt heterointerfaces and doping pro-
files, which are crucial for the fabrication of modern electronic
and optoelectronic devices [1]. It is well-known that the high-
est electron mobility in semiconductor heterostructures has al-
ways been observed in GaAs/AlGaAs quantum heterostruc-
tures [2], but n-doped AlGaAs carrier supply layers has some
inconveniences for high-speed device applications, e.g., deep
levels, interface states, and gate leakage [3]. These unwanted
effects have been overcome by growing heterostructures with
binary compounds in the barriers, the choice of the com-
pounds being decisive for the device performance. In this
context, In0.53Ga0.47As/InP modulation-doped quantum wells
(QWs) has been a focus of interest due to the absence of strain
effects (lattice-matched heterostructure) and also due to the
negligible concentrations of DX centers and dislocations on
InP barrier layers [4]. Indeed, as compared to In0.52Al0.48As,
another important alloy that lattice-matches to In0.53Ga0.47As,
the InP supply layers present a largerΓ-L separation (630
meV in comparison to 340 meV), which reduces the proba-
bility of activation of DX-like centers and also lowers the hot
carriers transfer between the channel and the doped layers [5].
However, the search for high carrier mobility in InGaAs/InP
heterostructures has come up against the alloy disorder (AL-
LOY) scattering of electrons in the InGaAs channel, which
has always been considered as the main scattering mechanism.

Since electron mobility is the physical quantity that de-
termines the speed of electronic devices and alloy disorder
is an important scattering mechanism in In0.53Ga0.47As/InP
modulation-doped QWs, we decided to investigate here in
this work the possibility of other scattering mechanisms limit
the mobility in such heterostructure. We considered interface
roughness (IR) scattering, due to its importance in the domi-
nance of electron mobility in thin GaAs/AlGaAs QWs [6,7],
and remote ionized impurity (II) scattering, since it limits the
mobility in modulation-doped QW samples with thin enough

spacer layers.

II. MODEL

As convenient approximations to the subband structure cal-
culation in In0.53Ga0.47As/InP lattice-matched QWs we have
taken into account the effective mass approximation, with
Γ electrons moving in an isotropic, parabolic conduction
band (CB). We consider a single symmetric QW, i.e., an
In0.53Ga0.47As channel sandwiched by InP barrier layers. The
QW channel has widthL and the InP barriers are doped with
donors, except in the undoped spacer layers, whose width is
LS, which are essential for obtaining high-mobility in doped
heterostructures [8]. The band-offset at the CB isV0 and the
doping concentration isND, the donor binding energy being
ED (see Ref. [9]). Since both the electron effective massm∗(z)
and the dielectric constantε(z) change along the growth direc-
tion (z-axis) special forms for the Hamiltonian and the Poisson
equation should be considered [9]. In this way, the coupled
Schr̈odinger and Poisson equations read, respectively,
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The potential energy in Eq. (1) isV(z) = V0(z) +VH(z)
+ VXC(z), whereV0(z) is the CB edge of the corresponding
undoped heterostructure,VH(z) is the Hartree potential, and
VXC(z) represents the exchange-correlation corrections to the
Hartree potential, included here within the local-density ap-
proximation (LDA) [8-10]. Limiting ourselves to electrons in
the quantum limit, i.e. occupying only the first (ground) sub-
band, the quantum state is determined by the subband energy
level E0 and its corresponding envelope wavefunctionχ(z),
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besides the wavenumberk referent to the in-plane wavevector
k = kx î + ky ĵ. The charge concentrations on the right-hand
side of Eq. (2) areN+

D (z) for ionized donors,N−
A (z) for ion-

ized acceptors, andn(z) = Ns|χ(z)|2 for quasi-2D electrons
in the quantum limit,Ns being the electron gas sheet density.
This density depends on both the absolute temperatureT and
the Fermi energyEF according to (see, e.g., Ref. [11] )

Ns =
m∗

π~2 kBT ln
{

1+exp
[
(EF −E0)

/
kBT

]}
. (3)

It is important to note that Eq. (2) was solved within the
depletion approximation[9], the presence of ionized residual
acceptors being neglected since it has only small effects on
the charge transfer [12]. Taking this approximation into ac-
count, the charge conservation equation simplifies toLD =
Ns

/
(2ND), with LD being the width of the depletion layer

(where all impurities are treated as being ionized).
The use of Eqs. (1) and (2) requires unusual matching con-

ditions for the derivatives ofχ(z) andVH(z) [9]. Taking the
centre of the well atz= 0, the heterointerfaces will be located
atz=±`, `≡ L

/
2. For the interface atz= +` we have
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The indexA (B) refers to the channel (barrier) material.
In seeking for a variational scheme more accurate and flex-

ible than the previous ones [9,12-15], we included a 2nd-
degree term in the part of the variational wavefunction for
−` < z< +` (i.e., into the InGaAs channel), as given by

χ(z) = B
√

kw
(
1+cz2) cos(kwz) . (6)

For the envelope wavefunction in the barrier regions we
kept the usual form, namely,A

√
aexp

[±a
2 (z± `)

]
, the upper

(lower) signs being forz<−` (z> +`).
Choosing the Fermi level as the zero energy reference level,

the variational method follows by deriving an analytic expres-
sion to the integral corresponding to the quantum mechanical
expectation value

〈
Ĥ

〉
=

〈
T̂ +V (z)

〉
in terms of the varia-

tional parameters. The minimization of〈H〉= 〈H〉(kw,c; Ns)
was obtained by solving the 3×3 non-linear system composed
by Eq. (3), withEF = 0, and the equations∂

∂kw
〈H〉 = 0 and

∂
∂c 〈H〉 = 0. The numerical solution was found via Broy-
den’s method, which is an interesting alternative to Newton’s
method since it is less sensitive to the initial guess and spends
less running time [16].

The main scattering rates for electrons confined in In-
GaAs/InP heterostructures at low temperatures are well-
known [8,17]. With respect to phonons, forT < 100 K the

population of optical phonons is negligible and forT < 60 K
acoustic phonons scattering contributes little to the mobility
limitation [8]. By considering the electrons in the quantum
limit, higher subbands are not populated and there is no in-
tersubband scattering. The background impurity (BI) scatter-
ing is more complex to be calculated and will not be included
here, therefore our results may not be valid for samples with
residual acceptor concentrations above, say, 3 x 1015 cm−3

[18], a situation that is rarely found in samples grown by mod-
ern epitaxial techniques [2]. Thus we will concentrate only on
ALLOY, IR, and remote II scattering mechanisms.

Since the carrier scattering is efficiently screened by the
electron gas, the screening effect was taken into account in the
lines of Ref. [19]. This effect was neglected in our ALLOY
scattering rate calculation because it is essentially a short-
range scattering mechanism [12].

The ALLOY scattering rate was calculated following the
usual model found in literature [7,8,11], namely,
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Note that the alloy is into the channel in InxGa1−xAs/InP
heterostructures. The alloy scattering parameters are defined
elsewhere [11].

The IR scattering rate reads
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whereh(`) is an auxiliary function defined in Ref. [11], as
well as∆ andΛ. In this equation,k is the electron wavenum-
ber andα is the scattering angle.

The remote II scattering rate is given by [11]:
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wherea∗B is the effective Bohr radius. The auxiliary function
in the integral is:

F (α,k)≡ [q× ε(q)]−2×
Z

dzi [gimp(q,zi)]
2, (10)

whereq = 2ksin
(
α
/

2
)

(quasi-elastic scattering approxima-
tion). The integral overzi , the impurity position covers both
depletion layers andgimp(q, zi) is the form factor defined in
Ref. [11].

Both the IR and II scattering times depend onk and their av-
erages were calculated within the independent scattering ap-
proximation by doing

〈τi (E)〉=
Z

τi (E)E
∂ f
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E

∂ f
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where the indexi refers to each scattering process,E =
~2k2

/
(2m∗) is the carrier kinetic energy, andf (E) is the

Fermi-Dirac distribution. The partial mobilities areµ i =
e

m∗ 〈τ i〉 and the total mobilityµ is computed via Matthiessen’s
rule, i.e.,1

/
µ= ∑

i
1
/

µi .

III. RESULTS AND DISCUSSIONS

The variational scheme described above was implemented
in MAPLE V mathematical software due to its symbolic facil-
ities. We computed the electron subband structure and mobil-
ity for a typical example ofn-doped In0.53Ga0.47As/InP sym-
metric QW [9]. The relevant parameters are:L= 100Å, LS=
150 Å, V0= 264.9 meV,ND = 2×1018 cm−3, ED = 50 meV,
andT = 4.2 K. For InxGa1−xAs we usedm∗

A (x) andεA(x) as
given in Ref. [20], withx = 0.53. For the InP barriers we used
m∗

B = 0.077m0 andεB = 12.35 [9]. We foundNs = 9.62×1011

cm−2 for the QW example identified above, in good agree-
ment to the usual (less accurate) variational scheme, in which
Ns
∼= 9.4×1011 cm−2 [9].
The parameters related to ALLOY scattering are the

InxGa1−xAs lattice parametera0(x) = 5.65325+0.40515x (in

Å) [20], which is used to computeΩ = a0 (x)3
/

4, andV=

650 meV [21]. For the IR scattering we choose∆ = 2.5 Å
andΛ = 120Å [22]. Taking these parameters into account, we
foundµALLOY = 9.16×104 cm2/ Vs,µIR = 4.55×105 cm2/Vs,
andµII = 7.51×105 cm2/Vs. This furnishes a total mobility
of 6.92× 104 cm2/Vs. According to Ramvallet al. [17], a
BI partial mobility of 5×106 cm2/Vs is expected, due to the
presence of ionized residual acceptors. This is two orders of
magnitude larger thanµALLOY, which allowed us to neglect
this scattering mechanism.

The dependencies of the partials and total mobilities on the
well width are depicted in Fig. 1, below, for a fixed spacer
thickness of 150Å. Note that, the IR partial mobility curve
crosses the ALLOY curve forL ∼= 59 Å. Note that the IR
scattering dominates entirely the total mobility behavior for
smaller well widths. At the crossing point, the total mobility
is 3.2×104 cm2/Vs. As the II curve is one order of magnitude
above the ALLOY curve, it practically does not contribute to
the total mobility.

The mobility dependence on the spacer thickness is de-
picted in Fig. 2, for a fixed well width of 100̊A. Clearly, forLS
above, say, 750̊A the IR scattering rate overcome the ALLOY
one. Note that the curve for IR partial mobility decreases with
LS due to the increase of theh(`) auxiliary function, which
enhances the IR scattering rate as seen in Eq. (8). For spacer
thicknesses smaller than, say, 200Å the rapid decrease of the
II partial mobility affects the total mobility, which otherwise
would increase, accompanying the ALLOY curve. In this
range of spacers, the II scattering increases and leads to the
formation of a maximum atLS = 155Å, where the mobility is
6.9×104 cm2/Vs.

As seen at the left of Fig. 2, the rapid decrease of the curve
for II partial mobility makes it smaller than the ALLOY one
for LS below, say, 30Å. Unfortunately, for such small values

FIG. 1: Dependencies of partials and total mobilities on the well
width for an InGaAs/InP symmetric QW withLS = 150 Å. The IR
and ALLOY curves cross for a well width of 59̊A. For smaller widths
the IR partial mobility decreases rapid and it becomes the dominant
scattering mechanism. At the crossing point, the total mobility is
3.2×104 cm2/Vs.

FIG. 2: Mobility dependence on the spacer thickness for a 100Å-
wide InGaAs/InP symmetric QW. Note that the IR curve intercepts
the ALLOY curve atLS∼750Å. The rapid decrease of the II partial
mobility for LS below 200Å clearly affects the total mobility, which
has a maximum atLS = 155Å.

the charge transfer is so intense that the first subband cannot
accommodate the carriers and excited subbands will be occu-
pied. Thus, since our variational calculations are limited to
the one-subband occupation regime, the results forLS below
50 Å may be considered with caution. It would be interesting
to check the mobility curves for such thin spacers by solving
the problem numerically, a task that is already being devel-
oped.
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IV. CONCLUSION

In this work, the mobility was calculated for quasi-2D elec-
trons in In0.53Ga0.47As/InP single symmetric QWs. Some in-
teresting interchanges in the low-temperature electron mobil-
ity dominance were found. To the authors knowledge, there is
no indicative of such interchanges in the literature and it may
be due to the belief that the ALLOY scattering always domi-
nates the mobility in heterostructures whose channel is an al-
loy, as in InGaAs/InP QWs. Since these predictions should

be at least qualitatively measurable, experimental results are
awaited.
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