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Observations show that the Cosmic Microwave Background (CMB) contains tiny variationslat thievel

around its black-body equilibrium temperature. The detection of these temperature fluctuations provides to
modern Cosmology evidence for the existence of primordial density perturbations that seeded all the structures
presently observed. The vast majority of the cosmological information is contained in the 2-point temperature
function, which measures the angular correlation of these temperature fluctuations distributed on the celestial
sphere. Here we study such angular correlations using a recently introduced statistic-geometrical method. More-
over, we use Monte Carlo simulated CMB temperature maps to show the equivalence of this method with the
2-point temperature function (best known as the 2-Point Angular Correlation Function). We also investigate
here the robustness of this new method under possible divisions of the original catalog-data in sub-catalogs.
Finally, we show some applications of this new method to simple cases.

I. INTRODUCTION lite [4], for this we shall apply the method to CMB tempera-
ture fluctuations maps (briefl@MB maps), and also inves-
According to modern Cosmology, in the primordial Uni- tigate thg rpbustnes; of the method un.der possible partitions
verse ionized barionic matter and photons were tightly cou®f the original data in sub-catalogs. Finally, we shall show
pled until the recombination epoch when the hydrogen and heéh€ €quivalence of our method with the 2-Point Angular Cor-
lium nuclei hold their electrons to form neutral atoms, leaving'€lation Function (2-PACF), and this will be done both in a
photons to freely stream toward us. These photons, nowadajaeoretical way using the definitions of these approaches as
observed as a faint residual relic radiation termed the Cos¥ell as in a computational way using Monte Carlo simulated
mic Microwave Background Radiation (CMB), have a well CMB maps.
described black-body Planckian spectrum as the FIRAS in-
strument on the COBE satellite showed in 1992 (see e.g. [1]
and references therein). o )
Besides this thermal equilibrium feature, the CMB pre- Recently, Bernui & Villela [5, 6] introduced a new method
served evidences of small variations in temperature (or interf© Scrutiny the angular correlations in the distribution of cos-
sity) from one part of the microwave sky to another, for thisMiC objects in the celestial sphere. _
called CMB temperature fluctuations (also known as CMBCiven a catalog witim cosmic objects (sharing common phys-
anisotropiesin the literature), which are interpreted as beingic@l properties), the method consists in first calculate the
originated during their interaction with the primordial matter- (N —1)/2 angular distances of all pairs-of-objects and then
density fluctuations. Since at that time the density fluctuation§€onstruct the normalized histogram of the number of pairs

were correlated at specific angular scales characteristic of tH¥ith @ given angular separatiorersustheir angular separa-
physical processes involved (e.g., [2, 3]), such correlation&On- The Expected-PASH (EPASH) is the histogram obtained
were imprinted in the angular distribution of the the CMB for the ideal distribution case. The difference between the

temperature fluctuations. This fact turns of fundamental im-PASH, caculated from the observational data, and the EPASH

portance the study of the CMB angular correlations, in ordefa" reveal significant departures of the former histogram with

to understand the evolution of the matter-density fluctuation§&SPect to the later, if the signal-to-noise ratio is sufficiently
to form the structures —like galaxies and galaxy clusters— oplarge. Thls_geometnc-statlstlcal tool is called the Pair Angu-
served today. lar Separation Histogram (PASH) method.

In the last decades, especially after the COBE mission, Catalogs with a large number of objects, as high-resolution
observational cosmology evolved astonishingly fast, in suclCMB maps, can be suitable divided in a set of comparable
a way that there has been an increasing improvement igub-catalogs, provided that they contain a similar number of
the quality of measuring the CMB temperature fluctuations gbjects sharing analogous physical properties, i.e. positive
While with COBE data the CMB studies were restricted toand negative CMB temperature fluctuations are not in the
large angular-scales, with the highly precise and excellent arsame sub-catalog. After the partition of the original catalog
gular resolution of WMAP data, analysis at all angular-scalesn, sayK, sub-catalogs one performs a PASH with each one
are now possible. of these sub-catalogs and average them to obtain the Mean-

In what follows we present the basics of a recently propose®ASH (MPASH). As we shall see below, the MPASH func-
methodsuitable for the study of the angular correlations in thetion is independent of the number of sub-m&ps which the
sky distribution of cosmic objects. Our main interest is fo- original map is divided, provided that the minimum number is
cussed in CMB data like those released by the WMAP satelKmyin = 2: one sub-map for the positive CMB and the other for

II. THE PASH METHOD
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the negative ones. Finally we perform, and plot, the differencep in the wholeS’ should be equal to 1,
between the MPASH and the EPASH. b4

The method has the advantage that it does not depend on @ p(fp)dQp =1.
cosmological parameters or data other than the angular po-
sition in the celestial sphere of the cosmic objects listed iriThus, a purely isotropic and normalized density distribution
the catalog to be analised. The method is also applicablef objects observed in the full-si&?, readsp(fip) = %[. With
to incomplete sky maps, including disconnected regions, otthis information, a direct calculation in eq.(2) gives,
condition that the EPASH was obtained under similar char-
acteristics (i.e. the same number of objects per catalog, and P Expected(y) _ 1 siny (5)
where objects are located in the same patch of the celestial full-sky 2 ’
sphere). Notice that the WMAP CMB maps do not include. . . . .
the monopole and dipole contributions, therefore for such datiy the EPASH for the case of isotropically distributed objects

. o n the full-skyS?.
the EPASH has to obtained taking into account these featureﬁotice that a PASHP(y) satisfies the normalisation property:

We firstly describes the basics of the method by showin 0180) 2(y)dy = 1, which let us to perform the mean of an
how to obtain a PASH given a catalog of data. A catdld§  arbitrary number of histograms, for sub-catalogs containing
a list of n cosmic objects containing their angular coordinatescomparable number of objects. This is a very useful condition
on the celestial sphere and information about their physicadince produces a sort abrmalisationof our method in the

properties; here we assume that the objects of a given catalegnse thaareaof the function MPASH-minus-EPASH is zero:
have common physical properties.

We divide the interval0,180°] in Nyins bins of equal length Z 180
0y = 180’ /Npins, Where each sub-interval has the fodm= 0

(yi—%y, yi+%y],i:1,2,...,NbinS, with center iny, = (i —

1) 3y. Next Iculate th&l = n(n—1)/2 lar dis-
5) 0y. Next, we calculate =n(n—1)/2 angular dis )
tances corresponding to the distances between all pairs—olij—l' THE 2-POINT ANGULAR CORRELATION FUNCTION

objects. We denote b§(y) the number of pairs of objects

(PMPASH(y) — pEPASHIy) ) dy = 0. (6)

in C separated by a distanye (0, 18C°]. Then, fT_hedTgvo-Point Angular Correlation Function (2-PACF) is de-
ined by
1
dy) = — 1
=gy 2,00 W C(Y) = (T(1) T (1)) ™

is the normalized counting of the number of pairs of objectswherefi,, fiq are such thatosy = i, - fig, andT (fip), T(fg) are

ie. ZiN:bilnsq,(yi)éy: 1, separated by an angye that lies in the temperature quctuguons of.the p|xpL§q of a given CMB

the sub-interval. map, respectively. Notice that, in some literature (see, e.g. [7])
Let p, g any two objectsp, g € C, with angular coordinates this definition appears with (i) /To instead ofT (ip), where
(8p,@p). (B, @y), respectively, wher®,, 8, € [0,180°] and TQ is the b_Iack—body equilibrium ter_nperature of the CMB.
®p, @y € [0,360°]. The unit vectorsy, fq (i.e.,|fip| = [fg| = 1) Since fii,i = p,q is a vector with angular coordinates
denote the position of the two objecfsq on the celestial (8:®),i = p,q, one can expand (f) in the spherical har-
sphere. We denote hy(fip) the probability densities of the MONICS, SO

objects distributed on the celestial sphgreand listed inC.

Then, the probability density that two objegtsy € C be sep- () = ;nanggm(O.,(n) ’ ®)
arated an angular distange [0,180] is defined by
27 where ay,, are the multipole moments, with zero mean
P(y) = dQ,dQqp(fp) p(Ag) 8(y—d(fp,Ag)), (2)  (am) = O for Gaussian temperature fluctuations. In a statis-
tically isotropic Universe the variance of the multipole mo-
where & is the Dirac-delta, and a(ﬁpv fq) = ments is independent af, which means that we can define
arccogcosB, cosdy + sinBp, sinBy cog @p — )] .
Hence, the PASH is simply dzeflned by C = T z |a€m|2’ 9)
1 m=-/
Py) =5 P(y)dy. 3) |
Y 3 and the set of’ is termed the angular power spectrum of the
CMB map.

However, if the interval; is small enough (as shall be consid-

ered here), a suitable approximation for the PASH is Using egs. (8) and (9), and well-known properties of the

spherical harmonics in the definition (7), the 2-PACF for a
D(y) ~ P(y;). (4)  statistically isotropic Universe can be written as

Notice thaip(rip)dQp, is the probability of the objeqi to be in

1
Cly)=—>» (20+1)GPs(co 10
the sky patcldQp € &. Of course, the probability of finding V) 411;( +1)CPi(cosy), (10)



Brazilian Journal of Physics, vol. 35, no. 4B, December, 2005 1187

: The above definition of the 2-PACF, eq. (7), can also be
0.125 : written as (see [8], pag. 195, eq. (5.28), whé(a) =
0.1 &(cosy) =C(y))
0.075 C(y) + 1
0.05 Z Z
0025 =A dQqp(fg) dQpp(fip)d(cosBp—cosy+0q))d(Pp—@y),
0 i
-0.025 whereA is a constant, and is the Dirac-delta. Multiplying
T T T T R both sides by*3¥, which according to eq. 5 is the EPASH for
: the full-sky catalog, and using properties of the Dirac-delta
0.03 : we obtain
0.02 : sin sin
: ey + Y
0.01 /\ . , 2 2
5 A
0 =3 dQqp(fg) dQpp(Mip)d(8p —Bq —Y)d(Pp — @),
0.01 -
002 which means that whe@y, = ¢, theny = 6, — 6q; in other
' ) words the only contribution to the integral comes from the
-0-03 : equalityy = d(fip,fy). This implies that the right-hand-side

0 25 50 75 100 125 150 175

of this equation is equal to the definition of the PASH, eq.
_ - . ) _ _ (2), except for the constaf. Thus, choosing suitably the

FIG. 1: Here we consider a statistically isotropic Universe with HZ 5 ;e of A, we formally obtain the equivalence between both
spectrum. Moreover, motived in WMAP data where the m0n0p0|eappr0aches
and dipole contributions are not included, here we consider that the

sum index starts witlf = 2, i.e. with the quadrupole momenitop:

We plotted the 2-PACF, given bg(y) = %Zz:z &f—ﬁ)ﬂ;(cosy).
Bottom: We plotted thenormalized2-PACF, which defined by
cromy) = %/C(y); this 2-PACF is callechormalizedbecause the Moreover, we also performed here a computational verifi-
area between the curve and the horizontal axis is zero. cation of this equivalence. For this, we carry out the aver-
age of 1000 MPASH-minus-EPASH functions from an equal

) i number of Monte Carlo CMB full-sky maps generated under
whereP; are the Legendre polynomial of orederWe define e statistical isotropy and HZ spectrum assumptions. Our re-
the function sults, observed in Figure 2, show the excellent coincidence
N between both functions which is a computational verification

C™(y) = 5 sinyC(y). (11)  of the equivalence between the MPASH-minus-EPASH func-

i ) tion and thenormalized2-PACF.

and call it thenormalized2-PACF because the area between Therefore, we conclude that the two approaches, the

the curve and the horizontal axis is zero, as can be verifieipasH-minus-EPASH and  the normalized 2-PACF
from the bottom-plot appearing in Figure 1. Moreover, as-j~norm;,, __ siny ; .
suming a Harrison-Zeldovich (HZ) scale-invariant spectru (CHY) = =5Cly) are equivalent.  However, it is

9 1) 2 PECUMyorth to mention here that theormalizedversion of the
and for large angular scales (i.¢.,5 100 we have(; = 5 pacF seems to be more suitable than the original 2-PACF
Q/(¢(¢+1)), where Q is the quadrupole normalisation €on-yersion, hecause it leds to scrutiny the angular correlations at

stant [7, 8]. In Figure 1 we plotted both functio®y) and 5 gngular scales. As observed in the top-plot of Figure 1, the
C"™(y), for the case of a statistically isotropic Universe with iqina| 2-PACF is not well-defined for small angular scales
HS spectrum. [0,~ 20°].

0
When we use the formula (10), instead of the definition eq
(7), a crucial point appears in the method of the 2-PACF. In
fact, |ntr|n5|_cally to th? method there is a_large_uncertamty_ N\, ROBUSTNESS OF THE MPASH CALCULATION
the evaluation of the's, called the Cosmic Variance, and is
given byd(y/ G = +/2/(2¢+1). This reveals no more than

our'ignorance in determining the real values of the IOV"'Orderl\/IPASH, in the case that it could be obtained considering dif-
G (.e.for{=2,34,..). ferent partitions (or ways to generate the sub-catalogs) of the
IV. THE 2-PACF versusTHE PASH-minus-EPASH original catalog (e.g. the temperature data in a CMB map). We
FUNCTION shall deal with this problem by directly showing our results of
calculating the MPASH in different partitions (different num-
Here we shall prove the equivalence between the PASHber of sub-catalogK) of a given WMAP CMB temperature
method and the 2-PACF. map.

_ pEPASH(

y)-

sin
“Heq) = PPty

Here we shall study the robustness in the obtention of the
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FIG. 2: The red-points (including the standard deviation bars at 004~ 70° South Gal cap b
10) correspond to average of 1000 MPASH-minus-EPASH functions i) At 1
from Monte Carlo CMB maps generated under the statistical isotropy 0.02 b
assumption, and the black-line corresponds toetkgecte®-PACF 1
chom(y) = %’ Si—2 ﬁ—ﬁ)Pg(cow) for a statistically isotropic Uni-
verse. We realize that the excellent coincidence between both re-
sults is a validation of the equivalence between the MPASH-minus-
EPASH function and thaormalized2-PACF.
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A CMB full-sky map is the celestial sphere partitioned in a ‘ e
set of equal-area pixels, where to each pixel is assigned a tem- engular seporotion (degrees)
perature value; so the above mentioned physical property is
the CMB temperature fluctuation value of each pixel. To ob-FIG. 3: MPASH-minus-EPASH functions for CMB data in ti6
tain the angular correlations of a CMB map, we order the seblorth and South Galactic spherical caps of the co-added WMAP
of pixels according to increasing values of the pixels temperMaP [8]. The seven curves plotted in each figure (top and bot-
ature. Next, we divide this ordered set of pixels<irdisjoint tom) correspond to the cases where the number of histograms was:

. K =4,16,17,20,25,40, and 80, respectively. Th& = 4 case cor-
sub-sets (termed sub-catalogs), all of them with a compar

- aI’ésponds to the degraded makige = 64, and all the others to
ble number of pixels. Afterward, we compute the MPASH \_ . _ 158[11]. As observed, the coincidence of this rainbow of

averaging theK PASHSs calculated from each of thesub-  cyres proves that the MPASH-minus-EPASH is independent of the

catalogs. As we shall show in Figure 6, the MPASH functionnumberk.

is independent of the number of sub-catal&gs which the

original map is divided, provided that the minimum number is

Kmin = 2: one sub-map for the positive CMB and the other forthe analysis of seven different partitions of the above men-

the negative ones. However, it is clear that we can divide th@oned regions of the co-added CMB map, demonstrates that

original data in several ways, always following these criteria.the MPASH-minus-EPASH function (and of course also the
Here we consider the CMB map obtained using WMAPMPASH) is actually independent .

data, specifically the co-added Q+V+W map [9], which Finally, in Figure 4 we show the same result, but this

is a weighted combination of the 8 high frequency time for the full-sky WMAP CMB map, termed the ‘cleaned’

differencing assemblies (DA): Q1, Q2, V1, V2, W1, W2, map [10], which was produced by combining all the individ-

W3, and W4 (see: htt)\lambda.gsfc.nasa.ggproduct  yal frequency WMAP maps using a Wiener filter algorithm in

\map\current IMaps_cleaned.cfm), that is obtained accord- order to reduce or eliminate foregounds (specially those com-

ing to ing from our Galaxy).

Z|123TI/0%,|
0 b
A 1/0%,|

VI. SIMPLE APPLICATIONS OF THE PASH

Tep-
co-added™ METHOD

whereT, is the CMB map for the DA, andca, is the noise In order to illustrate the MPASH-minus-EPASH function
perobservation for the DA. revealing signatures in simple cases, here we consider three
To investigate whether the MPASH function is indepen-CMB maps where the angular correlations are knavpmiori:
dent of the number of sub-cataloggsin which the original
catalog is divided due to a large amount of pixels, we study
first the angular correlations in the North-Galactic and South-
Galactic spherical cap regions @€° of aberture of the co-
added WMAP map. Our neat results shown in Figure 3, for

e a statistically isotropic CMB map, that is there
are no angular correlations between the temperature
fluctuations of the map; the results of our analysis are
shown in Figure 5.
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MPASH — EPASH

FIG. 4: MPASH-minus-EPASH functions for the full-sky WMAP
‘cleaned’ map [10]. The four curves plotted here correspond to the
cases where the number of histograms to construct the MPASH was:
K =40,81,100, and130, respectively. As observed, all the coloured-
curves coincide showing again that the MPASH-minus-EPASH func-
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FIG. 5: Statistically isotropic CMB map and the MPASH-minus-
EPASH analysis for these data. The MPASH-minus-EPASH function
is just a statistical (noisy) oscillations around the horizontal axis, re-
vealing just the absence of angular coorelations in the data.
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FIG. 6: A CMB Dipole map and the MPASH-minus-EPASH analysis
for these data. The MPASH-minus-EPASH function results $iree
function, trivially revealing a tipical dipole-signature (with some sta-
tistical noise).
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e a pure dipole map; the results of our analysis are shown
in Figure 6.

FIG. 7: A quadrupole CMB map and the MPASH-minus-EPASH
function resulting from these data. A short analysis of the physical
data let us to realize that this function actually represents a quadru-
pole angular-correlation signature, again with some level of statisti-

e a pure quadrupole map; the results of our analysis arga| noise.
shown in Figure 7.
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