Abstract
The objective of the present investigation was to design, optimize and characterize the gastro retentive floating levofloxacin tablets and perform in-vivo evaluation using radiographic imaging. The floating tablets were prepared by using polymers i.e hydroxy propyl methyl cellulose (HPMC-K4M) and carbopol-940 individually and in combination by nonaquous granulation method. All the Formulations were evaluated for swelling index (S.I), floating behavior and in-vitro drug release kinetics. The compatibility study of levofloxacin with other polymers was investigated by FTIR, DSC, TGA and XRD. Results from FTIR and DSC revealed no chemical interaction amongst the formulation components. The optimized formulation (F11) showed floating lag time (FLT), total floating time (TFT) swelling index (S.I) of 60 sec, >16h and approximately 75 %, respectively. Moreover, F11 showed zero order levofloxacin release in simulated gastric fluid over the period of 6 h. X-ray studies showed that total buoyancy time was able to delay the gastric emptying of levofloxacin floating tablets in rabbits for more than 4 hours. In conclusion the optimized formulation (F11) can be used for the sustained delivery of levofloxacin for the treatment of peptic ulcer.
Keywords: Gastroretentive dosage forms; Levofloxacin; Floating tablets; Carbopol 940; HPMC K4M