Open-access Ictiofauna de riachos de cabeceira da bacia do rio Ribeira de Iguape, nos limites do Arco de Ponta Grossa, Paraná, Brasil

bn Biota Neotropica Biota Neotrop. 1806-129X 1676-0611 Instituto Virtual da Biodiversidade | BIOTA - FAPESP Resumo: A bacia do rio Ribeira de Iguape (Estado do Paraná) é altamente relevante para a preservação de remanescentes da Mata Atlântica. Os seus altos níveis de diversidade e de endemismo de peixes explicam a dinâmica fluvial promovida pelo Arco de Ponta Grossa, estrutura geológica que promove eventos de captura de cabeceira e de isolamento entre as drenagens do alto rio Paraná, do rio Iguaçu e do rio Ribeira de Iguape. Aqui, nosso objetivo foi fornecer um inventário inédito para riachos de cabeceira da bacia do rio Ribeira de Iguape nos limites do Arco de Ponta Grossa. Encontramos 29 espécies de peixes representando quatro ordens e nove famílias. Siluriformes foi a ordem mais rica seguida por Characiformes. Nove espécies apresentaram alta abundância de indivíduos amostrados, contribuindo com 87,8% das coletas. Quatro espécies apareceram em menos de 25% dos locais amostrados (ocasionais), e seis espécies apareceram em mais de 50 % (constantes). Identificamos três espécies não descritas e uma (Coptodon rendalli) não nativa. Duas espécies tiveram sua distribuição geográfica ampliada e, a presença de Astyanax bifasciatus, endêmica para a bacia do rio Iguaçu, ratifica eventos recentes de captura de cabeceira entre drenagens costeiras e aquelas que fluem para dentro do continente. Estudos de divisores biogeográficos são necessários para explicar os processos de origem e dispersão de espécies a fim de direcionar estudos sobre diversidade e ações de manejo preventivas. Coptodon rendalli (Tilápia) é um registro alarmante sobre a introdução de espécies na região. Introduction The most direct means of accessing the biodiversity of a biome or locality is to carry out an inventory of species. The elaboration of any taxonomic list is not trivial, because much effort and time are spent in the specific techniques of sampling for a particular group of organisms as well as gaining the knowledge required about systematics, taxonomy, ecology, and natural history (Silveira et al. 2010). Recognizing the species of fish is essential to design effective conservation and management strategies of aquatic ecosystems (Oliveira et al. 2014; Agostinho et al. 2016; Melo et al. 2016; Ferreira et al. 2017). Therefore, ichthyofaunistic inventories are crucial to robust analyzes of biodiversity involving ecological and biogeographic aspects. South America is home to many freshwater fishes, with approximately 20 orders, 69 families, 739 genera and 5,160 valid species (Reis et al. 2016). However, knowledge of the actual quantity of species and their geographical distribution is far from complete (Ota et al. 2015). Specifically to the Paraná State, where are numerous river networks, recent inventories of fish (Baumgartner et al. 2012; Pagotto et al. 2012; Frota et al. 2016a; Cavalli et al. 2018) have been improving the knowledge about the state's large sub-basins, yet economically biased by hydroelectric projects financing. Headwater regions of the rivers, with lower profitability of the electric sector, remain without substantial samplings, even though they have a high rate of endemism and are ecologically threated by human occupation (Baumgartner et al. 2012). Recent studies have provided important records of fish species in headwater streams of the Paraná State, but all of them are limited to the systems of the upper rio Paraná (e.g.,Delariva & Silva 2013; Hoffmann et al. 2015; Cetra et al. 2016; Frota et al. 2016a; Cavalli et al. 2018; Claro-García et al. 2018) and the rio Iguaçu (e.g.,Frota et al. 2016b; Larentis et al. 2016; Delariva et al. 2018), which converges to the rio de la Plata system. Many headwater streams located in Atlantic Coastal basins of the Paraná State are unlisted and little is known about which species reside there. Among the coastal drainages of the Paraná State, the rio Ribeira de Iguape basin is an ecologically relevant region for preserving remaining areas of the Atlantic Forest with high endemism of fish (Oyakawa et al. 2006; Menezes et al. 2007; Oyakawa & Menezes 2011). The headwaters of the rio Ribeira de Iguape basin stand out the Ponta Grossa Arch. In this important geological structure, recent tectonic activities (see Franco-Magalhães et al. 2010) have resulted in an accelerated fluvial dynamism between drainages of the upper rio Paraná, rio Iguaçu, and rio Ribeira de Iguape. This fact has been proven by the sharing of species by headwater capture events, and or serving as an efficient biogeographic barrier (Ribeiro 2006; Frota et al. 2016a; Morais-Silva et al. 2018). Considering this backdrop, our objective was to provide an inventory for headwater streams' fish of the rio Ribeira de Iguape basin at the boundaries of the Ponta Grossa Arch. Material and Methods 1. Study area The rio Ribeira de Iguape basin is in the São Paulo and Paraná states, draining 25,000 km2 and including 25 municipalities in São Paulo and 15 in Paraná. One-third of this area is in Paraná State, which is formed by the confluence of the rios Ribeirinha and Açungui, 85 km to the north of the capital, Curitiba. Toward to its mouth in the Atlantic Ocean, in the municipality of Iguape (SP), the rio Ribeira de Iguape travels 470 km through a fairly rugged relief with strong altitudinal gradients, extending from the coastal plain, close to sea level, to the peaks of the mountain, range with more than 1,000 m of altitude. The rio Ribeira de Iguape basin includes one of the largest remaining areas of Brazil's Atlantic Forest, which despite its critical nature still holds significant biodiversity and endemism (Oyakawa et al. 2006). The streams of the Atlantic Forest are characterized by beds formed by rocks, presenting clear waters, strong currents, relatively low temperatures, and high concentration of dissolved oxygen (Oyakawa et al. 2006). Streams can be divided into three main types according to their topographical location: 1) mountain streams or headwater streams, 2) lowland streams, and 3) coastal streams. Headwater streams, like those studied here, are characterized by great slope of the relief with thicker bottom substrate and relatively straight channel (Oyakawa et al. 2006). The basin of the rio Ribeira de Iguape in the Paraná State is bordered to the north by the rio Itararé basin, the rio Tibagi basin to the west (both belong to the upper rio Paraná system), and to the south by the rio Iguaçu basin (Figure 1A). The headwaters of the rio Ribeira de Iguape basin in the Paraná State are located on the boundaries of the Ponta Grossa Arch. This arch involves a large deformational structure with NW-SE trend axis. Its elevation (Figure 1A) varies between more than 1,500 m in the center and SE, and 600 m in NW (Franco-Magalhaes et al. 2010). Figure 1 Map of the study area showing: (A) hypsometric map of Paraná State with highlight to the Ponta Grossa Arch, (B) the location of the rio Ribeira de Iguape basin within of the Paraná State, and sampled sites in headwater streams. 2. Data collection The specimens were collected under a permanent license to collect zoological material, number 14028-1, granted by the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA, in Portuguese). All the 32 streams were sampled (Table 1; Figure 1B) on six collection trips: October 2014, October 2015, July 2016, October 2016, January 2017, and April 2017. A 100-m stretch was defined at each site, which were georeferenced (Table 1) and sampled by electrofishing. This technique employs two electrified dip nets, producing an electric discharge between 200 and 400 V and current of 2 A, that stun the fish temporarily (Lobón-Cervia 1991). The specimens were anesthetized in benzocaine hydrochloride and fixed in 10% formalin in the field. After a few days, the fishes were transferred to 70% ethanol in the laboratory and deposited in the Coleção Ictiológica do Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (NUP). Table 1 Information on the headwater streams sampled in the rio Ribeira de Iguape basin, Paraná State, Brazil. Numbers in parentheses after each species name indicates abundance. Sample point Remarks Altitude (meters) Coordinates Municipality Species caught 1 Rio da Mata, affluent of rio Açungui, rio Ribeira de Iguape basin ~745 25º19'49.5''S, 49º47'2.4''W Ponta Grossa Astyanax laticeps (2), Astyanax bifasciatus (39), Bryconamericus microcephalus (15), Cambeva davisi (13), Characidium pterostictum (39), Chasmocranus lopezae (11) Harttia kronei (22), Isbrueckerichthys duseni (35), Pimelodella transitoria (17) and Rineloricaria kronei (2) 2 Rio Santa Cruz, affluent of rio Açungui, rio Ribeira de Iguape basin ~728 25º19'28.1''S, 49º47'29.7''W Campo Largo Astyanax bifasciatus (4), Astyanax laticeps (7), Bryconamericus microcephalus (8), Cambeva davisi (9), Characidium pterostictum (2), Chasmocranus lopezae (11), Deuterodon iguape (4), Geophagus iporanguensis (1), Harttia kronei (3), Isbrueckerichthys duseni (23), Kronichthys lacerta (5), Phalloceros harpagos (33), Pimelodella transitoria (14), Rhamdia quelen (1) and Rineloricaria kronei (9) 3 Rio do Jacui, affluent of rio Santa Cruz, rio Ribeira de Iguape basin ~801 25º15'17.8''S, 49º47'9.4''W Ponta Grossa Astyanax laticeps (34), Cambeva davisi (8), Characidium pterostictum (13), Harttia kronei (13), Isbrueckerichthys duseni (15), Kronichthys lacerta (7), Phalloceros harpagos (16) and Rhamdia quelen (3) 4 Rio Caçador, affluent of rio Conceição, rio Ribeira de Iguape basin ~727 25º8'4.2''S, 49º45'23.9'' W Ponta Grossa Cambeva davisi (2), Characidium pterostictum (15), Harttia kronei (44), Isbrueckerichthys duseni (47), Kronichthys lacerta (2), Neoplecostomus ribeirensis (2) and Phalloceros harpagos (1) 5 Rio Ribeirão, affluent of rio Açungui, rio Ribeira de Iguape basin ~639 25º12'31.5S, 49º36'5.2''W Campo Largo Cambeva davisi (2), Chasmocranus lopezae (6), Corydoras ehrhardti (5), Deuterodon iguape (41), Geophagus iporanguensis (1), Harttia kronei (26), Hypostomus interruptus (1), Isbrueckerichthys duseni (7), Kronichthys lacerta (4), Neoplecostomus ribeirensis (1), Rhamdia quelen (1) and Rhamdioglanis transfasciatus (10) 6 Rio do Cerne, affluent of rio Açungui, rio Ribeira de Iguape basin ~684 25º16'38.9''S, 49º33'38.6''W Campo Largo Astyanax laticeps (34), Cambeva davisi (2), Corydoras ehrhardti (10), Geophagus iporanguensis (13), Harttia kronei (14), Hypostomus interruptus (1), Isbrueckerichthys duseni (20), Kronichthys lacerta (6), Phalloceros harpagos (12), Rhamdia quelen (3) and Rineloricaria kronei (31) 7 Rio Açungui, affluent of rio Ribeira de Iguape, rio Ribeira de Iguape basin ~809 25º26'14.6''S, 49º39'55.3''W Campo Largo Astyanax bifasciatus (15), Astyanax laticeps (44), Cambeva davisi (9), Chasmocranus lopezae (2), Harttia kronei (5), Isbrueckerichthys duseni (3), Pimelodella transitoria (18), Rhamdia quelen (2), Kronichthys lacerta (1), Phalloceros harpagos (3) and Rineloricaria kronei (1) 8 Rio Retiro, affluent of rio Açungui, rio Ribeira de Iguape basin ~904 25º20'36.6''S, 49º36'47.5''W Campo Largo Astyanax laticeps (13), Isbrueckerichthys duseni (6), Phalloceros harpagos (1) and Rhamdia quelen (3) 9 Riacho Boa Vista, affluent of rio Açungui, rio Ribeira de Iguape basin ~843 25º18'12.5''S, 49º34'15.9''W Campo Largo Cambeva davisi (21), Phalloceros harpagos (17) and Rhamdia quelen (1) 10 Rio Conceição, affluent of rio Ribeira de Iguape, rio Ribeira de Iguape basin ~773 25º18'3.5''S, 49º28'3.2''W Campo Magro Astyanax laticeps (44), Chasmocranus lopezae (3), Corydoras ehrhardti (16), Geophagus iporanguensis (4), Harttia kronei (10), Hoplias aff. malabaricus (1), Isbrueckerichthys duseni (38), Kronichthys lacerta (2), Phalloceros harpagos (7), Parotocinclus maculicauda (3), Rhamdia quelen (3) and Rineloricaria kronei (5) 11 Rio da Barra, affluent of rio Conceição, rio Ribeira de Iguape basin ~959 25º17'57.3''S, 49º24'39.2''W Campo Magro Astyanax laticeps (17), Cambeva davisi (2), Harttia kronei (71), Isbrueckerichthys duseni (50), Neoplecostomus ribeirensis (10), Phalloceros harpagos (1) and Rhamdia quelen (1) 12 Rio Córrego Fundo, affluent of rio Piedade, rio Ribeira de Iguape basin ~875 25º15'44.5''S, 49º23'57.2''W Itaperuçu Astyanax laticeps (9), Astyanax bifasciatus (1), Cambeva davisi (1), Corydoras ehrhardti (1), Geophagus iporanguensis (4), Isbrueckerichthys duseni (52), Neoplecostomus ribeirensis (5) and Rhamdia quelen (9) 13 Unnamed river, affluent of Ribeirão Grande, rio Ribeira de Iguape basin ~858 25º3'34.14"S, 49º52'58.83"W Ponta Grossa Astyanax lacustris (42), Astyanax laticeps (1), Astyanax sp. 1 (5), Cambeva davisi (48), Geophagus iporanguensis (24), Hypostomus interruptus (1), Isbrueckerichthys duseni (6) and Phalloceros harpagos (228) 14 Unnamed river ~795 25º7'7.19"S, 49º51'31.59"W Ponta Grossa Astyanax sp. 1 (2) and Isbrueckerichthys duseni (13) 15 Unnamed river, affluent of Arroio Passo do Nenê, rio Ribeira de Iguape basin ~765 25º5'55.23"S, 49º51'10.39"W Ponta Grossa Astyanax sp. 1 (1), Geophagus iporanguensis (2), Hoplias aff. malabaricus (1), Hypostomus interruptus (4), Isbrueckerichthys duseni (51), Phalloceros harpagos (15) and Rhamdia quelen (4) 16 Unnamed river, affluent of Arroio Itaguá, rio Ribeira de Iguape basin ~851 25º4'20.07"S, 49º55'1.74"W Ponta Grossa Cambeva davisi (22), Chasmocranus lopezae (1), Coptodon rendalli (10), Geophagus iporanguensis (95), Hoplias aff. malabaricus (7), Hypostomus interruptus (66), Isbrueckerichthys duseni (4), Kronichthys lacerta (3), Phalloceros harpagos (1,637), Pimelodella transitoria (2) and Rhamdia quelen (4) 17 Unnamed river, affluent of Arroio Itaguá, rio Ribeira de Iguape basin ~854 25º4'51.63"S, 49º54'52.29"W Ponta Grossa Cambeva davisi (18), Geophagus iporanguensis (2) and Phalloceros harpagos (318) 18 Unnamed river, affluent of Ribeirão Grande, rio Ribeira de Iguape basin ~839 25º3'40.84"S, 49º52'51.01"W Ponta Grossa Astyanax lacustris (13), Astyanax laticeps (3), Cambeva davisi (42), Geophagus iporanguensis (14), Hypostomus interruptus (10), Isbrueckerichthys duseni (2) and Phalloceros harpagos (344) 19 Unnamed river ~882 25º6'58.25"S, 49º56'58.47"W Ponta Grossa Cambeva davisi (16) 20 Unnamed river, affluent of rio da Areia, rio Ribeira de Iguape basin ~863 25º5'29.87"S, 49º55'43.42"W Ponta Grossa Astyanax laticeps (35), Astyanax sp. 1 (4), Cambeva davisi (81), Geophagus iporanguensis (2), Hoplias aff. malabaricus (3) and Rhamdia quelen (2) 21 Unnamed river, affluent of rio Guarituba, rio Ribeira de Iguape basin ~714 25º5'40.83"S, 49º49'53.79"W Ponta Grossa Astyanax lacustris (10), Cambeva davisi (4), Cambeva cf. cubataonis (14), Corydoras ehrhardti (25), Deuterodon iguape (1), Geophagus iporanguensis (36), Hoplias aff. malabaricus (1), Hypostomus interruptus (58), Isbrueckerechthys duseni (8), Kronichthys lacerta (7), Parotocinclus maculicauda (58), Phalloceros harpagos (34), Rhamdia quelen (4) and Rineloricaria kronei (19) 22 Unnamed river, affluent of rio São Pedro, rio Ribeira de Iguape basin ~923 25º7'52.41"S, 49º56'48.14"W Ponta Grossa Astyanax laticeps (26), Cambeva davisi (11), Characidium pterostictum (33), Chasmocranus lopezae (5), Deuterodon iguape (58), Imparfinis sp. (6), Kronichthys lacerta (9), Neoplecostomus ribeirensis (2) and Rhamdioglanis transfasciatus (2) 23 Unnamed river, affluent of rio São Pedro, rio Ribeira de Iguape basin ~923 25º7'51.36"S, 49º56'48.38"W Ponta Grossa Astyanax laticeps (17), Cambeva davisi (8), Characidium pterostictum (40), Chasmocranus lopezae (5), Deuterodon iguape (116), Imparfinis sp. (17) and Isbrueckerichthys duseni (16) 24 Unnamed river ~894 25º7'26.95"S, 49º56'34.61"W Ponta Grossa Astyanax laticeps (13) and Cambeva davisi (11) 25 Unnamed river, affluent of Arroio Três Barras, rio Ribeira de Iguape basin ~859 25º6'58.33"S, 49º54'57.75"W Ponta Grossa Astyanax laticeps (2), Cambeva davisi (51), Chasmocranus lopezae (4), Cnesterodon iguape (1), Deuterodon iguape (11), Geophagus iporanguensis (1), Harttia kronei (3), Isbrueckerichthys duseni (20), Kronichthys lacerta (2), Neoplecostomus ribeirensis (10) and Phalloceros harpagos (5) 26 Unnamed river ~784 25º6'34.07"S, 49º51'16.97"W Ponta Grossa Astyanax sp. 2 (6) and Callichthys callichthys (1) 27 Unnamed river ~828 25º5'13.75"S, 49º52'8.94"W Ponta Grossa Astyanax laticeps (3), Astyanax sp. 2 (1), Cambeva davisi (17) and Isbrueckerichthys duseni (6) 28 Unnamed river, affluent of Arroio Três Barras, rio Ribeira de Iguape basin ~868 25º6'57.95"S, 49º55'6.06"W Ponta Grossa Astyanax laticeps (2), Astyanax sp. 1 (5), Cambeva davisi (44), Chasmocranus lopezae (3) and Isbrueckerichthys duseni (22) 29 Unnamed river, affluent of Ribeirão da Cruz, rio Ribeira de Iguape basin ~789 25º5'3.91"S, 49º51'19.16"W Ponta Grossa Cambeva davisi (1), Geophagus iporanguensis (1), Hoplias aff. malabaricus (2), Hypostomus interruptus (14), Isbrueckerichthys duseni (8), Phalloceros harpagos (12), Rhamdia quelen (2) and Rineloricaria kronei (10) 30 Unnamed river, affluent of Ribeirão da Cruz, rio Ribeira de Iguape basin ~798 25º5'15.63"S, 49º51'41.46"W Ponta Grossa Astyanax laticeps (2), Astyanax sp. 1 (7), Coptodon rendalli (1), Geophagus iporanguensis (44), Hypostomus interruptus (11), Isbrueckerichthys duseni (1) and Phalloceros harpagos (26) 31 Unnamed river ~943 25º9'8.25"S, 49º53'57.53"W Ponta Grossa Astyanax sp. 2 (2), Geophagus iporanguensis (4), Hoplias aff. malabaricus (2), Kronichthys lacerta (2) and Phalloceros harpagos (7) 32 Unnamed river ~834 25º'33.31"S, 49º52'4.43"W Ponta Grossa Cambeva davisi (2), Characidium pterostictum (5), Isbrueckerichthys duseni (7) and Phalloceros harpagos (3) Fish species were classified based on Eschmeyer & Fong (2018) and species determinations were accomplished by comparison of the specimens with original descriptions or with type specimens of species reported from rio Ribeira de Iguape basin by Oyakawa et al. (2006), Menezes et al. (2007) and Oyakawa & Menezes (2011). Whenever possible, the determinations of the species were checked by specialists of each taxonomic group. The species were categorized by their frequency of occurrence (hereafter, constancy), which was calculated for all sampled streams according to Dajoz (1983). Species with a constancy up to 25% were classified as occasional, between 25 and 50% as accessory, and higher than 50% as constant. In addition, the species were categorized by origin into autochthonous and allochthonous, respectively, to distinguish native and introduced species to the rio Ribeira de Iguape basin, following Oyakawa et al. (2006), Menezes et al. (2007), and Oyakawa & Menezes (2011). Results There were collected a total of 5,617 individuals distributed in four orders, nine families, and 29 species (Tables 1 and 2; Figures 2 and 3). Siluriformes (Figure 4) was the most representative order in number of species and families (16 species and four families), followed by Characiformes (nine species and three families). Among the families, Loricariidae and Characidae, both with seven species, presented higher richness contributing together with approximately 48.3% of all collected species, followed by Heptapteridae (five species) with approximately 17.3% of all collected species (Figure 5). Table 2 Fish species collected in headwater streams from the rio Ribeira de Iguape basin, at the boundaries of the Ponta Grossa Arch, Paraná State, Brazil. Ordem Family Species Origin/Constancy Voucher Characiformes Characidae Astyanax lacustris (Lütken, 1875) Autochthonous/Occasional NUP19288 Astyanax laticeps (Cope, 1894) Autochthonous/Constant NUP 17407, NUP 17418, NUP 17444, NUP18324, NUP 18948 Astyanax bifasciatus Garavello & Sampaio, 2010 Autochthonous/Occasional NUP18323, NUP 18354 Astyanax sp. 1 Autochthonous/Occasional NUP 19290, NUP19302, NUP 19305 Astyanax sp. 2 Autochthonous/Occasional NUP19304 Bryconamericus microcephalus (Miranda Ribeiro, 1908) Autochthonous/Occasional NUP17413, NUP 17420 Deuterodon iguape Eigenmann, 1907 Autochthonous/Occasional NUP 17419, NUP18305, NUP 18900 Erythrinidae Hoplias aff. malabaricus (Bloch, 1794) Autochthonous/Occasional NUP19303 Crenuchidae Characidium pterostictum Gomes, 1947 Autochthonous/Occasional NUP17410, NUP 17428, NUP 17442, NUP 18897 Siluriformes Callichthyidae Callichthys callichthys (Linnaeus, 1758) Autochthonous/Occasional NUP18924 Corydoras ehrhardti Steindachner, 1910 Autochthonous/Occasional NUP18315, NUP 18899, NUP 18911, NUP 18938, NUP 18955 Heptapteridae Chasmocranus lopezae Miranda Ribeiro, 1968 Autochthonous/Accessory NUP 17415, NUP 17426, NUP18304, NUP 18902, NUP 18940 Imparfinis sp. Autochthonous/Occasional NUP19294 Pimelodella transitoria Miranda Ribeiro, 1907 Autochthonous/Occasional NUP17416, NUP 17427, NUP 18919 Rhamdia quelen (Quoy & Gaimard, 1824) Autochthonous/Accessory NUP18915, NUP 18925, NUP 18945, NUP 18952 Rhamdioglanis transfasciatus Miranda Ribeiro, 1908 Autochthonous/Occasional NUP18312, NUP 18901 Loricariidae Harttia kronei Miranda Ribeiro, 1908 Autochthonous/Accessory NUP 17408, NUP 17424, NUP17445, NUP 18905, NUP 18947 Hypostomus interruptus (Miranda Ribeiro, 1918) Autochthonous/Accessory NUP18307, NUP 19300 Isbrueckerichthys duseni (Miranda Ribeiro, 1907) Autochthonous/Constant NUP 17411, NUP18358, NUP 18896, NUP 18904, NUP 19289 Kronichthys lacerta (Nichols, 1919) Autochthonous/Accessory NUP 17421, NUP 17441, NUP 18302, NUP 18914, NUP 18921 Neoplecostomus ribeirensis Langeani, 1990 Autochthonous/Occasional NUP18353, NUP 18949, NUP 18956 Parotocinclus maculicauda (Steindachner, 1877) Autochthonous/Occasional NUP18342, NUP 18943 Rineloricaria kronei (Miranda Ribeiro, 1911) Autochthonous/Occasional NUP18322, NUP 18903, NUP 18909, NUP 18923, NUP 18935 Trichomycteridae Cambeva cf. cubataonis (Bizerril, 1994) Autochthonous/Occasional NUP19291 Cambeva davisi (Haseman, 1911) Autochthonous/Constant NUP18332, NUP 18927, NUP 18933, NUP 18950, NUP 18957 Cichliformes Cichlidae Coptodon rendalli (Boulenger, 1897) Allochthonous/Occasional NUP19301 Geophagus iporangensis Haseman, 1911 Autochthonous/Accessory NUP18316, NUP 19306 Cyprinodontiformes Poeciliidae Cnesterodon iguape Lucinda, 2005 Autochthonous/Occasional NUP19295 Phalloceros harpagos Lucinda, 2008 Autochthonous/Constant NUP 17417, NUP 18894, NUP 18908, NUP 18918, NUP 18944, NUP19307 Figure 2 Representative individuals of the Characiformes, Cichliformes and Cyprinodontiformes registred to the headwater streams from the rio Ribeira de Iguape basin, at the Ponta Grossa Arch boundaries, Paraná State, Brazil. Their catalogue numbers in the Coleção Ictiológica do Nupélia (NUP) and standard lengths are presented after the names of species. 1) Astyanax lacustris, NUP 19288, 61.1 mm; 2) Astyanax laticeps, NUP 18324, 40.4 mm; 3) Astyanax bifasciatus, NUP 18354, 75.0 mm; 4) Astyanax sp. 1, NUP 19302, 72.2 mm; 5) Astyanax sp. 2, NUP 19304, 48.2 mm; 6) Bryconamericus microcephalus, NUP 17413, 47.8 mm; 7) Deuterodon iguape, NUP 18305, 71.4 mm; 8) Hoplias aff. malabaricus, NUP 19303, 56.0 mm; 9) Characidium pterostictum, NUP 17410, 53.7 mm; 10) Coptodon rendalli, NUP 19301, 34.8 mm; 11) Geophagus iporangensis, NUP 18316, 120.4 mm; 12) Cnesterodon iguape, NUP 19295, 24.5 mm; 13) Phalloceros harpagos, NUP 17417, 31.3 mm. Figure 3 Representative individuals of the Siluriformes registred to the headwater streams from the rio Ribeira de Iguape basin, at the Ponta Grossa Arch boundaries, Paraná State, Brazil. Their catalogue numbers in the Coleção Ictiológica do Nupélia (NUP) and standard lengths are presented after the names of species. 14) Callichthys callichthys, NUP 18924, 75.9 mm; 15) Cambeva cf. cubataonis, NUP 19291, 41.4 mm; 16) Cambeva davisi, NUP 18332, 94.9 mm; 17) Corydoras ehrhardti, NUP 18315, 38.5 mm; 18) Chasmocranus lopezae, NUP 18304, 103.6 mm; 19) Imparfinis sp., NUP19294, 63.5 mm; 20) Pimelodella transitoria, NUP 17416, 100.9 mm; 21) Rhamdia quelen, NUP 18915, 90.3 mm; 22) Rhamdioglanis transfasciatus, NUP 18312, 118.3 mm; 23) Harttia kronei, NUP 17445, 68.8 mm; 24) Hypostomus interruptus, NUP 18307, 57.8 mm; 25) Isbrueckerichthys duseni, NUP 18358, 111.1 mm; 26) Kronichthys lacerta, NUP 18302, 51.5 mm; 27) Neoplecostomus ribeirensis, NUP 18353, 68.2 mm; 28) Parotocinclus maculicauda, NUP 18342, 42.0 mm; 29) Rineloricaria kronei, NUP 18322, 109.6 mm. Figure 4 Percentages of the total number of collected species in each order in the headwater streams from rio Ribeira de Iguape basin, Paraná State, Brazil. Figure 5 Percentages of the total number of collected species in each family in the headwater streams from rio Ribeira de Iguape basin, Paraná State, Brazil. Regarding the abundance of the individuals sampled (Figure 6), Phalloceros harpagosLucinda, 2008 (2,720 individuals), Isbrueckerichthys duseni (Miranda Ribeiro, 1907) (460 individuals), Cambeva davisi (Haseman, 1911) (445 individuals), Astyanax laticeps (Cope, 1894) (308 individuals), Geophagus iporangensis Haseman, 1911 (248 individuals), Deuterodon iguape Eigenmann, 1907 (231 individuals), Harttia kronei Miranda Ribeiro, 1908 (211 individuals), Hypostomus interruptus (Miranda Ribeiro, 1918) (166 individuals), and Characidium pterostictum Gomes, 1947 (147 individuals) were the most abundant species, contributing with approximately 87.8% of all collected individuals. On the other hand, the other 20 species did not have 100 individuals collected. Figure 6 Percentages of number of individuals of each species with more than 100 individuals collected in the headwater streams from the rio Ribeira de Iguape basin, Paraná State, Brazil. As for constancy (Table 2), most of the species were categorized as occasional (19 species). Four species (Astyanax laticeps, Isbrueckerichthys duseni, Phalloceros harpagos, and Cambeva davisi) were categorized as constant, and the six (Chasmocranus lopezae Miranda Ribeiro, 1968, Rhamdia quelen (Quoy & Gaimard, 1824), Harttia kronei, Hypostomus interruptus, Kronichthys lacerta (Nichols, 1919), and Geophagus iporangensis) were categorized as accessory. There were collected three putatively undescribed species: Astyanax sp. 1, Astyanax sp. 2, and Imparfinis sp. Individuals collected of Cnesterodon iguape Lucinda, 2005 and Cambeva cf. cubataonis (Bizerril, 1994) represent an expansion to their geographical distribution beyond the type locality. The new record of Astyanax bifasciatusGaravello & Sampaio, 2010 to the rio Ribeira de Iguape basin may give more evidence of ichthyofaunistic exchange among basins in the region. Considering the origin of species (Table 2), only Coptodon rendalli (Boulenger, 1897) was classified as allochthonous. Discussion This inventory recorded 29 fish species for the headwaters streams of the rio Ribeira de Iguape basin (nearly 39.7% of the total recorded in Oyakawa et al. 2006, a key publication for this basin). The highest number of species in Siluriformes and Characiformes follows the pattern of the Neotropical region of fish diversity (Castro 1999, Lowe-McConnell 1999, Buckup et al. 2007) and meets the samplings already carried out in the rio Ribeira de Iguape basin (e.g., Oyakawa et al. 2006; Oyakawa & Menezes 2007; Cetra et al. 2012; Barrella et al. 2014). Headwaters streams of the Atlantic Forest present high velocity of water flow and a mosaic of large rocks, which favors species with morphology to fixation and support (Oyakawa et al. 2006; Ferreira et al. 2010), as the sucker mouths of Loricariidae, and spines in the fins of Heptapteridae and in the operculum Trichomycteridae. Environments with fast-flowing and rocky riverine habitats (like those ones we sampled here) are local incubators of the diversification and biological specialization, promoting high rates of diversification of lineages and phenotypes, especially for Loricariidae (Roxo et al. 2017). The Atlantic Coastal basins contain low-diversity lineages of loricariids and with early-branching restricted to these drainages (Roxo et al. 2014), reinforcing the importance of the rio Ribeira do Iguape basin to the evolution and conservation of Loricariidae (Roxo et al. 2012). Characidae is widely recognized as the family with the most number of species in the Neotropical region, and the fourth among all the actinopterygian (Mirande 2018). The high diversity of mesohabitats in streams of the Atlantic Forest (backwaters separated by rapids) allow species adapted to live in the water column as the characids (Oyakawa et al. 2006; Ferreira et al. 2010). Oyakawa et al. (2006) mentioned Phalloceros caudimaculatus (Hensel, 1868), however, in the systematic review of Phalloceros Eigenmann, 1907, Lucinda (2008) described that P. harpagos presents a wider geographical distribution, covering the rio Paraná-Paraguay basin and the coastal drainages of the rio Itaboapana (Espirito Santo State) and rio Araranguá (Santa Catarina State), and restriced P. caudimaculatus to southern of South America. The individuals sampled here were P. harpagos and had a wide distribution in practically all types of environments of the rio Ribeira de Iguape basin, from those with high contents of dissolved oxygen and with strong flow, to backwaters, with low dissolved oxygen and higher temperatures (Oyakawa et al. 2006). Due to the wide range of environmental conditions that P. harpagos supports, the viviparity, and the coexistence of juveniles and adults in the same habitats (Mazzoni et al. 2011), its abundance recorded here reflected a discrepant dominance of this species. In general, occasional species were more numerous in the streams sampled here. Probably at least part of the explanation is the influence of the altitudinal gradient. Studies about elevational gradients frequently report a decrease in species richness with increasing altitude (Fu et al. 2004; Jaramillo-Villa et al. 2010), and an increase of the number of endemic species in headwaters regions (Carvajal-Quintero et al. 2015). Our sampling showed that some constant or accessory species (e.g. Harttia kronei, Hypostomus interruptus, Isbrueckerichthys duseni and Cambeva davisi) also present the highest frequencies of abundance. These species has morphological structures adapted to the fixation in structures underwater an withstand the force of the water flow, like species of Characidium, and members of Heptapteridae, Loricariidae, and Trichomycteridae (Oyakawa et al. 2006). Thereby, these species can colonize environments at higher altitudes. The putatively undescribed species collected highlighted a gap in the taxonomic knowledge about headwater regions, meeting the biodiversity shortfalls, which are the gaps between existing evolutionary knowledge and the complete knowledge of a particular biological domain at a certain point in time (Hortal et al. 2015). These shortfalls are a direct consequence of the complexity generated by an evolutionary system, in which the rate of production of new entities exceeds the maximum rate at which we can describe them. It should be noted that many species are disappearing without being known, cataloged or formally described, what was called by Brown & Lomolino (1998) as Linnean shortfall. A similar case of biodiversity shortfall refers to the lack of knowledge of the actual geographical distribution of organisms, named Wallacean shortfall (Lomolino 2004). The two species (Cnesterodon iguape and Cambeva cf. cubataonis) that have expanded their geographic distributions beyond their type locality showed this gap, which may be strongly dangerous in relation to the historical patterns of biogeographic data analysis (Meyer et al. 2015). Thus, our samplings support an inherent concern related to the probable biodiversity shortfalls existing in the ichthyofauna of the headwaters streams from the rio Ribeira de Iguape basin. The presence of Astyanax bifasciatus, an endemic species of the rio Iguaçu system (Garavello & Sampaio 2010; Baumgartner et al. 2012), corroborates recent events of headwater captures between coastal drainages and those that flow into the interior of the continent. Studies of biogeographic divisors are necessary in attempts to explain the processes of origin and dispersion of species (Barton 1988). Watershed dividers, such as high mountains (Ponta Grossa Arch, for example), are often seen as effective dispersion barriers for fish, and fish distributions are used to assign river basin boundaries (Ingenito & Buckup 2007). Clearly, the fish composition of the rio Ribeira de Iguape basin is very different from the neighboring basins (see Ingenito et al. 2004; Hoffmann et al. 2015; Cetra et al. 2016; Claro-García et al. 2018). The formation of the Ponta Grossa Arch represents a barrier for fish populations and, in addition, due to their recent tectonic activities (Franco-Magalhaes et al. 2010), some species have been shared between the rio Ribeira de Iguape basin and neighboring basins of the upper rio Paraná and rio Iguaçu systems (Ribeiro 2006, Morais-Silva et al. 2018), constituting a characteristic pattern recognized by Ribeiro (2006) as "Pattern C". This pattern represents recent vicariant events between the upland crystalline shield rivers and the adjacent coastal drainages leading to the sharing of fish species and the formation of truly hybrid zones. Thus, the limits of the Ponta Grossa Arch bring interesting patterns of geographic distribution of the ichthyofauna with great effects in biogeographical and phylogeographic studies (Morais-Silva et al. 2018). The presence of the allochthonous species Coptodon rendalli (popularly known as "tilapia") is an alarming record! Numerous fish farms are in full swing and breed non-native species that present a high risk of invasion in natural environments such as tilapia. Several authors have affirmed the invading potential of fish farms and the negative effects of new introductions (e.g., Orsi & Agostinho 1999, Daga et al. 2015, Daga et al. 2016, Lima et al. 2018). Tilapias significantly change native aquatic communities due to predation of eggs and larvae, aggressive competition for space and food (Sanches et al. 2012), and alteration of the substrate for nest building and predation of zooplankton, which inevitably increases the levels of eutrophication causing changes in the limnological parameters and consequently affecting the native species (Figueredo & Giani 2005; Córdova-Tapia et al. 2015). Thus, Brazil should adopt restriction and control measures for species with high invasion potential, as well as invest in technologies to prevent fish farm leakage in order to control the introduction of tilapia in natural environments (Padial et al. 2017; Alves et al. 2018, Cassemiro et al. 2018; Gubiani et al. 2018). Conclusions Progress in Neotropical ichthyology depends on the biotic inventory of poorly sampled areas for identification of fish diversity (Schaefer 1998). For this inventory, we provide samplings in headwater streams of the rio Ribeira de Iguape basin in a location of high altitudes with interesting biogeographic patterns and inserted in Conservation Units in the Paraná State. Again, Atlantic Forest streams show a high degree of endemism in relation to their fish, therefore, the data obtained here may provide support for future biogeographic, ecological and conservationist studies. References AGOSTINHO, A.A., GOMES, L.C., SANTOS, N.C.L., ORTEGA, J.C.G. & PELICICE, F.M. 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fish. Res. 173: 26-36. AGOSTINHO A.A. GOMES L.C. SANTOS N.C.L. ORTEGA J.C.G. PELICICE F.M. 2016 Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management Fish. Res. 173 26 36 ALVES, G.H.Z., TÓFOLI, R.M., MESSAGE, H.J., LIMA-JÚNIOR, D.P. & HOEINGHAUS, D.J. 2018. New decree promotes fish invasion in Amazon and Pantanal. Biodivers. Conserv. 27(9): 2449-2450. ALVES G.H.Z. TÓFOLI R.M. MESSAGE H.J. LIMA-JÚNIOR D.P. HOEINGHAUS D.J. 2018 New decree promotes fish invasion in Amazon and Pantanal Biodivers. Conserv. 27 9 2449 2450 BARRELLA, W., MARTINS, A.G., PETRERE JR., M. & RAMIRES, M. 2014. Fishes of the southeastern Brazil Atlantic Forest. Environ. Biol. Fish 87(12): 1367-1376. BARRELLA W. MARTINS A.G. PETRERE M. JR. RAMIRES M. 2014 Fishes of the southeastern Brazil Atlantic Forest Environ. Biol. Fish 87 12 1367 1376 BARTON, N.H. 1988. Speciation. In Analytical biogeography, an integrated approach to the study of animal and plant distributions (A.A. Myers, & P.S. Giller, eds). Campman and Hall, Londres, p.185-218. BARTON N.H. 1988 Speciation Analytical biogeography, an integrated approach to the study of animal and plant distributions Myers A.A. Giller P.S. Campman and Hall Londres 185 218 BAUMGARTNER, G., PAVANELLI, C.S., BAUMGARTNER, D., BIFI, A.G., DEBONA, T. & FRANA, V.A. 2012. Peixes do Baixo Rio Iguaçu. Eduem, Maringá. BAUMGARTNER G. PAVANELLI C.S. BAUMGARTNER D. BIFI A.G. DEBONA T. FRANA V.A. 2012 Peixes do Baixo Rio Iguaçu Eduem Maringá BROWN, J.H. & LOMOLINO, M.V. 1998. Biogeography. Sinauer Press, Sunderland, Massachusetts. BROWN J.H. LOMOLINO M.V. 1998 Biogeography Sinauer Press Sunderland, Massachusetts BUCKUP, P.A., MENEZES, N.A. & GHAZZI, M.S. 2007. Catálogo das espécies de peixes de água doce do Brasil. Museu Nacional (UFRJ), Rio de Janeiro. BUCKUP P.A. MENEZES N.A. GHAZZI M.S. 2007 Catálogo das espécies de peixes de água doce do Brasil Museu Nacional (UFRJ) Rio de Janeiro CASSEMIRO, F.A.S., BAILLY, D., GRAÇA, W.J. & AGOSTINHO, A.A. 2018. The invasive potential of tilapias (Osteichthyes, Cichlidae) in the Americas. Hydrobiologia 817(1): 133-154. CASSEMIRO F.A.S. BAILLY D. GRAÇA W.J. AGOSTINHO A.A. 2018 The invasive potential of tilapias (Osteichthyes, Cichlidae) in the Americas Hydrobiologia 817 1 133 154 CASTRO, R.M.C. 1999. Evolução da ictiofauna de riachos sul americanos: padrões gerais e possíveis processos casuais. In Ecologia de peixes de riachos: estado atual e perspectivas (E.P. Caramaschi, R. Mazzoni & P.R. Peres-Neto, eds). UFRJ, Rio de Janeiro, p.139-155. CASTRO R.M.C. 1999 Evolução da ictiofauna de riachos sul americanos: padrões gerais e possíveis processos casuais Ecologia de peixes de riachos: estado atual e perspectivas Caramaschi E.P. Mazzoni R. Peres-Neto P.R. UFRJ Rio de Janeiro 139 155 CÓRDOVA-TAPIA, F., CONTRERAS, M. & ZAMBRANO, L. 2015. Trophic niche overlap between native and non-native fishes. Hydrobiologia 746(1): 291-301. CÓRDOVA-TAPIA F. CONTRERAS M. ZAMBRANO L. 2015 Trophic niche overlap between native and non-native fishes Hydrobiologia 746 1 291 301 CARVAJAL-QUINTERO, J.D., ESCOBAR, F., ALVARADO, F., VILLA-NAVARRO, F.A., JARAMILLO-VILLA, Ú. & MALDONADO-OCAMPO. 2015. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecol. Evol. 5(13): 2608-2620. CARVAJAL-QUINTERO J.D. ESCOBAR F. ALVARADO F. VILLA-NAVARRO F.A. JARAMILLO-VILLA Ú. MALDONADO-OCAMPO 2015 Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia Ecol. Evol. 5 13 2608 2620 CAVALLI, D., FROTA, A., LIRA, A.D., GUBIANI, E.A., MARGARIDO, V.P. & GRAÇA, W.J. 2018. Update on the ichthyofauna of the Piquiri River basin, Paraná, Brazil: a conservation priority area. Biota Neotrop. 18(2): e20170350. http://dx.doi.org/10.1590/1676-0611-BN-2017-0350 (last access 23 August 2018). CAVALLI D. FROTA A. LIRA A.D. GUBIANI E.A. MARGARIDO V.P. GRAÇA W.J. 2018 Update on the ichthyofauna of the Piquiri River basin, Paraná, Brazil: a conservation priority area Biota Neotrop 18 2 e20170350 http://dx.doi.org/10.1590/1676-0611-BN-2017-0350 23 August 2018 CETRA, M., BARRELLA, W., LANGEANI NETO, F., MARTINS, A.G., MELLO, B.J. & ALMEIDA, R.S. 2012. Fish fauna of headwater streams that cross Atlantic Forest of south São Paulo state. Check List 8(3): 421-425. CETRA M. BARRELLA W. LANGEANI F. NETO MARTINS A.G. MELLO B.J. ALMEIDA R.S. 2012 Fish fauna of headwater streams that cross Atlantic Forest of south São Paulo state Check List 8 3 421 425 CETRA, M., MATTOX, G.M.T., FERREIRA, F.C., GUINATO, R.B., SILVA, F.V. & PEDROSA, M. 2016. Headwater stream fish fauna from the Upper Paranapanema River basin. Biota Neotrop. 16(3): e20150145. http://dx.doi.org/10.1590/1676-0611-BN-2015-0145 (last access 23 August 2018). CETRA M. MATTOX G.M.T. FERREIRA F.C. GUINATO R.B. SILVA F.V. PEDROSA M. 2016 Headwater stream fish fauna from the Upper Paranapanema River basin Biota Neotrop 16 3 e20150145 http://dx.doi.org/10.1590/1676-0611-BN-2015-0145 23 August 2018 CLARO-GARCÍA, A., ASSEGA, F.M. & SHIBATTA, O.A. 2018. Diversity and distribution of ichthyofauna in streams of the middle and lower Tibagi river basin, Paraná, Brazil. Check List 14(1): 43-53. CLARO-GARCÍA A. ASSEGA F.M. SHIBATTA O.A. 2018 Diversity and distribution of ichthyofauna in streams of the middle and lower Tibagi river basin, Paraná, Brazil Check List 14 1 43 53 DAGA, V.S., SKÓRA, F., PADIAL, A.A., ABILHOA, V., GUBIANI, É.A. & VITULE, J.R.S. 2015. Homogenization dynamics of the fish assemblages in Neotropical reservoirs: comparing the roles of introduced species and their vectors. Hydrobiologia 746(1): 327-347. DAGA V.S. SKÓRA F. PADIAL A.A. ABILHOA V. GUBIANI É.A. VITULE J.R.S. 2015 Homogenization dynamics of the fish assemblages in Neotropical reservoirs: comparing the roles of introduced species and their vectors Hydrobiologia 746 1 327 347 DAGA, V.S., DEBONA, T., ABILHOA, V., GUBIANI, É.A. & VITULE, J.R.S. 2016. Non-native fish invasions of a Neotropical ecoregion with high endemism: a review of the Iguaçu River. Aquat. Invasions 11(2): 209-223. DAGA V.S. DEBONA T. ABILHOA V. GUBIANI É.A. VITULE J.R.S. 2016 Non-native fish invasions of a Neotropical ecoregion with high endemism: a review of the Iguaçu River Aquat. Invasions 11 2 209 223 DAJOZ, R. 1983. Ecologia geral. Vozes, Petrópolis. DAJOZ R. 1983 Ecologia geral Vozes Petrópolis DELARIVA, R.L. & SILVA, J.C. 2013. Fish fauna of headwater streams of Perobas Biological Reserve, a conservation unit in the Atlantic Forest of the Northwestern Paraná State, Brazil. Check List 9(3): 549-554. DELARIVA R.L. SILVA J.C. 2013 Fish fauna of headwater streams of Perobas Biological Reserve, a conservation unit in the Atlantic Forest of the Northwestern Paraná State, Brazil Check List 9 3 549 554 DELARIVA, R.L., NEVES, M.P., LARENTIS, C., KLIEMANN, B.C.K., BALDASSO, M.C. & WOLFF, L.L. 2018. Fish fauna in forested and rural streams from an ecoregion of high endemism, lower Iguaçu River basin, Brazil. Biota Neotrop. 18(3): e20170459. http://dx.doi.org/10.1590/1676-0611-bn-2017-0459 (last access 23 August 2018). DELARIVA R.L. NEVES M.P. LARENTIS C. KLIEMANN B.C.K. BALDASSO M.C. WOLFF L.L. 2018 Fish fauna in forested and rural streams from an ecoregion of high endemism, lower Iguaçu River basin, Brazil Biota Neotrop 18 3 e20170459 http://dx.doi.org/10.1590/1676-0611-bn-2017-0459 23 August 2018 ESCHMEYER, W.N. & FONG, J.D. 2018. SPECIES BY FAMILY/ SUBFAMILY. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (last access 22 August 2018). ESCHMEYER W.N. FONG J.D. 2018 SPECIES BY FAMILY/ SUBFAMILY http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp 22 August 2018 FERREIRA, F.C., SOUZA, U.P. & PETRERE JR, M. 2010. Zonação longitudinal da ictiofauna em ambientes lóticos. Boletim da Sociedade Brasileira de Limnologia 38: 1-9. FERREIRA F.C. SOUZA U.P. PETRERE M. JR 2010 Zonação longitudinal da ictiofauna em ambientes lóticos Boletim da Sociedade Brasileira de Limnologia 38 1 9 FERREIRA, F. S., DUARTE, G. S. V., SEVERO-NETO, F., FROEHLICH O. & SÚAREZ, Y. R. 2017. Survey of fish species from plateau streams of the Miranda River Basin in the Upper Paraguay River Region, Brazil. Biota Neotrop. 17(3): e20170344. http://dx.doi.org/10.1590/1676-0611-BN-2017-0344 (last access 23 August 2018). FERREIRA F. S. DUARTE G. S. V. SEVERO-NETO F. FROEHLICH O. SÚAREZ Y. R. 2017 Survey of fish species from plateau streams of the Miranda River Basin in the Upper Paraguay River Region, Brazil Biota Neotrop 17 3 e20170344 http://dx.doi.org/10.1590/1676-0611-BN-2017-0344 23 August 2018 FIGUEREDO, C.C. & GIANI, A. 2005. Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshwater Biol. 50(8): 1391-1403. FIGUEREDO C.C. GIANI A. 2005 Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil) Freshwater Biol 50 8 1391 1403 FRANCO-MAGALHAES, A.O.B., HACKSPACHER, P.C., GLASMACHER, U.A. & SAAD, A.R. 2010. Rift to post-rift evolution of a "passive" continental margin: the Ponta Grossa Arch, SE Brazil. Int. J. Earth Sci. 99(7): 1599-1613. FRANCO-MAGALHAES A.O.B. HACKSPACHER P.C. GLASMACHER U.A. SAAD A.R. 2010 Rift to post-rift evolution of a "passive" continental margin: the Ponta Grossa Arch, SE Brazil Int. J. Earth Sci. 99 7 1599 1613 FROTA, A., DEPRÁ, G.C., PETENUCCI, L.M. & GRAÇA, W.J. 2016a. Inventory of the fish fauna from Ivaí River basin, Paraná State, Brazil. Biota Neotrop. 16(3): e20150151 http://dx.doi.org/10.1590/1676-0611-BN-2015-0151 (last access 23 August 2018). FROTA A. DEPRÁ G.C. PETENUCCI L.M. GRAÇA W.J. 2016a Inventory of the fish fauna from Ivaí River basin, Paraná State, Brazil Biota Neotrop 16 3 e20150151 http://dx.doi.org/10.1590/1676-0611-BN-2015-0151 23 August 2018 FROTA, A., GONÇALVES, E.V.R., DEPRÁ, G.C. & GRAÇA, W.J. 2016b. Inventory of the ichthyofauna from the Jordão and Areia river basins (Iguaçu drainage, Brazil) reveals greater sharing of species than thought. Check List 12(6): 1995. FROTA A. GONÇALVES E.V.R. DEPRÁ G.C. GRAÇA W.J. 2016b Inventory of the ichthyofauna from the Jordão and Areia river basins (Iguaçu drainage, Brazil) reveals greater sharing of species than thought Check List 12 6 1995 1995 FU, C., WU, J., WANG, X., LEI, G. & CHEN, J. 2004. Patterns of diversity, altitudinal range and body size among freshwater fishes in the Yangtze River Basin, China. Glob. Ecol. Biogeogr. 13(6): 43-552. FU C. WU J. WANG X. LEI G. CHEN J. 2004 Patterns of diversity, altitudinal range and body size among freshwater fishes in the Yangtze River Basin, China Glob. Ecol. Biogeogr. 13 6 43 552 GARAVELLO, J.C. & SAMPAIO, F.A.A. 2010. Five new species of genus Astyanax Bird & Girard, 1854 from Rio Iguaçu, Paraná, Brazil (Ostariophysi, Characiformes, Characidae). Braz. J. Biol. 70(3): 847-865. GARAVELLO J.C. SAMPAIO F.A.A. 2010 Five new species of genus Astyanax Bird & Girard, 1854 from Rio Iguaçu, Paraná, Brazil (Ostariophysi, Characiformes, Characidae) Braz. J. Biol. 70 3 847 865 GUBIANI, É.A., RUARO, R., RIBEIRO, V.R., EICHELBERGER, A.C.A., BOGONI, R.F., LIRA, A.D., CAVALLI, D., PIANA, P.A. & GRAÇA, W.J. 2018. Non-native fish species in Neotropical freshwaters: how did they arrive, and where did they come from? Hydrobiologia 817(1): 57-69. GUBIANI É.A. RUARO R. RIBEIRO V.R. EICHELBERGER A.C.A. BOGONI R.F. LIRA A.D. CAVALLI D. PIANA P.A. GRAÇA W.J. 2018 Non-native fish species in Neotropical freshwaters: how did they arrive, and where did they come from? Hydrobiologia 817 1 57 69 HOFFMANN, A.C., NASCIMENTO, R.H.C. & SHIBATTA, O.A. 2015. Fish fauna from tributaries throughout the Tibagi River basin, upper Paraná basin, Brazil. Check List 11(6): 1815. HOFFMANN A.C. NASCIMENTO R.H.C. SHIBATTA O.A. 2015 Fish fauna from tributaries throughout the Tibagi River basin, upper Paraná basin, Brazil Check List 11 6 1815 1815 HORTAL, J., BELLO, F., DINIZ-FILHO, J.A.F., LEWINSOHN, T.M., LOBO, J.M. & LADLE, R.J. 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46: 523-549. HORTAL J. BELLO F. DINIZ-FILHO J.A.F. LEWINSOHN T.M. LOBO J.M. LADLE R.J. 2015 Seven shortfalls that beset large-scale knowledge of biodiversity Annu. Rev. Ecol. Evol. Syst. 46 523 549 INGENITO, L.F.S. & BUCKUP, P.A. 2007. The Serra da Mantiqueira, south-eastern Brazil, as a biogeographical barrier for fishes. J. Biogeogr. 34(7): 1173-1182. INGENITO L.F.S. BUCKUP P.A. 2007 The Serra da Mantiqueira, south-eastern Brazil, as a biogeographical barrier for fishes J. Biogeogr. 34 7 1173 1182 INGENITO, L.F.S., DUBOC, L.F. & ABILHOA, V. 2004. Contribuição ao conhecimento da ictiofauna da bacia do alto rio Iguaçu, Paraná, Brasil. Arquivos de Ciências Veterinárias e Zoológicas da UNIPAR 7(1): 23-36. INGENITO L.F.S. DUBOC L.F. ABILHOA V. 2004 Contribuição ao conhecimento da ictiofauna da bacia do alto rio Iguaçu, Paraná, Brasil Arquivos de Ciências Veterinárias e Zoológicas da UNIPAR 7 1 23 36 JARAMILLO-VILLA, U., MALDONADO-OCAMPO, J.A. & ESCOBAR, F. 2010. Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia. J. Fish Biol. 76(10): 2401-2417. JARAMILLO-VILLA U. MALDONADO-OCAMPO J.A. ESCOBAR F. 2010 Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia J. Fish Biol. 76 10 2401 2417 LARENTIS, C., DELARIVA, R.L., GOMES, L.C., BAUMGARTNER, D., RAMOS, I.P. & SEREIA, D.A.O. 2016. Ichthyofauna of streams from the lower Iguaçu River basin, Paraná State, Brazil. Biota Neotrop. 16(3): e20150117 http://dx.doi.org/10.1590/1676-0611-BN-2015-0117 (last access 23 August 2018). LARENTIS C. DELARIVA R.L. GOMES L.C. BAUMGARTNER D. RAMOS I.P. SEREIA D.A.O. 2016 Ichthyofauna of streams from the lower Iguaçu River basin, Paraná State, Brazil Biota Neotrop 16 3 e20150117 http://dx.doi.org/10.1590/1676-0611-BN-2015-0117 23 August 2018 LIMA, L.B., OLIVEIRA, F.J.M., GIACOMINI, H.C. & LIMA-JUNIOR, D.P. 2018. Expansion of aquaculture parks and the increasing risk of non-native species invasions in Brazil. Rev. Aquacult. 10(1): 111-122. LIMA L.B. OLIVEIRA F.J.M. GIACOMINI H.C. LIMA-JUNIOR D.P. 2018 Expansion of aquaculture parks and the increasing risk of non-native species invasions in Brazil Rev. Aquacult. 10 1 111 122 LOBÓN-CERVIÁ, J. 1991. Dinámica de poblaciones de peces en rios: pesca eléctrica y métodos de capturas sucesivas en la estima de abundancias. Monografia, Consejo Superior de Investigaciones Científicas, Museo Nacional de Ciencias Naturales. LOBÓN-CERVIÁ J. 1991 Dinámica de poblaciones de peces en rios: pesca eléctrica y métodos de capturas sucesivas en la estima de abundancias Monografia Consejo Superior de Investigaciones Científicas, Museo Nacional de Ciencias Naturales LOMOLINO, M.V. 2004. Conservation biogeography. In Frontiers of biogeography: new directions in the geography of nature (M.V. Lomolino & L.R. Heaney, eds). Sinauer Associates, Sunderland, p.293-296. LOMOLINO M.V. 2004 Conservation biogeography Frontiers of biogeography: new directions in the geography of nature Lomolino M.V. Heaney L.R. Sinauer Associates Sunderland 293 296 LOWE-MCCONNELL, R.H. 1999. Estudos ecológicos de comunidades de peixes tropicais. EDUSP, São Paulo. LOWE-MCCONNELL R.H. 1999 Estudos ecológicos de comunidades de peixes tropicais EDUSP São Paulo LUCINDA, P.H.F. 2008. Systematics and biogeography of the genus Phalloceros Eigenmann, 1907 (Cyprinodontiformes: Poeciliidae: Poeciliinae), with the description of twenty-one new species. Neotrop. Ichthyol. 6(2): 113-158. LUCINDA P.H.F. 2008 Systematics and biogeography of the genus Phalloceros Eigenmann, 1907 (Cyprinodontiformes: Poeciliidae: Poeciliinae), with the description of twenty-one new species Neotrop. Ichthyol. 6 2 113 158 MAZZONI, R., NOVAES, V.C. & IGLESIAS-RIOS, R. 2011. Microhabitat use by Phalloceros harpagos Lucinda (Cyprinodontiformes: Poeciliidae) from a coastal stream Southeast Brazil. Neotrop. Ichthyol. 9(3): 665-672. MAZZONI R. NOVAES V.C. IGLESIAS-RIOS R. 2011 Microhabitat use by Phalloceros harpagos Lucinda (Cyprinodontiformes: Poeciliidae) from a coastal stream Southeast Brazil Neotrop. Ichthyol. 9 3 665 672 MELO, B.F., BENINE, R.C., BRITZKE, R., GAMA, C.S. & OLIVEIRA, C. 2016. An inventory of coastal freshwater fishes from Amapá highlighting the occurrence of eight new records for Brazil. ZooKeys 606: 127-140. MELO B.F. BENINE R.C. BRITZKE R. GAMA C.S. OLIVEIRA C. 2016 An inventory of coastal freshwater fishes from Amapá highlighting the occurrence of eight new records for Brazil ZooKeys 606 127 140 MENEZES, N.A., WEITZMAN, S.H., OYAKAWA, O.T., LIMA, F.C.T., CASTRO, R.M.C. & WEITZMAN, M.J. 2007. Freshwater fishes of Mata Atlântica: preliminary list of species and comments on conservation of Neotropical freshwater fishes. Museu de Zoologia - Universidade de São Paulo, São Paulo. MENEZES N.A. WEITZMAN S.H. OYAKAWA O.T. LIMA F.C.T. CASTRO R.M.C. WEITZMAN M.J. 2007 Freshwater fishes of Mata Atlântica: preliminary list of species and comments on conservation of Neotropical freshwater fishes Museu de Zoologia - Universidade de São Paulo São Paulo MEYER, C., KREFT, H., GURALNICK, R. & JETZ, W. 2015. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6:82221. MEYER C. KREFT H. GURALNICK R. JETZ W. 2015 Global priorities for an effective information basis of biodiversity distributions Nat. Commun. 6 82221 82221 MIRANDE, J.M. 2018. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics. http://dx.doi.org/10.1111/cla.12345 MIRANDE J.M. 2018 Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes) Cladistics http://dx.doi.org/10.1111/cla.12345 MORAIS-SILVA, J.P., OLIVEIRA, A.V., FABRIN, T.M.C., DIAMANTE, N.A., PRIOLI, S.M.A.P., FROTA, A., GRAÇA, W.J. & PRIOLI, A.J. 2018. Geomorphology influencing the diversification of fish in small-order rivers of neighboring basins. Zebrafish 15(4): 389-397. MORAIS-SILVA J.P. OLIVEIRA A.V. FABRIN T.M.C. DIAMANTE N.A. PRIOLI S.M.A.P. FROTA A. GRAÇA W.J. PRIOLI A.J. 2018 Geomorphology influencing the diversification of fish in small-order rivers of neighboring basins Zebrafish 15 4 389 397 OLIVEIRA, A.G., GOMES, L.C., LATINI, J.D. & AGOSTINHO, A.A. 2014. Implications of using a variety of fishing strategies and sampling techniques across different biotopes to determine fish species composition and diversity. Nat. Conservação 12(2): 112-117. OLIVEIRA A.G. GOMES L.C. LATINI J.D. AGOSTINHO A.A. 2014 Implications of using a variety of fishing strategies and sampling techniques across different biotopes to determine fish species composition and diversity Nat. Conservação 12 2 112 117 ORSI, M.L. & AGOSTINHO, A.A. 1999. Introdução de espécies de peixes por escapes acidentais de tanques de cultivo em rios da Bacia do rio Paraná, Brasil. Rev. Bras. Zool. 16(2): 557-560. ORSI M.L. AGOSTINHO A.A. 1999 Introdução de espécies de peixes por escapes acidentais de tanques de cultivo em rios da Bacia do rio Paraná, Brasil Rev. Bras. Zool. 16 2 557 560 OTA, R.R., MESSAGE, H.J., GRAÇA, W.J. & PAVANELLI, C.S. 2015. Neotropical Siluriformes as a model for insights on determining biodiversity of animal groups. PLoS ONE 10(7): e0132913. OTA R.R. MESSAGE H.J. GRAÇA W.J. PAVANELLI C.S. 2015 Neotropical Siluriformes as a model for insights on determining biodiversity of animal groups PLoS ONE 10 7 e0132913 OYAKAWA, O.T. & MENEZES, N.A. 2011. Checklist dos peixes de água doce do Estado de São Paulo, Brasil. Biota Neotrop. 11(1a): 19-32 http://www.biotaneotropica.org.br/v11n1a/pt/abstract?inventory+bn0021101a2011 (last access 18 August 2018). OYAKAWA O.T. MENEZES N.A. 2011 Checklist dos peixes de água doce do Estado de São Paulo, Brasil Biota Neotrop 11 1a 19 32 http://www.biotaneotropica.org.br/v11n1a/pt/abstract?inventory+bn0021101a2011 18 August 2018 OYAKAWA, O.T., AKAMA, A., MAUTARI, K.C. & NOLASCO, J.C. 2006. Peixes de riachos da Mata Atlântica. Neotrópica, São Paulo. OYAKAWA O.T. AKAMA A. MAUTARI K.C. NOLASCO J.C. 2006 Peixes de riachos da Mata Atlântica Neotrópica São Paulo PADIAL, A.A., AGOSTINHO, A.A., AZEVEDO-SANTOS, V.M., FREHSE, F.A., LIMA-JUNIOR, D.P., MAGALHÃES, A.L.B., MORMUL, R.P., PELICICE, F.M., BEZERRA, L.A.V., ORSI, M.L., PETRERE-JUNIOR, M. & VITULE, J.R.S. 2017. The "Tilapia Law" encouraging non-native fish threatens Amazonian River basins. Biodivers. Conserv. 26(1): 243-246. PADIAL A.A. AGOSTINHO A.A. AZEVEDO-SANTOS V.M. FREHSE F.A. LIMA-JUNIOR D.P. MAGALHÃES A.L.B. MORMUL R.P. PELICICE F.M. BEZERRA L.A.V. ORSI M.L. PETRERE-JUNIOR M. VITULE J.R.S. 2017 The "Tilapia Law" encouraging non-native fish threatens Amazonian River basins Biodivers. Conserv. 26 1 243 246 PAGOTTO, J.P.A., VERÍSSIMO, S., GOULART, E. & MISE, F.T. 2012. Fishes (Osteichthyes: Actinopterygii) from the Pirapó River drainage, upper Paraná River basin, Paraná state, Brazil. Check List 8(3):463-468. PAGOTTO J.P.A. VERÍSSIMO S. GOULART E. MISE F.T. 2012 Fishes (Osteichthyes: Actinopterygii) from the Pirapó River drainage, upper Paraná River basin, Paraná state, Brazil Check List 8 3 463 468 REIS, R.E., ALBERT, J.S., DI DARIO, F., MINCARONE, M.M., PETRY, P. & ROCHA, L.A. 2016. Fish biodiversity and conservation in South America. J. Fish Biol. 89(1): 12-47. REIS R.E. ALBERT J.S. DI DARIO F. MINCARONE M.M. PETRY P. ROCHA L.A. 2016 Fish biodiversity and conservation in South America J. Fish Biol. 89 1 12 47 RIBEIRO, A.C. 2006. Tectonic history and the biogeography of the freshwater fishes from the coastal drainages of eastern Brazil: an example of faunal evolution associated with a divergent continental margin. Neotrop. Ichthyol. 4(2): 225-246. RIBEIRO A.C. 2006 Tectonic history and the biogeography of the freshwater fishes from the coastal drainages of eastern Brazil: an example of faunal evolution associated with a divergent continental margin Neotrop. Ichthyol. 4 2 225 246 ROXO, F.F., ALBERT, J.S. SILVA, G.S.C., ZAWADZKI, C.H., FORESTI, F. & OLIVEIRA, C. 2014. Molecular Phylogeny and Biogeographic History of the Armored Neotropical Catfish Subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae (Siluriformes: Loricariidae). PLoS ONE 9(8): e105564. ROXO F.F. ALBERT J.S. SILVA G.S.C. ZAWADZKI C.H. FORESTI F. OLIVEIRA C. 2014 Molecular Phylogeny and Biogeographic History of the Armored Neotropical Catfish Subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae (Siluriformes: Loricariidae) PLoS ONE 9 8 e105564 ROXO, F.F., LUJAN, N.K., TAGLIACOLLO, V.A., WALTZ, B.T., SILVA, G.S.C., OLIVEIRA, C. & ALBERT, J.S. 2017. Shift from slow- to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: Hypoptopomatinae). PLoS ONE 12(6): e0178240. ROXO F.F. LUJAN N.K. TAGLIACOLLO V.A. WALTZ B.T. SILVA G.S.C. OLIVEIRA C. ALBERT J.S. 2017 Shift from slow- to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: Hypoptopomatinae) PLoS ONE 12 6 e0178240 ROXO, F.F., ZAWADZKI, C.H., ALEXANDROU, M.A., COSTA SILVA, G.J., CHIACHIO, M.C., FORESTI, F. & OLIVEIRA, C. 2012. Evolutionary and biogeographic history of the subfamily Neoplecostominae (Siluriformes: Loricariidae). Ecol. Evol. 2(10): 2438-2449. ROXO F.F. ZAWADZKI C.H. ALEXANDROU M.A. COSTA SILVA G.J. CHIACHIO M.C. FORESTI F. OLIVEIRA C. 2012 Evolutionary and biogeographic history of the subfamily Neoplecostominae (Siluriformes: Loricariidae) Ecol. Evol. 2 10 2438 2449 SANCHES, F.H.C., MIYAI, C.A., COSTA, T.M., CHRISTOFOLETTI, R.A., VOLPATO, G.L. & BARRETO, R.E. 2012. Aggressiveness overcomes body-size effects in fights staged between invasive and native fish species with overlapping niches. PLoS ONE 7(1): e29746. SANCHES F.H.C. MIYAI C.A. COSTA T.M. CHRISTOFOLETTI R.A. VOLPATO G.L. BARRETO R.E. 2012 Aggressiveness overcomes body-size effects in fights staged between invasive and native fish species with overlapping niches PLoS ONE 7 1 e29746 SCHAEFER, S.A. 1998. Conflict and resolution: impact of new taxa on phylogenetic studies of the neotropical cascudinhos (Siluroidei: Loricariidae). In Phylogeny and classification of neotropical fishes (L.R. Malabarba, R.E. Reis, R.P. Vari, Z.M.S. Lucena & C.A.S. Lucena, eds). EDIPUCRS, Porto Alegre, p.375-400. SCHAEFER S.A. 1998 Conflict and resolution: impact of new taxa on phylogenetic studies of the neotropical cascudinhos (Siluroidei: Loricariidae) Phylogeny and classification of neotropical fishes Malabarba L.R. Reis R.E. Vari R.P. Lucena Z.M.S. Lucena C.A.S. EDIPUCRS Porto Alegre 375 400 SILVEIRA, L.F., BEISIEGEL, B.M., CURCIO, F.F., VALDUJO, P.H., DIXO, M., VERDADE, V.K., MATTOX, G.M.T. & CUNNINGHAM, P.T.M. 2010. What use do fauna inventories serve? Estudos avançados 24(68): 173-207. SILVEIRA L.F. BEISIEGEL B.M. CURCIO F.F. VALDUJO P.H. DIXO M. VERDADE V.K. MATTOX G.M.T. CUNNINGHAM P.T.M. 2010 What use do fauna inventories serve? Estudos avançados 24 68 173 207
location_on
Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
E-mail: contato@biotaneotropica.org.br
rss_feed Acompanhe os números deste periódico no seu leitor de RSS
Acessibilidade / Reportar erro