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T. Padmanabhan
IUCAA, Pune University Campus,

P.B. 4, Ganeshkhind, Pune 411 007, INDIA.
Received on 11 February, 2005

Certain peculiar features of Einstein-Hilbert (EH) action provide clues towards a holographic approach to
gravity which is independent of the detailed microstructure of spacetime. These features of the EH action
include: (a) the existence of second derivatives of dynamical variables; (b) a non trivial relation between the
surface term and the bulk term; (c) the fact that surface term is non analytic in the coupling constant, when
gravity is treated as a spin-2 perturbation around flat spacetime and (d) the form of the variation of the surface
term under infinitesimal coordinate transformations. The surface term can be derived directly from very general
considerations and using (d) one can obtain Einstein’s equations just from the surface term of the action. Further
one can relate the bulk term to the surface term and derive the full EH action based on purely thermodynamic
considerations. The features (a), (b) and (c) above emerge in a natural fashion in this approach. It is shown that
action Agrav splits into two terms −S+βE in a natural manner in any stationary spacetime with horizon, where
E is essentially an integral over ADM energy density and S arises from the integral of the surface gravity over
the horizon. This analysis shows that the true degrees of freedom of gravity reside in the surface term of the
action, making gravity intrinsically holographic. It also provides a close connection between gravity and gauge
theories, and highlights the subtle role of the singular coordinate transformations.

I. INTRODUCTION

If we treat the macroscopic spacetime as analogous to a
continuum solid and the unknown microscopic structure of
spacetime as analogous to the atomic structure [1], then it is
possible to gain some important insights into the possible na-
ture of quantum gravity. First of all, we note that the macro-
scopic description of a solid uses concepts like density, stress
and strain, bulk velocity etc., none of which can even be use-
fully defined in the microscopic description. Similarly, vari-
ables like metric tensor etc. may not have any relevance in
quantum gravity. Second, the quantum theory of a spin-2 field
(“graviton”) will be as irrelevant in quantum gravity, as the
theory of phonons in providing any insight into the electronic
structure of atoms. Third, the symmetries of the continuum
description (e.g., translation, rotation etc.) will be invalid or
will get strongly modified in the microscopic description. A
naive insistence of diffeomorphism invariance in the quantum
gravity, based on the classical symmetries, will be as mislead-
ing as insisting on infinitesimal rotational invariance of, say,
an atomic crystal lattice. In short, the variables and the de-
scription will change in an (as yet unknown) manner. It is
worth remembering that the Planck scale (1019 GeV) is much
farther away from the highest energy scale we have in the
lab (102 GeV) than the atomic scale (10−8 cm) was from the
scales of continuum physics (1 cm).

It is therefore worthwhile to investigate general features of
quantum microstructure which could be reasonably indepen-
dent of the detailed theory of quantum spacetime — what-
ever it may be. I will call this a thermodynamic approach to
spacetime dynamics, to be distinguished from the statistical
mechanics of microscopic spacetimes [2]. To do this, I will
exploit the well known connection between thermodynamics
and the physics of horizons [3, 4] but will turn it on its head to
derive the Einstein’s equations and the Einstein-Hilbert action
from thermodynamic considerations [5]. This procedure will
throw light on several peculiar features of gravity (which have

no explanation in the conventional approach) and will provide
a new insight in interpreting general coordinate transforma-
tions.

II. OBSERVERS AND THEIR HORIZONS

Principle of Equivalence, combined with special relativity,
implies that gravity will affect the trajectories of light rays and
hence the causal relationship between events in spacetime. In
particular, there will exist families of observers (congruence
of timelike curves) in any spacetime who will have access
to only part of the spacetime. Let a timelike curve Xa(t),
parametrized by the proper time t of the clock moving along
that curve, be the trajectory of an observer in such a congru-
ence and let C (t) be the past light cone for the event P [Xa(t)]
on this trajectory. The union U of all these past light cones
{C (t),−∞ ≤ t ≤ ∞} determines whether an observer on the
trajectory Xa(t) can receive information from all events in the
spacetime or not. If U has a nontrivial boundary, there will
be regions in the spacetime from which this observer cannot
receive signals. The boundary of the union of causal pasts of
all the observers in the congruence — which is essentially the
boundary of the union of backward light cones — will define
a causal horizon for this congruence. (In the literature, there
exist different definitions for horizons appropriate for differ-
ent contexts; see e.g.[6]; we will use the above definition.)
This horizon is dependent on the family of observers that is
chosen, but is coordinate independent.

A general class of metrics with such a static horizon can be
described [7] by the line element

ds2 =−N2(xα)dt2 + γαβ(x
α)dxαdxβ (1)

with the conditions that: (i) g00(x) ≡ −N2(x) vanishes on
some 2-surface H ; (ii) ∂αN is finite and non zero on H
and (iii) all other metric components and curvature remain fi-
nite and regular on H . The natural congruence of observers
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with x = constant will perceive H as a horizon. The four-
velocity ua = −Nδ0

a of these observers has a corresponding
four acceleration ai = u j∇ jui = (0,a) with aα = (∂αN)/N. If
na is the unit normal to the N = constant surface, then the
‘redshifted’ normal component of the acceleration N(aini) =
(gαβ∂αN∂βN)1/2 ≡Na(x) (where the last equation defines the
function a) has a finite limit on the horizon. On the horizon
N = 0, we take Na → κ where κ is called the surface gravity
of the horizon (see e.g., [8]). (The results extend to stationary
spacetimes but we will not discuss them here.)

These static spacetimes have a more natural coordinate sys-
tem defined locally in terms of the level surfaces of N. That is,
we transform from the original space coordinates xµ in Eq.(1)
to the set (N,yA),A = 2,3 (where yA are transverse coordi-
nates on the N = constant surface) by treating N as one of the
spatial coordinates. The metric can now be transformed to the
form

ds2 =−N2dt2 +
dN2

(Na)2 +dL2
⊥ (2)

where dL2
⊥ is the metric on the transverse plane which is rela-

tively unimportant for our discussion. Near the N→ 0 surface,
Na→ κ and the metric reduces to the (Rindler) form:

ds2 '−N2dt2 +
dN2

κ2 +dL2
⊥ =−κ2x2dt2 +dx2 +dL2

⊥ (3)

with x = N/κ. This (Rindler) metric is a good approximation
to a large class of static metrics with g00 vanishing on a surface
which we have set at N = 0.

In classical theory, the horizon at N = 0 acts as a one-
way membrane and shields the observers at N > 0 from the
processes that take place on the ‘other side’ of the horizon
(N < 0). However, this is no longer true in quantum theory
since entanglement and tunneling across the horizon can lead
to nontrivial effects [9]. This is obvious in the study of quan-
tum field theory in a spacetime partitioned by a horizon. The
two point function in quantum theory is non zero for events
separated by spacelike intervals leading to non-zero correla-
tions. Or, rather, quantum field theory can only be formu-
lated in the Euclidean sector of the spacetime (or with an iε
prescription, which is the same thing) and the Euclidean sec-
tor contains information from across the horizon. Hence the
causal partitioning of spacetime by a horizon — which is im-
penetrable in classical theory — becomes porous in quantum
theory.

Nevertheless, it seems reasonable to postulate that any class
of observers have a right to describe physical phenomena en-
tirely in terms of the variables defined in the regions accessible
to them [10]. Mathematically, this will require using a coor-
dinate system in an effective Euclidean manifold in which the
inaccessible region is removed [11]. Near any static horizon
one can set up the Rindler coordinates in Eq.(3) which has the
Euclidean extension (with τ = it):

ds2
E ≈ N2dτ2 +dN2/κ2 +dL2

⊥ (4)

This covers the region outside the horizon (N > 0) with the
horizon mapping to the origin; removing the region inside the

horizon is equivalent to removing the origin from the τ−N
plane. Any nontrivial quantum effect due to horizon should
still have a natural interpretation in this effective manifold and
indeed it does. The effective Euclidean manifold acquires a
nontrivial topology and the standard results (like the thermal
effects) of quantum field theory in curved spacetime arises
from this nontrivial topology [11, 12].

III. A HOLOGRAPHIC DERIVATION OF EINSTEIN’S
EQUATIONS

In the present work, we are more interested in exploring
the consequences for gravity itself which we shall now de-
scribe. Since horizon has forced us to remove a region from
the manifold, we are also forced to deal with manifolds with
non trivial boundaries, both in the Euclidean and Lorentzian
sectors. (In the Lorentzian sector we shall approach the hori-
zon as a limit of a sequence of timelike surfaces e.g., we take
r = 2M+ε with ε→+0 in the Schwarzschild spacetime). The
action functional describing gravity will now depend on vari-
ables defined on the boundary of this region. Since the hori-
zon (and associated boundaries) may exist for some observers
(e.g., uniformly accelerated observers in flat spacetime, r =
constant > 2M observers in the Schwarzschild spacetime ...)
but not for others (e.g, inertial observers in flat spacetime,
freely falling observers inside the event horizon, r < 2M, in
the Schwarzschild spacetime ), this brings up a new level
of observer dependence in the theory. It must, however, be
stressed that this view point is completely in concordance with
what we do in other branches of physics, while defining action
functionals. The action describing QED at 10 MeV, say, does
not use degrees of freedom relevant at 1019 GeV which we
have no access to. Similarly, if an observer has no access to
part of spacetime, (s)he should be able to use an action prin-
ciple using the variables (s)he can access, which is essentially
the philosophy of renormalisation group theory translated into
real space from momentum space [10]. This brings about the
boundary dependence in the presence of horizons.

Further, since we would like the action to be an integral
over a local density, the surface term must arise from integrat-
ing a four-divergence term in the Lagrangian and the gravi-
tational action functional (in the Euclidean sector, which we
shall consider first) will have a generic form:

Agrav =
Z

V
d4x

√
g

(
Lbulk +∇iU i) = Abulk +Asur (5)

The vector Ua has to be built out of the normal ui to the bound-
ary ∂V of V , metric gab and the covariant derivative operator
∇ j acting at most once. The last restriction arises because the
equations of motion should be of no order higher than two.
(The normal ui is defined only on the boundary ∂V but we
can extend it to the bulk V , forming a vector field, in any man-
ner we like since the action only depends on its value on the
boundary.) Given these conditions, there are only four possi-
ble choices for U i, viz. (u j∇iu j,u j∇ jui,ui∇ ju j,ui). Of these
four, the first one identically vanishes since u j has unit norm;
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the second one — which is the acceleration ai = u j∇ jui van-
ishes on integration since the boundary term is uiU i = aiui =
0. Hence the most general vector U i we need to consider is
the linear combination of ui and Kui where K ≡ −∇iui is the
trace of the extrinsic curvature of the boundary. Of these two,
U i = ui will lead to the volume of the bounding surface which
we will ignore. (It can be, in general, divergent and hence is
not an acceptable candidate. In any case, retaining it does not
alter any of our conclusions below). Thus the surface term
(arising from Kui) must have the form

Asur ∝
Z

V
d4x

√
g∇i(Kui) =

1
8πG

Z

∂V
d3x

√
hK (6)

where G is a constant to be determined (which has the dimen-
sions of area in natural units with c = ~ = 1) and 8π factor is
introduced with some hindsight.

What does the surface term contribute on the horizon? Con-
sider a surface N = ε,0 < τ < 2π/κ and the full range for
the transverse coordinates; this surface is infinitesimally away
from the horizon in the Euclidean spacetime described by
Eq.(4) and has the unit normal ua = κ(0,1,0,0). Its contri-
bution to the action is the integral of K = −∇aua = −(κ/ε)
over the surface:

Asur =− 1
8πG

Z
d2x⊥

Z 2π/κ

0
dτε

(κ
ε

)
=−1

4
A⊥
G

(7)

which is (minus) one quarter of the transverse area A⊥ of the
horizon, in units of G (which is still an undetermined con-
stant). This contribution is universal and of course indepen-
dent of ε so that the limit ε→ 0 is trivial. (Also note that the
term we ignored earlier, the integral over the four-volume of
∇aua, will not contribute on a horizon where ε → 0). Since
the surface contribution is due to removing the inaccessible
region, it makes sense to identify −Asur with an entropy. The
sign in Eq.(6) is correct with G > 0 since we expect — in the
Euclidean sector — the relation exp(−AEuclid) = expS to hold,
where S is the entropy.

Analytically continuing to the Lorentzian sector it is possi-
ble to show that (see Appendix A of ref.[2]) the surface term
gives the contribution

Asur =− 1
16πG

Z

V
d4x∂aPa (8)

where

Pa =− 1√−g
∂b(ggba) =

√−g
(

gakΓm
km−gikΓa

ik

)
(9)

It is clear that, while Lbulk(g,∂g) in Eq.(5) can be made to van-
ish at any given event by going to the local inertial frame (in
which g = η,∂g = 0), one cannot make ∂aPa vanish in a local
inertial frame. In such a frame, we have ∂aPa = −∂a∂bgab.
This suggests that the true dynamical degrees of freedom of
gravity reside in the surface term rather than in the bulk term,
making gravity intrinsically holographic. Obviously, the re-
ally important term in the Hilbert action is the often neglected
surface term! To understand this term which leads to the en-
tropy of the horizon, let us explore it in a few simple contexts.

To begin with, consider spacetime metrics of the form gab =
ηab +hab with hab treated as a first order perturbation. In this
case, Pa = ∂b(ηabhi

i−hab) and the surface term

Asur =− 1
16πG

Z

V
d4x∂a∂b(ηabhi

i−hab) (10)

is gauge invariant under the transformations hab → hab +
∂aξb + ∂bξa. (Sometimes it is claimed in the literature that a
term which is invariant under such infinitesimal gauge trans-
formations will be generally covariant under finite transforma-
tions. This is clearly not true and Asur is an instructive counter
example.) In the Newtonian limit with g00 = −(1 + 2φ), this
leads to P = 2∇φ =−2g which is proportional to the gravita-
tional acceleration. The contribution from any surface is then
clearly the normal component of the acceleration, ie., surface
gravity, even in the Newtonian limit. [As an aside, let me men-
tion that this is rather intriguing. It is known that thermal ef-
fects of horizons have a classical analogue (see e.g.,[13]) and
that statistical mechanics of systems with Newtonian grav-
ity has several peculiar features (see e.g.,[14]); but one rarely
studies matter interacting by Newtonian gravity from a (limit
of the) action functional. It is not clear whether this result is
of any deep significance.]

Let us next consider how the surface contribution varies
when one goes from a local inertial frame to an acceler-
ated frame by an infinitesimal transformation xa → xa + ξa

in flat spacetime. It is easy to show that, in this case, Pa =
−∂i(∂aξi− ∂iξa). (While the variation in the metric depends
on the symmetric combination δgai = ∂aξi + ∂iξa, the contri-
bution to Pa arises from the antisymmetric combination.) For
regular (non-distributional) functions, ∂aPa vanishes showing
that the contribution from any given surface Pana is a constant.
We are interested in the infinitesimal version of the trans-
formation from inertial to Rindler coordinates, which corre-
sponds to ξt = −κtx,ξx = −(1/2)κt2. The surface term now
picks up the contribution 2κ on each surface. Thus the surface
term has a purely local interpretation and is directly connected
with the acceleration measured by local Rindler observers. (
When Pa is a constant ∂aPa will vanish but one can still work
out the constant contribution naPa from a surface with normal
na and interpret its value. The contribution we computed in
Eq.(7) is indeed from the Rindler frame contribution but eval-
uated on a surface.)

Since (−Asur) will give the entropy on the horizon in the
Lorentzian sector, its variation δSg = −δAsur is of consider-
able interest. In particular, let us see how it varies under
the infinitesimal coordinate transformation xa → xa + δxa in
a general, curved spacetime. It can be shown that [15]

δSg =−δAsur =
1

8πG

Z

V
d4x

√−g∇a(Ra
bδxb) (11)

It is now possible to obtain Einstein’s equations by extremis-
ing a holographic action Stot = Sg +Smatter under the variation
xa → xa +δxa. Here, Sg =−Asur is the surface term of gravi-
tational action and Smatter is given by

Smatter ≡
Z

V
d4x

[
L
√−g−gab

δL
√−g

δgab

]
(12)
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where L is the standard matter Lagrangian. Using Eq.(11) and
the fact that

√−gTab =−2(δL
√−g/δgab), it is easy to verify

that demanding δStot = 0 for arbitrary choices of ξa and ∂V ,
leads to Einstein’s equations [15]. The first term in Smatter is
the standard action one uses while the second term needs to be
added for the variational principle to work with the Ssur. On
the whole, the integrand in Eq. (12) is a Legendre transform
of L

√−g with respect to gab (and deserves further analysis).
What is noteworthy is that, in the gravitational sector we only
need to retain the surface term to obtain Einstein’s equations.

Roughly speaking, the two terms in Eq. (12) are needed in
order to provide both dE and pdV terms balancing the T dS
entropy term. To gain some insight into this, let us consider
a case in which the source of gravity is an ideal fluid with
Tab = (ρ + p)uaub + pgab and work out the variations explic-
itly (though the variational principle described above works
for any matter source.) Consider a spacetime with a horizon
and associated inverse temperature β related to a horizon. Let
the displacement δxa be in the direction normal to the horizon
such that δxa = 2naδx where naua = 0. If we limit the time
integral in Eq. (11) to the range (0,β) we have:

δAsur

δx
=− β

4πG

Z
d2x

√
σN(Rabnanb). (13)

[The factor 2 in the definition of δxa is introduced to take care
of the symmetrization with respect to nanb in the functional
derivative.] If the source is an ideal fluid, then Rabnanb =
4πG(ρ− p) allowing us to write the above relation as

−β−1δAsur = −
Z

d2x
√

σN pδx+
Z

d2x
√

σNρδx

= −p̄dV +dEmatter (14)

where p̄ is the mean pressure and the negative sign on pdV
arises because it is work done on matter. The N factor in
the integrands is required since the integrals need to be evalu-
ated with βlocal = T−1

local = βN which corresponds to the local
equilibrium temperature T/

√
g00; the quantity β is just the

value of the local temperature at N = 1. Since the left hand
side is T dS, this provides a thermodynamic interpretation of
Einstein’s equations. A virtual displacement of the horizon
by an infinitesimal amount changes the entropy through the
change in the surface term and induces corresponding changes
dEmatter = −dEgrav and pdV . This result is easy to verify for
spherically symmetric spacetimes explicitly [17] but the above
derivation shows that it has a far greater domain of validity.

Incidentally, Eq. (11) shows that δAsur = 0 (i) in all vacuum
spacetimes with Ra

b = 0, generalizing the previous result that
∂aδPa = 0 in flat spacetime, or (ii) when ξa = 0 on ∂V which
is the usual textbook case. (This is why δAbulk = 0 gives co-
variant field equations even though Abulk is not generally co-
variant.)

IV. DERIVATION OF EINSTEIN-HILBERT ACTION

The total Lagrangian for gravity in Eq. (5) is now
[Lbulk

√−g−∂aPa/16πG] which depends on the second deriv-
atives of the metric through the ∂aPa term. Such lagrangians,

having second derivatives (which does not affect the equation
of motion), have a natural interpretation in terms of the mo-
mentum space representation. To see this, recall that the quan-
tum amplitude for for the dynamical variables to change from
q1 (at t1) to q2 (at t2) is given by

K (q2, t2;q1, t1) = ∑
paths

exp
[

i
~

Z
dt Lq(q, q̇)

]
, (15)

where the sum is over all paths connecting (q1, t1) and (q2, t2),
and the Lagrangian Lq(q, q̇) depends only on (q, q̇). When we
study the same system in momentum space, we need to de-
termine the corresponding amplitude for the system to have a
momentum p1 at t1 and p2 at t2, which is given by the Fourier
transform of K (q2, t2;q1, t1) on q1,q2. The path integral rep-
resentation of this momentum space amplitude is:

G (p2, t2; p1, t1)

= ∑
paths

Z
dq1dq2 exp

[
i
~

{Z
dt Lq− (p2q2− p1q1)

}]

= ∑
paths

Z
dq1dq2 exp

[
i
~

Z
dt

{
Lq− d

dt
(pq)

}]

≡ ∑
paths

exp
[

i
~

Z
Lp(q, q̇, q̈) dt

]
. (16)

where

Lp ≡ Lq− d
dt

(
q

∂Lq

∂q̇

)
. (17)

In arriving at the last line of Eq. (16), we have redefined the
sum over paths to include integration over q1 and q2. This re-
sult shows that, given any Lagrangian Lq(q,∂q) involving only
up to the first derivatives of the dynamical variables, it is al-
ways possible to construct another Lagrangian Lp(q,∂q,∂2q)
involving up to second derivatives, by Eq. (17) such that it
describes the same dynamics but with different boundary con-
ditions. While using Lp, one keeps the momenta fixed at the
endpoints rather than the coordinates.

Thus, in the case of gravity, the same equations of motion
can be obtained from Abulk or from another action:

Agrav =
Z

d4x
√−gLbulk−

Z
d4x∂c

[
gab

∂
√−gLbulk

∂(∂cgab)

]
(18)

We can now identify the second term in Eq. (18) with the Asur
in Eq. (8) thereby obtaining an equation that determines Lbulk:

(
∂
√−gLbulk

∂gab,c
gab

)
= Pc =− 1

16πG
1√−g

∂b(ggbc) (19)

It is straightforward to show that this equation is satisfied by
the Lagrangian

√−gLbulk =
√−ggik

16πG

(
Γm

i`Γ`
km−Γ`

ikΓm
`m

)
. (20)

This Lagrangian is precisely the first order Dirac-Schrodinger
Lagrangian for gravity (usually called the Γ2 Lagrangian).
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Given the two pieces
√−gLbulk and −∂aPa, the final second

order Lagrangian is, of course, just the sum, which turns out
to be the standard Einstein-Hilbert Lagrangian:

√−gLgrav =
√−gLbulk−∂cPc =

(
R
√−g

16πG

)
. (21)

Since Eq.(19) involves only ∂Lbulk/∂(∂agbc), one can add
a constant to Lbulk without affecting anything. Observations
suggest that our universe has a cosmological constant (or
something which acts very similar to it [18]) and — unfortu-
nately — our argument does not throw any light on this vital
issue. We shall comment on this aspect towards the end.

V. STRUCTURE OF HILBERT ACTION

The first striking feature of Hilbert action is that it contains
the second derivatives of the dynamical variables and hence
a surface term. This feature had no explanation in conven-
tional approaches, while it arises most naturally in the deriva-
tion given above.

Second, and probably the most vital point, is that the bulk
and surface terms of the Hilbert action are related to each other
by a very definite relation, viz., Eq.(18). Not only that this
relation has no explanation in conventional approaches, it has
not even been noticed or discussed in standard text books [19].
In the current approach, this relation again arises naturally and
is central to determining the bulk term from the surface term.

Closely related to this is the third fact that neither Lbulk nor
Lsur is geometrical. This is obvious in the Euclidean sector,
in which we allowed for an extra vector field (the normal to
the boundary) in the action, in addition to the metric tensor.
It is central to our philosophy that the terms in the action
can be (and indeed will be) different for different families of
observers, since they will have access to different regions of
spacetime. In fact, existence of a horizon is always dependent
on the family of observers we consider. Even in Schwarz-
schild spacetime, in which a purely geometrical definition can
be given to event horizon, the observers who are freely falling
into the black hole will have access to more information than
the observers who are stationary on the outside. Thus we ex-
pect the action to be foliation dependent though generally co-
variant.

The difference between foliation dependence and general
covariance is worth emphasizing: One would have consid-
ered a component of a tensor, say, T00 as not generally co-
variant. But a quantity ρ = Tabuaub is a generally covari-
ant scalar which will reduce to T00 in a local frame in which
ua = (1,0,0,0). It is appropriate to say that ρ is generally
covariant but foliation dependent. In fact, any term which is
not generally covariant can be recast in a generally covariant
form by introducing a foliation dependence. The surface term
and the bulk term we have obtained are foliation dependent
and will be different for different observers. But the full ac-
tion is, of course, foliation independent (We will see below
that the full action can be interpreted as the thermodynamic
free energy of spacetime). Incidentally, the content of Ein-
stein’s equations can be stated entirely in terms of foliation

dependent scalar quantities as follows: The scalar projection
of Rabcd orthogonal to the vector field ua is 16πGρ for all con-
gruences. The projection is Rabcdhachbd = 2Gacuauc where
hac = (gac + uauc) and the rest follows trivially; this is a far
simpler statement than the one found in some text books [20].

A. Action is the Free Energy of Spacetime

I will now turn to the form of the Einstein-Hilbert action
for stationary spacetimes and show that, in this case it has a
natural decomposition of the action into energy and entropy
terms, the latter being a surface integral. Such spacetimes
have a timelike Killing vector ξa in (at least) part of the re-
gion. While the discussion below can be done in a manifest-
edly covariant manner, it is clearer to work in a frame in which
ξa = (1,0,0,0). In any stationary spacetime, the Ra

0 compo-
nents, in particular R0

0, can be expressed as a divergence term

R0
0 =

1√−g
∂α(
√−gg0kΓα

0k) (22)

This is most easily seen from the identity for the Killing vector

Ra
jξ

j = Ra
0 = ∇b∇aξb =

1√−g
∂b(
√−g∇aξb) (23)

where the last relation follows from the fact that ∇aξb is an
antisymmetric tensor. Eq.(22) now follows directly on notic-
ing that all quantities are time-independent. (For an index-
gymnastics proof of the same relation, see [22] section 105).
On the other hand, in any spacetime, one has the result:
−2G0

0 =−16πHADM = 16πρ where the last relation holds on
the mass shell. We can now express the Einstein-Hilbert ac-
tion as an integral over R = 2(R0

0−G0
0). Since the spacetime

is stationary, the integrand is independent of time and we need
to limit the time integration to a finite range (0,β) to get a fi-
nite result. Converting the volume integral of R0

0 over 3-space
to a surface integral over the 2-dimensional boundary, we can
write the Einstein-Hilbert action in any stationary spacetime
as

AEH = β
Z

N
√

hd3x ρ+
β

8π

Z
d2x

√
σ Nnα(g0kΓα

0k)

≡ βE−S (24)

where N =
√−g00 is the lapse function, h is the determinant

of the spatial metric and σ is the determinant of the 2-metric
on the surface. In a class of stationary metrics with a hori-
zon and associated temperature the time interval has natural
periodicity in β, which can be identified with the inverse tem-
perature. Also note that the βN factor in Eq.(24) is again
exactly what is needed to give the local Tolman temperature
Tloc = β−1

loc ≡ (βN)−1 = T/
√−g00 so one is actually integrat-

ing βlocρ over all space, as one should, in defining E. When
the 2-surface is a horizon, the integral over R0

0 gives the stan-
dard expression for entropy obtained earlier. This allows iden-
tification of the two terms with energy and entropy; together
the Einstein action can be interpreted as giving the free energy
of space time.
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It is possible to obtain the above decomposition more for-
mally. The curvature tensor Rab

cd has a natural decomposition
in terms of 3 spatial tensors (see sec. 92 of [22]) correspond-
ing to S α

β = R0α
0β ;Eα

β = (1/4)εα
µνRµν

ρσε ρσ
β (and Bα

β = ε µν
β R0α

µν
which we will not need). In any spacetime, the trace of these
tensors have a simple physical meanings: 2Eα

α = −2G0
0 =

16πρ is essentially the numerical value of ADM Hamiltonian
density while S ≡ S α

α = R0
0. Since the scalar curvature is

R = 2(S +E) we can make the decomposition:

Agrav =
β
8π

Z
N
√

hd3x [S +E ] =−S +βE (25)

in any stationary spacetime. This shows that S and E are true
scalars in 3-dimensional subspace and the decomposition has
a geometric significance.

In fact, one can go further and provide a 4-dimensional co-
variant (but foliation dependent) description of the entropy
and energy of spacetime. Given a foliation based on a timelike
congruence of observers (with ua denoting the four velocity)
one can write: S a

b = Ria
jbuiu j;Ea

b = ∗Ria
jbuiu j where ∗Rab

cd is the
dual of the curvature tensor: ∗Rab

cd = (1/4)εab
mnRmn

rs ε rs
cd . It

is easy to see that the contraction of S a
b ,Ea

b with ua on any
of the indices vanishes, so that they are essentially “spatial”
tensors; clearly, they reduce to the previous definitions when
u0 = (1,0,0,0). The action can now be written with a covari-
ant separation of the two terms:

Agrav =
1

8π

Z √−gd4x Tr[(Ria
jb + ∗Ria

jb)uiu j] (26)

where the trace is over the remaining indices. Given a family
of observers with four velocities ui this equation identifies an
energy and entropy perceived by them. This approach has
a direct geometrical significance, since the representation of
the curvature as differential form R ab = dωab + ωa

c ∧ωcb =
Rab
|cd|ω

c ∧ωd (see sec 14.5, ex. 14.14 of [20]) uses a matrix
representation with S α

β ,Eα
β as the block diagonal terms and

with the action becoming the trace.
As an explicit example, consider the class of stationary met-

rics, parametrized by a vector field v(x) is given by

ds2 =−dt2 +(dx−vdt)2 (27)

Consider first the spherically symmetric case in which v =
v(r)r̂ with v2 ≡ −2φ. In this case, 2S = −2∇2φ,2E =
−(4/r2)(rφ)′. Let us compute the contribution of the action
on the horizon at r = a, where v2 = 1,−φ′ = κ. Evaluating the
integral over R = 2(S +E), we get the contribution:

Agrav =−πa2 +β
a
2

=−S +βE (28)

The first term (one quarter of horizon area, which arises from
2S ) is the entropy and we can interpret the second term
(which arises from 2E) as βE. This becomes βM in the
case of Schwarzschild metric [16]. Hence the full action has
the interpretation of βF where F is the free energy. (See
[17, 23] for more details). Thus the extremisation of the ac-
tion corresponds to extremising the free energy, thereby pro-
viding a fully thermodynamic interpretation. (Incidentally,

for the Schwarzschild metric S = 4πM2,βE = 8πM2 making
S−βE =−4πM2 =−S ! The temptation to interpret the full
action as entropy should be resisted, since this is a peculiar
feature special to Schwarzschild).

Similar results arise for all metrics in Eq.(27). These
metrics [21] have the following properties: (i) The spatial
(dt = 0) sections are flat with 3R = 0. (ii) The metric has
unit determinant in Cartesian spatial coordinates.(iii) The ac-
celeration field ai = u j∇ jui vanishes. (iv) There is a hori-
zon on the surface v2(x) = 1. (iv) The extrinsic curvature
is Kαβ = (1/2)(∂αvβ + ∂βvα). (v) For this spacetime, 2E
again gives the energy density; the entropy term is: 2S =
∇ · [−∇φ+(v ·∇)v]. The integral now gives the normal com-
ponent of a = −∇φ + (v ·∇)v which has two contributions
to the acceleration: the −∇φ (with v2 = −2φ) is the stan-
dard force term while (v ·∇)v is the ”fluid” acceleration dv/dt
when ∂v/∂t = 0. So the interpretation of surface gravity lead-
ing to entropy holds true in a natural manner.

If v is irrotational, then the two terms are equal and we get
2S =−2∇2φ leading to an entropy which is one-quarter of the
area of the horizon. Thus the result for spherically symmetric
case holds for all metrics of the form in Eq.(27) with ∇×v =
0.

B. There is more to gravity than gravitons

Another striking feature of Einstein-Hilbert action — again,
not emphasized in the literature — is that it is non analytic in
the coupling constant when perturbed around flat spacetime.
To see this, consider the expansion of the action in terms of a
“graviton field” hab, by gab = ηab + λhab where λ =

√
16πG

has the dimension of length and hab has the correct dimension
of (length)−1 in natural units with ~= c = 1. Since the scalar
curvature has the structure R ' (∂g)2 + ∂2g, substitution of
gab = ηab +λhab gives to the lowest order:

LEH ∝
1
λ2 R' (∂h)2 +

1
λ

∂2h (29)

Thus the full Einstein-Hilbert Lagrangian is non-analytic in λ
because the surface term is non-analytic in λ! It is sometimes
claimed in literature that one can obtain Einstein-Hilbert ac-
tion for gravity by starting with a massless spin-2 field hab
coupled to the energy momentum tensor Tab of other matter
sources to the lowest order, introducing self-coupling of hab
to its own energy momentum tensor at the next order and iter-
ating the process. It will be preposterous if, starting from the
Lagrangian for the spin-2 field, (∂h)2, and doing a honest iter-
ation on λ, one can obtain a piece which is non-analytic in λ
(for a detailed discussion of this and related issues, see [24]).
At best, one can hope to get the quadratic part of LEH which
gives rise to the Γ2 action Abulk but not the four-divergence
term involving ∂2g. The non-analytic nature of the surface
term is vital for it to give a finite contribution on the hori-
zon and the horizon entropy cannot be interpreted in terms of
gravitons propagating around Minkowski spacetime. Clearly,
there is lot more to gravity than gravitons.
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This result has implications for the G → 0 limit of the en-
tropy term S = (1/4)(A⊥/G) we have obtained. If the trans-
verse area A⊥ scales as (GE)2 where E is an energy scale in
the problem (as in Schwarzschild geometry), then S→ 0 when
G→ 0. On the other hand if A⊥ is independent of G as in the
case of e.g., De Sitter universe with A⊥ = 3π/Λ, where Λ is
an independent cosmological constant in the theory, unrelated
to G (or even in the case of Rindler spacetime) then the en-
tropy diverges as G→ 0. (In all cases, the entropy diverges as
~→ 0). This non analytic behaviour for a term in action, espe-
cially in the case of flat spacetime in nontrivial coordinates, is
reminiscent of the θ vacua in gauge theory. We shall explore
this feature more closely in the next section.

VI. SINGULAR COORDINATE TRANSFORMATIONS
AND NON TRIVIAL TOPOLOGY

The Euclidean structure of a wide class of spacetimes with
horizon is correctly represented by the Euclidean Rindler met-
ric in Eq. (4). This is obvious from the fact that the horizon
is mapped to the origin of the N− τ plane which is well lo-
calized in the Euclidean sector, making the approximation by
a Rindler metric rigorously valid. It is therefore important to
understand how non trivial effects can arise “just because” of
a coordinate transformation from the inertial to Rindler coor-
dinates. After all, in the inertial coordinates in flat spacetime
Γa

bc = 0 making both Lbulk and Pa individually zero while in
the Rindler coordinates Pa 6= 0 leading to Eq.(7). We shall
provide some insights into this issue.

We begin by recalling some formal analogy between grav-
ity and non-Abelian gauge theories. If the connection coeffi-
cients Γ j

ak ≡ (Γa)
j
k are represented as the elements of matrices

Γa (analogous to the the gauge potential Aa), then the curva-
ture tensor can be represented as

Rab = ∂aΓb−∂bΓa +ΓaΓb−ΓbΓa (30)

(with two matrix indices suppressed) in a form analogous to
the gauge field Fab. Consider now an infinitesimal coordinate
transformation xa → xa + ξa from a local inertial frame to an
accelerated frame. The curvature changes by

δRab = ∂aδΓb−∂bδΓa (31)

since ΓδΓ term vanishes in the local inertial frame. For a co-
ordinate transformation in flat spacetime, we will expect δΓa
to be pure gauge in the form δΓa = ∂aΩ, so that δRab = 0.
For xa → xa +ξa, we do have δΓa = ∂aΩ where Ω is a matrix
with elements Ωi

j = −∂ jξi so it would seem that δRab = 0.
However, there is subtlety here.

Recall that, in standard flat spacetime electrodynamics one
can have vector potential Ai = ∂iq(xa) which appears to be a
pure gauge connection but can have non-zero field strengths.
If we take xa = (t,r,θ,φ) and q(xa) = φ, then the vector po-
tential Ai = ∂i(φ) is not pure gauge and will correspond to a
magnetic flux confined to an Aharanov-Bohm type solenoid
at the origin. This is easily verified from noting that the line
integral of Aidxi around the origin will lead to a non-zero re-
sult, showing ∇×A is non zero at the origin corresponding to

x2 +y2 = 0 in the Cartesian coordinates. In this case q(xa) = φ
is a periodic coordinate which is the reason for the nontrivial
result.

The same effect arises in the the case of a transforma-
tion from inertial to Rindler coordinates near any horizon in
the Euclidean sector in which τ is periodic. In this case,
ξa = (−κtx,−(1/2)κt2,0,0) and the matrix Ωi

j = −∂ jξi has
the nonzero components Ω0

0 = κx,Ω1
0 = κt = Ω0

1. The line
integral of δΓ0 over a circle of radius x around the origin in
Euclidean τ− x plane is given by

I
δΓ0dx0 =

Z 2π/κ

0
dτ∂0Ω = Ω

∣∣∣∣
2π/κ

0
= 2π (32)

for the (0
1),(

1
0) components of the matrix Ω. The nonzero

value for this integral shows that the curvature δRab in Eq.(31)
is nonzero and is concentrated on the origin of the τ− x plane
(which is the horizon in Lorentzian spacetime)! Just as the
Aharanov-Bohm effect introduces non zero winding number
in space, the concentrating of the scalar curvature in the ori-
gin of the Euclidean plane leads to a non zero winding num-
ber in the presence of horizons and thermal effects. Since
the topological feature arises due to a circle of infinitesimal
radius around the origin in the Euclidean case, the analysis
should work for any horizon which can be approximated by a
Rindler metric near the horizon.

In non-Abelian gauge theories there exist pure gauge con-
figurations in which the gauge potential cannot be made to
vanish everywhere. These configurations, usually called theta
vacua, exist because of the existence of gauge transforma-
tions which cannot be continuously deformed to identity. In
the case of gravity, the analogy is provided by singular co-
ordinate transformation which converts a line element with
g00 < 0 everywhere to a metric with g00 =−N2(x) vanishing
at some surface. The transformation from inertial coordinates
to Rindler coordinates or, more generally, from the Kruskal
type coordinates to Schwarzschild type coordinates belongs
to this class. An immediate effect of such a transformation is
that analytic continuation in t makes τ = it a periodic (“an-
gular”) coordinate, with period 2π/κ leading to the result in
Eq.(31).

A new issue, which is conceptually important, arises while
doing quantum field theory in a spacetime with a N = 0 sur-
face. All physically relevant results in the spacetime will de-
pend on the combination Ndt rather than on the coordinate
time dt. The Euclidean rotation t → teiπ/2 can equivalently
be thought of as the rotation N → Neiπ/2. This procedure be-
comes ambiguous on the horizon at which N = 0. But the
family of observers with a horizon, will indeed be using a co-
moving co-ordinate system in which N → 0 on the horizon.
Clearly we need a new physical principle to handle quantum
field theory as seen by this family of observers.

One possible way is to regularize g00 and treat the Rindler
type metric as a limit of a sequence of metrics parameterized
by a regulator ε. The nature of the regulator can be obtained
by noting that the Euclidean rotation is equivalent to the iε
prescription in which one uses the transformation t → t(1+ iε)
which, in turn, translates to N → N(1 + iε). Expanding this
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out, we get N → N + iε sign(N), which can be combined into
the form N2 → N2 + ε2. To see the effect of this regulator, let
us consider [12] a class of metrics of the form

ds2 =− f (x)dt2 +dx2 +dy2 +dz2 (33)

where (i) f is an even function of x, (ii) f > 0 for all x and
(iii)the metric is asymptotically Rindler: f (x2) → κ2x2 as
x2 → ∞). The Einstein Hilbert action for these metrics is

A =−2
(

A⊥
4G

)(
κβ
2π

)
(34)

Since R is independent of t and the transverse coordinates, we
have to restrict the integration over these to a finite range with
0 ≤ t ≤ β and A⊥ being the transverse area. We see that the
result is completely independent of the detailed behaviour of
f (x) at finite x. Let us now consider the class of two parameter
metrics with f (x) = ε2 + κ2x2. When κ = 0 this metric rep-
resents flat spacetime in standard Minkowski coordinates and
the action in Eq. (34) vanishes; the metric also represents flat
spacetime for ε = 0 but now in the Rindler coordinates. Since
the result in Eq. (34) holds independent of ε, it will continue
to hold even when we take the limit of ε tending to zero. But
when ε goes to zero, the metric reduces to standard Rindler
metric and one would have expected the scalar curvature to
vanish identically, making A vanish identically! Our result in
(34) shows that the action is finite even for a Rindler space-
time if we interpret it as arising from the limit of this class of
metrics. It is obvious that, treated in this limiting fashion, as
ε goes to zero R should become a distribution in x2 such that
it is zero almost everywhere except at the origin and has a fi-
nite integral. For finite values of (ε,κ) the spacetime is curved
with only nontrivial component:

R =− 2ε2κ2

(ε2 +κ2x2)2 =−1
2

Rt
xtx (35)

There is no horizon when ε 6= 0. When ε 6= 0,κ → 0 limit is
taken, we obtain the flat spacetime in Minkowski coordinates
without ever producing a horizon. But the limit κ 6= 0,ε → 0
leads to a different result: when ε → 0, a horizon appears at
x = 0 and, in fact, the scalar curvature R in Eq. (35) becomes
the distribution

lim
ε→0

R =−2δ(x2) (36)

showing that the curvature is concentrated on the surface x2 =
0 giving a finite value to the action even though the metric
is almost everywhere flat in the limit of ε → 0. The entire
analysis goes through even in the Euclidean sector, showing
that the curvature is concentrated on x2 = X2 +T 2

E = 0 which
agrees with the result obtained earlier in Eq.(32).

VII. ELASTICITY OF THE SPACETIME SOLID

The analysis so far indicates a perspective towards gravity
with the following key ingredients.

(i) The horizon perceived by a congruence of observers dic-
tates the form of the action functional to be used by these ob-
servers. This action has a surface term which can be inter-
preted as an entropy.

(ii) The active version of the coordinate transformation
xa → xa + ξa acquires a dynamical content through Eq. (14).
Interpreting the virtual displacement of the horizon in terms
of a thermodynamic relation, one can obtain the equations of
gravity purely from the surface term.

(iii) The metric components become singular on the horizon
in the coordinate system used by the congruence of observers
who perceive the horizon. The transformation from this coor-
dinate system to a non singular coordinate system (like the lo-
cally inertial coordinate system) near the horizon will require
the use of a coordinate transformation which itself is singu-
lar. In the Euclidean sector, such transformations lead to non
trivial effects.

Given these results, it is interesting to pursue the analogy
between spacetime and an elastic solid further and see where
it leads to. In particular, such an approach will treat variables
like gab,Tab, etc. as given functions which are not dynamic.
We should be able to obtain a variational principle in terms of
some other quantities but still obtain Einstein’s equations. I
will now describe one such approach.

Let us begin by noting that, in the study of elastic deforma-
tion in continuum mechanics [25], one begins with the defor-
mation field uα(x) ≡ x̄α− xα which indicates how each point
in a solid moves under a deformation. The deformation con-
tributes to the thermodynamic functionals like free energy, en-
tropy etc. In the absence of external fields, a constant uα can-
not make a contribution because of translational invariance.
Hence, to the lowest order, the thermodynamical functionals
will be quadratic in the scalars constructed from the deriv-
atives of the deformation field. The derivative ∂µuν can be
decomposed into an anti symmetric part, symmetric traceless
part and the trace corresponding to deformations which are
rotations, shear and expansion. Since the overall rotation of
the solid will not change the thermodynamical variables, only
the other two components, Sµν ≡ ∂µuν +∂νuµ− (1/3)δµν∂αuα

and ∂αuα, contribute. The extremisation of the relevant func-
tional (entropy, free energy ....) allows one to determine the
equations which govern the elastic deformations.

The analogue of elastic deformations in the case of space-
time manifold will be the coordinate transformation xa→ x̄a =
xa + ξa(x). Our paradigm requires us to take this transfor-
mation to be of fundamental importance rather than as “mere
coordinate relabelling”. In analogy with the elastic solid, we
will attribute a thermodynamic functional — which we shall
take to be the entropy — with a given spacetime deformation.
This will be a quadratic functional of Qab ≡ ∇aξb in the ab-
sence of matter. The presence of matter will, however, break
the translational invariance and hence there could be a contri-
bution which is quadratic in ξa as well. We, therefore, take
the form of the entropy functional to be

S =
1

8πG

Z
d4x

√−g
[
Mabcd∇aξb∇cξd +Nabξaξb

]
(37)

where the tensors, Mabcd and Nab are yet to be determined.
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They can depend on other coarse grained macroscopic vari-
ables like the matter stress tensor Tab, metric gab, etc. (The
overall constant factor is again introduced with hindsight.)
Extremising S with respect to the deformation field ξa will
lead to the equation

∇a(Mabcd∇c)ξd = Nbdξd (38)

In the case of elasticity, one would have used such an equa-
tion to determine the deformation field ξa(x). But the situa-
tion is quite different in the case of spacetime. Here, in the
coarse grained limit of continuum spacetime physics, one re-
quires any deformation ξa(x) to be allowed in the spacetime
provided the background spacetime satisfies Einstein’s equa-
tions. Hence, if our ideas are correct, we should be able to
choose Mabcd and Nab in such a way that Eq.(38) leads to Ein-
stein’s equation when we demand that it should hold for any
ξa(x).

Incredibly enough, this requirement is enough to uniquely
determine the form of Mabcd and Nab to be:

Mabcd = gadgbc−gabgcd ;Nab = 8πG(Tab− 1
2

gabT ) (39)

where Tab is the macroscopic stress-tensor of matter. In this
case, the entropy functional becomes

S ∝
Z

d4x
√−g

[
(∇aξb)(∇bξa)− (∇bξb)2 +Nabξaξb

]

=
1

8πG

Z
d4x

√−g (40)

×
[

Tr (Q2)− (Tr Q)2 +8πG
(

Tab− 1
2

gabT
)

ξaξb
]

where Qab ≡ ∇aξb. The variation with respect to ξa leads to
the Eq.(38) which, on using Eq.(39), gives:

(∇a∇b−∇b∇a)ξa = 8πG
(

Tab− 1
2

gabT
)

ξa (41)

The left hand side is Rabξa due to the standard identity for
commuting the covariant derivatives. Hence the equation can
hold for arbitrary ξa only if

Rab = 8πG
(

Tab− 1
2

gabT
)

(42)

which is the same as Einstein’s equations. This result is worth
examining in detail:

To begin with, note that we did not vary the metric ten-
sor to obtain Eq.(42). In this approach, gab and Tab are de-
rived macroscopic quantities and are not fundamental vari-
ables. Einstein’s equations arise as a consistency condition,
reminiscent of the way it is derived in some string theory mod-
els due to the vanishing of beta function [26]. While the idea
of spacetime being an “elastic solid” has a long history (start-
ing from Sakharov’s work in [1]), all the previous approaches
try to obtain a low energy effective action in terms of gabs and
then vary gab to get Einstein’s equations. Our approach is very
different and is a simple consequence of taking our paradigm
seriously.

Second, this result offers a new perspective on general
coordinate transformations which are treated as akin to de-
formations in solids. General covariance now arises as a
macroscopic symmetry in the long wavelength limit, when
the spacetime satisfies the Einstein’s equations. In this limit,
the deformation should not change the thermodynamical func-
tionals. This is indeed true; the expression for the entropy in
Eq.(37) reduces to a four-divergence when Einstein’s equa-
tions are satisfied (“on shell”) making S a surface term:

S =
1

8πG

Z

V
d4x

√−g∇i(ξb∇bξi−ξi∇bξb)

=
1

8πG

Z

∂V
d3x

√
hni(ξb∇bξi−ξi∇bξb) (43)

The entropy of a bulk region V of spacetime resides in its
boundary ∂V when Einstein’s equations are satisfied. In vary-
ing Eq.(37) to obtain Eq.(38) we keep this surface contribution
to be a constant.

This result has an important consequence. If the spacetime
has microscopic degrees of freedom, then any bulk region will
have an entropy and it has always been a surprise why the
entropy scales as the area rather than volume. Our analysis
shows that, in the semiclassical limit, when Einstein’s equa-
tions hold to the lowest order, the entropy is contributed only
by the boundary term and the system is holographic.[16]

This result can be connected with our earlier one in Eq. (7)
by noticing that, in the case of spacetime, there is one kind of
“deformation” which is rather special — the inevitable trans-
lation forward in time: t → t +ε. More formally, one can con-
sider this as arising from xa → xa + ξa where ξa = ua is the
unit normal to a spacelike hypersurface. Then ξana = 0, mak-
ing the second term in Eq. (43) vanish; the first term will lead
to the integral over the surface gravity; in the Rindler limit it
will give Eq. (7). While the results agree, the interpretation is
quite different. The deformation field corresponding to time
evolution hits a singularity on the horizon, which is analogous
to a topological defect in a solid. The entropy is the price
we pay for this defect. Alternatively, in the Euclidean sec-
tor, the vector ui = ∂it goes over to ∂iθ where θ is a periodic
coordinate. The time translation becomes rotation around the
singularity in the origin of 01 plane.

Finally, let us consider the implications of our result for the
cosmological constant for which Tab = ρgab with a constant
ρ. Then, Tab− 1

2 gabT =−ρgab and the coupling term Nabξaξb

for matter is proportional to ξ2. If we vary Eq.(37) but restrict
ourselves to vectors of constant norm, then the vector field
does not couple to the cosmological constant! In this case,
one can show that the variation leads to the equation:

Rab− 1
4

gabR = 8πG(Tab− 1
4

gabT ) (44)

in which both sides are trace free. Bianchi identity can now be
used to show that ∂a(R+8πGT ) = 0, requiring (R+8πGT ) =
constant. Thus cosmological constant arises as an (undeter-
mined) integration constant in such models [27], and could be
interpreted as a Lagrange multiplier that maintains the condi-
tion ξ2 = constant. This suggests that the effect of vacuum
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energy density is to rescale the length of ξa. The quantum mi-
cro structure of spacetime at Planck scale is capable of read-
justing itself, soaking up any vacuum energy density which is
introduced. Since this process is inherently quantum gravita-
tional, it is subject to quantum fluctuations at Planck scales.
The cosmological constant we measure corresponds to this
small residual fluctuation and will depend on the volume of
the spacetime region that is probed. It is small, in the sense
that it has been reduced from L−2

P to L−2
P (LPH0)2, (where LP

is the Planck length and H0 is the current Hubble constant)
which indicates the fact that fluctuations — when measured
over a large volume — is small compared to the bulk value.
A tentative implementation of this suggestion was made in

ref.[28] but one needs to work harder to find a microscopic
realization of these ideas.

The derivation given in section III can be significantly im-
proved and Einstein’s equations can be obtained purely from
the surface term in the action. The revised version of arxive
gr-qc/0412068 contains the improved result.
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