Acessibilidade / Reportar erro

Fish fauna of the Río San Pedro and Río La Pasión, Usumacinta River Basin, Guatemala

Ictiofauna del Río San Pedro y Río La Pasión, Usumacinta River Basin, Guatemala

Abstract

The Río San Pedro and Río La Pasión lie within the Usumacinta River Basin, a globally significant center of freshwater fish diversity. Both rivers are listed among Central America’s top 50 regions for conserving freshwater biodiversity. This study presents an updated checklist of 70 fish species, of which six are non-native to the Usumacinta River Basin. From these species, 69 are reported from the Río La Pasión and 56 reported from the Río San Pedro, representing higher species richness than previously reported. The checklist derives from a systematic survey of fishes conducted in 2019 and records available in public databases and published literature. Seventy-eight percent of the species were reported in both rivers, and Cichlidae and Poeciliidae had the most species. Secondary species represent 59% of the species reported, followed by peripheral species with 22% of the species. The species with highest fidelity in Río La Pasión were the armored catfish Pterygopichthys spp. and the livebearer Gambusia sexradiata; and the cichlids Thorichthys meeki and Oscura heterospila had highest fidelity in the Río San Pedro. Thorichthys helleri was widely distributed in both rivers. According to the IUCN Red List of Threatened Species, there are four species classified as Vulnerable in Río La Pasión. However, 62% of the species are of Least Concern, 25% of the species are Data Deficient, and 6% are listed as Not Evaluated. More research is needed to document the status of the fish fauna, and improved habitat protection is required to conserve stocks.

Keywords
Usumacinta River Basin; ichthyofauna; endemic fishes; freshwater conservation

Resumen

El río San Pedro y el río La Pasión se encuentran dentro de la cuenca del río Usumacinta, un centro de diversidad de peces de agua dulce de importancia mundial. Ambos ríos figuran entre las 50 regiones principales de América Central para conservar la biodiversidad de agua dulce. Este estudio presenta un listado actualizado de 70 especies de peces, de las cuales 6 son especies no nativas para la cuenca del Río Usumacinta. De estas especies, 69 se reportan para el Río La Pasión y 56 para el río San Pedro, lo que representa una riqueza de especies más alta que la reportada previamente. La lista de verificación se deriva de un muestreo sistemático de peces realizado en 2019 y registros disponibles en bases de datos públicas y literatura publicada. El 78% de las especies se reportan en ambos ríos, siendo Cichlidae y Poeciliidae las familias con mayor riqueza. Las especies con mayor fidelidad en Río La Pasión fueron el bagre acorazado Pterygopichthys spp. y el pez vivíparo Gambusia sexradiata; y los cíclidos Thorichthys meeki y Oscura heterospila tuvieron mayor fidelidad en el Río San Pedro. Thorichthys helleri se distribuyó ampliamente en ambos ríos. Según la Lista Roja de Especies Amenazadas de la UICN, existen cuatro especies clasificadas como Vulnerable en el Río La Pasión. Sin embargo, el 62 % de las especies son de Preocupación Menor, el 25 % de las especies tienen Datos Insuficientes y el 6 % se enumeran como No Evaluadas. Se necesita más investigación para documentar el estado de la fauna de peces, y se requiere una mejor protección del hábitat para conservar las poblaciones.

Palabras clave
Cuenca del Río Usumacinta; ictiofauna; peces endémicos; conservación de agua dulce

Introduction

The Usumacinta River Basin is the largest in Mesoamerica, and its tributaries (i.e., Lacantún, La Pasión, Chixoy, and San Pedro; Figure 1) rank among the largest within this region (Yañez-Arancibia et al. 2009YÁÑEZ-ARANCIBIA, A., DAY, J. & CURRIE ALDER, B. 2009. Functioning of the Grijalva-Usumacinta River delta, México: challenges for coastal management. Ocean Y.B. (23):473–501.). The Usumacinta and Grijalva River Basins are considered a center of global significance for freshwater fish diversity (Miller 1966MILLER, R.R. 1966. Geographical distribution of Central American freshwater fishes. Copeia. 1966:773–802.). The Usumacinta alone harbors approximately 200 fish species from 9 families (Miller 1966MILLER, R.R. 1966. Geographical distribution of Central American freshwater fishes. Copeia. 1966:773–802.), with 172 species reported for the lower reaches of the Usumacinta in southern México (Soria-Barreto et al. 2018SORIA-BARRETO M., GONZÁLEZ-DÍAZ A., CASTILLO-DOMÍNGUEZ A., ÁLVAREZ-PLIEGO N. & RODILES-HERNÁNDEZ R. 2018. Diversidad íctica en la cuenca del Usumacinta, México. Revista mexicana de biodiversidad. (89):100–17.). The taxonomy of fishes has been studied extensively in the Usumacinta. New species have been described in recent years, and extensions of geographic distributions have been reported, particularly within the lower basin (e.g., Potamarius usucamcintae, Lacantunia enigmatica, Heterophallus echeagarayi) (Rodiles-Hernández et al. 2005RODILES-HERNÁNDEZ, R., HENDRICKSON, D.A., LUNDBERG, J.G. & HUMPHRIES, J.M. 2005. Lacantunia enigmatica (Teleostei: Siluriformes) a new and phylogenetically puzzling freshwater fish from Mesoamerica. Zootaxa. (1000):1–24., Betancur-R & Willink 2007BETANCUR-R., R. & WILLINK, P. 2007. A New Freshwater Ariid (Otophysi: Siluriformes) from the Río Usumacinta Basin. Copeia. (4):818–828., Álvarez-Pliego et al. 2016ÁLVAREZ-PLIEGO, N., SANCHEZ, A.J., FLORIDO, R., SALCEDO, M.A., MACOSSAY-CORTEZ, A., BRITO, R. & REYES, H. 2016. New records and extension of geographical distribution of Heterophallus echeagarayi (Poeciliidae) in the Usumacinta Province, Mexico. Cybium. 40(2):178–180., Quintana et al. 2019QUINTANA, Y., BARRIENTOS, C. & RODILES-HERNÁNDEZ, R. 2019. Range extension for Lacantunia enigmatica Rodiles-Hernández, Hendrickson & Lundberg, 2005 (Siluriformes, Lacantuniidae) in the Usumacinta river basin, Guatemala. Check List. (15):161–167.).

Figure 1
Map of the A. Usumacinta River Basin (dark grey) showing the extension of the sub-basins in the Upper Usumacinta: 1. Río Lacantún, 2. Río Chixoy, 3*. Río La Pasión, and Lower Usumacinta: 4*. Río San Pedro, and 5. Río Usumacinta., B. Río San Pedro sub-basin, C. Río La Pasión sub-basin. B and C indicate surveyed sites with a black doth and historical records with a white triangle. The main canal of the Río San Pedro and Río La Pasión is represented by a thick blue line. Source: Diego J. Elías.

A recent review of the Central America freshwater fish fauna identified the Grijalva-Usumacinta as an area of high endemism (Matamoros et al. 2015MATAMOROS, W.A., MCMAHAN, C.D., CHAKRABARTY, P., ALBERT, J.S. & SCHAEFER, J.F. 2015. Derivation of the freshwater fish fauna of Central America revisited: Myers’s hypothesis in the twenty‐first century. Cladistics. 31(2):177–188.). Elías et al. (2020)ELÍAS, D.J., MCMAHAN, C.D., MATAMOROS, W.A., GÓMEZ‐GONZÁLEZ, A.E., PILLER, K.R. & CHAKRABARTY, P. 2020. Scale (s) matter: Deconstructing an area of endemism for Middle American freshwater fishes. Journal of Biogeography. 47(11):2483–2501. suggested that the basin can be subdivided into five endemic areas, with the upper Usumacinta harboring the highest proportion of endemic species. A portion of the upper Usumacinta River and the lower Usumacinta lie within Guatemala’s boundaries, comprising 58% of the basin. The basin contains a variety of habitats, including streams, lagoons, floodplains, waterfalls, rapids, and large tributaries. Two tributaries, the Río La Pasión (upper Usumacinta) and Río San Pedro (lower Usumacinta), are among Guatemala’s ten largest rivers and have been listed among Central America’s top 50 regions for conserving freshwater biodiversity (Calderón et al. 2004CALDERÓN, R., BOUCHER, T., BRYER, M., SOTOMAYOR, L. & KAPPELLE, M. 2004. Setting biodiversity conservation priorities in Central America: Action site selection for the development of a first portfolio. San José, Costa Rica.).

Ichthyological surveys in Río San Pedro and Río La Pasión have increased since 1999. Although ecological and fisheries studies are lacking in this region, efforts to characterize the ichthyofauna in these rivers were made by Barrientos (1999)BARRIENTOS, C.1999. Caracterización de la ictiofauna con importancia alimenticia de los ríos San pedro y Sacluc en el área de influencia de la estación biológica las Guacamayas departamento de El Peten Guatemala. Bachelor tesis. Universidad de San Carlos de Guatemala, Guatemala., who identified 27 fish species in the upper Río San Pedro and Río Sacluc, 11 of them being important in subsistence fisheries. Willink et al. (2000)WILLINK, P., BARRIENTOS, C., KIHN, H. & CHERNOFF, B. 2000. An ichthyological survey of Laguna del Tigre National Park, Peten, Guatemala. RAP Bulletin of Biological Assessment. (16):41–48. surveyed Río San Pedro within the Parque Nacional and Biotope Laguna del Tigre and reported 44 species. A fish checklist at the departments El Petén and Alta Verapaz reported 43 species for Río San Pedro and 51 species in Río La Pasión (Valdez-Moreno et al. 2005VALDEZ-MORENO, M., POOL-CANUL, J. & CONTRERAS-BALDERAS, S. 2005. A checklist of the freshwater ichthyofauna from El Petén and Alta Verapaz, Guatemala, with notes for its conservation and management. Zootaxa. (1072):43–60.). Castillo-Domínguez et al. (2011)CASTILLO-DOMÍNGUEZ, A., BARBA MACÍAS, E., NAVARRETE, A.D.J., RODILES-HERNÁNDEZ, R. & JIMÉNEZ BADILLO, M.D.L. 2011. Ictiofauna de los humedales del río San Pedro, Balancán, Tabasco, México. Revista de Biología Tropical. 59(2):693–708. surveyed the wetlands of Río San Pedro in Balancán, México, and recorded 25 species. Ixquiac (2016)IXQUIAC, M. 2016. Línea de base de poblaciones de peces en el Río La Pasión, afectación, pérdidas y daños del recurso pesquero y población humana afectada por la contaminación de las aguas del río La Pasión. FAO. Guatemala. reported 22 species of commercial importance in the Río La Pasión. Barrientos et al. (2018)BARRIENTOS, C., QUINTANA, Y., ELÍAS, D.J. & RODILES-HERNÁNDEZ, R. 2018. Native fish fauna and artisanal fisheries in the Usumacinta basin, Guatemala. Revista mexicana de biodiversidad. 89:118–130. surveyed the Usumacinta in Guatemala, reporting 18 for Río San Pedro and 29 for Río La Pasión.

The Usumacinta River Basin is experiencing environmental impacts, including land-cover changes for agriculture, African palm plantations, logging, wildfires, as well as overfishing, pollution, and hydropower development (Cotler Ávalos et al. 2010COTLER, H. 2010. Las cuencas hidrográficas de México. Diagnóstico y priorización. INE, México., Gandin 2012GANDIN, J. 2012. Social perceptions of environmental changes and local development within the Usumacinta River Basin. APCBEE Procedia. (1):239–244., Tapia-Silva et al. 2015TAPIA-SILVA, F., CONTRERAS-SILVA, A. & ROSALES-ARRIAGA, E. 2015. Hydrological characterization of the Usumacinta River basin towards the preservation of environmental services. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. (40):1505–1509., Dürr 2017DÜRR, J. 2017. Sugar-cane and oil palm expansion in Guatemala and its consequences for the regional economy. Journal of Agrarian Change. (17):557–570., Camacho-Valdez et al. 2022CAMACHO-VALDEZ, V., RODILES-HERNÁNDEZ, R., NAVARRETE-GUTIÉRREZ, D.A. & VALENCIA-BARRERA, E. 2022. Tropical wetlands and land use changes: The case of oil palm in neotropical riverine floodplains. PloS one. 17(5):p.e0266677.) putting at risk numerous endemic species. Also, invasive species have proliferated in the Usumacinta basin, but their contribution to the fish assemblage in Río La Pasión and Río San Pedro is still unknown. A comprehensive checklist of fish species would support conservation efforts and management to protect regional fish stocks. The aim of this study was: 1) to provide an updated inventory of the fish fauna in Río La Pasión and Río San Pedro, 2) to describe the diversity and composition of these fish assemblages, 3) to assess the conservation status of fishes in both rivers based on the most updated IUCN Red List of Threatened Species assessment of freshwater fish (IUCN 2022). This study highlights information on the fish assemblages and fish conservation status useful for evaluating current conservation efforts such as the Endangered Species List, LEA (CONAP 2021CONAP. 2021. Lista de Especies Amenazadas de Guatemala. https://conap.gob.gt/wp-content/uploads/2021/09/LEA-2021-Fauna-3-sp.-Flora-No-Maderable.pdf (last access in 10/12/2022).
https://conap.gob.gt/wp-content/uploads/...
), and provides information to monitor fish assemblage in the long term, assessing threats such as biodiversity loss and increase of invasive species.

Material and Methods

1. Study area

The Usumacinta River Basin is a tri-national watershed shared by Guatemala, México, and Belize (Figure 1A). Along the basin, there are complex and heterogeneous habitats such as wetlands, lakes, streams, rapids, waterfalls, tributaries, and floodplains, as well as a tropical moist broadleaf forest, with primary forest occupying less than 25% of the natural vegetation cover (Cotler Ávalos at al. 2010COTLER, H. 2010. Las cuencas hidrográficas de México. Diagnóstico y priorización. INE, México., Corrales et al. 2015CORRALES, L., BOURONCLE, C. & ZAMORA, J.C. 2015. An overview of forest biomes and ecoregions of Central America. Climate change impacts on tropical forests in Central America (A. Chiabai, ed). Routledge, New Yoork, p.33–54., Soria-Barreto et al. 2018SORIA-BARRETO M., GONZÁLEZ-DÍAZ A., CASTILLO-DOMÍNGUEZ A., ÁLVAREZ-PLIEGO N. & RODILES-HERNÁNDEZ R. 2018. Diversidad íctica en la cuenca del Usumacinta, México. Revista mexicana de biodiversidad. (89):100–17.). The Guatemalan portion of the Usumacinta River Basin comprises 58% of the entire basin and harbors the Río La Pasión, Río San Pedro, Río Lacantún, and Río Chixoy sub-basins (Figure 1A; for higher resolution see Elías et al. 2020ELÍAS, D.J., MCMAHAN, C.D., MATAMOROS, W.A., GÓMEZ‐GONZÁLEZ, A.E., PILLER, K.R. & CHAKRABARTY, P. 2020. Scale (s) matter: Deconstructing an area of endemism for Middle American freshwater fishes. Journal of Biogeography. 47(11):2483–2501.), which contain tributaries with seasonal hydrology that are connected to numerous aquatic environments (i.e., streams, lagunes, and floodplains) along their course.

The Río San Pedro lies in the lower Usumacinta Basin (Figure 1A, 1B) (17°8'5.2908" N-89°54'9.6048"W; ~50 meters above sea level), originates near the southern border of Laguna del Tigre National Park (Juárez-Sánchez et al. 2019JUÁREZ-SÁNCHEZ, D., BLAKE, J. & HELLGREN, E. 2019. Variation in neotropical river otter (Lontra longicaudis) diet: Effects of an invasive prey species. PLoS ONE. (14):e0217727.) within the lowlands of the Maya Biosphere Reserve in the department El Petén, and not within the highlands of north Guatemala like some authors have suggested (e.g., Castillo-Domínguez et al. 2010). This river flows 186 km in Guatemala and has a watershed of ~14,335 km2. The upper Río San Pedro originates at the juncture of the Río Sacluc and Laguneta Yalá. Downstream tributaries include the Río San Juan, Laguna Perdida, Laguna Larga, Río Lagarto, Río Chocop, and Río Escondido. A wetland complex (Laguna del Tigre) occurs alongside the river’s lower reaches. The Río San Pedro sub-basin contains multiple protected areas, such as the Parque Nacional and Biotopo Laguna del Tigre, San Miguel La Palotada, Finca San José, Katherine, Laguna Perdida, Cerro Cahuí, and Tikal Nacional Park (Figure S1, CONAP 2009CONAP. 2009. Conservación de la biodiversidad de las aguas interiores de Guatemala: análisis de vacíos. Consejo Nacional de Areas Protegidas, The Nature Conservancy, Guatemala.).

The Río La Pasión rises in the upper Usumacinta basin in the Department of Alta Verapaz (Figure 1A, Figure 1C) (16°28'51.1716" °N-90°32'35.142"; ~150 meters above sea level). The river begins near Río Santa Isabel and Río Sebol, with influence from Río Chajmaic (~271 masl) at the limit of the highlands and runs along the department El Petén, finally draining into the Usumacinta River. Río La Pasión has a length of 354 km with an extension of ~12,083 km2. The river is connected to Río Machaquilaito, Río Machaquila, Río San Juan, Río Santa Amelia, the streams San Martín and Pucté, Los Chorros waterfalls, Río El Subin, Laguna Petexbatún, and Laguna las Pozas. Multiple protected areas are observed within La Pasión sub-basin, including El Pucté, El Manantial, El Rosario, Ceibal, Dos Pilas, Petexbatún, Aguateca, Los Lagartos, Machaquilá, La Cumbre Flor de la Pasión, and Xutilha and private lands used for cattle ranching and African palm plantations (Figure S1, CONAP 2009CONAP. 2009. Conservación de la biodiversidad de las aguas interiores de Guatemala: análisis de vacíos. Consejo Nacional de Areas Protegidas, The Nature Conservancy, Guatemala., Juárez-Sánchez et al. 2019JUÁREZ-SÁNCHEZ, D., BLAKE, J. & HELLGREN, E. 2019. Variation in neotropical river otter (Lontra longicaudis) diet: Effects of an invasive prey species. PLoS ONE. (14):e0217727.).

2. Literature review and public databases

The literature review included studies by Willink et al. (2000)WILLINK, P., BARRIENTOS, C., KIHN, H. & CHERNOFF, B. 2000. An ichthyological survey of Laguna del Tigre National Park, Peten, Guatemala. RAP Bulletin of Biological Assessment. (16):41–48., Valdez-Moreno et al. (2005)VALDEZ-MORENO, M., POOL-CANUL, J. & CONTRERAS-BALDERAS, S. 2005. A checklist of the freshwater ichthyofauna from El Petén and Alta Verapaz, Guatemala, with notes for its conservation and management. Zootaxa. (1072):43–60., Barrientos et al. (2018)BARRIENTOS, C., QUINTANA, Y., ELÍAS, D.J. & RODILES-HERNÁNDEZ, R. 2018. Native fish fauna and artisanal fisheries in the Usumacinta basin, Guatemala. Revista mexicana de biodiversidad. 89:118–130., and Elías et al. (2020)ELÍAS, D.J., MCMAHAN, C.D., MATAMOROS, W.A., GÓMEZ‐GONZÁLEZ, A.E., PILLER, K.R. & CHAKRABARTY, P. 2020. Scale (s) matter: Deconstructing an area of endemism for Middle American freshwater fishes. Journal of Biogeography. 47(11):2483–2501.. These studies report results from surveys of the Río La Pasión and Río San Pedro mainstems and adjacent aquatic habitats. The checklist was complemented with data associated with preserved specimens archived in the Global Biodiversity Information Facility (GBIF.org, 2022GBIF.org. 2022. GBIF Ocurrence Download https://doi.org/10.15468/dl.x3k4f5, https://doi.org/10.15468/dl.eqmhd4 (last accessed in 03/11/2022).
GBIF.org...
) and Fishnet2.net. These records include specimens reported from Río La Pasión, Río San Pedro, and neighboring localities (Figure 1C, 1D). Voucher specimens are archived in the American Museum of Natural History (AMNH), California Academy of Sciences (CAS), Cornell University Museum of Vertebrates (CUMV), El Colegio de la Frontera Sur (ECOSUR), FishBase, Florida Museum of Natural History (UF), Field Museum of Natural History (FMNH), Louisiana State University Museum of Natural Science (LSUMZ), Stuttgart State Museum of Natural History (SMNS), Senckenberg Naturhistorische Sammlungen (SNSD), University of Michigan Museum of Zoology (UMMZ), National Museum of Natural History, Smithsonian Institution (USNM), and Universidad del Valle de Guatemala (UVG) (See Data Availability; Acronyms follow Sabaj 2020SABAJ, M.H. 2020. Codes for natural history collections in ichthyology and herpetology. Copeia. (3):593–669.). The final database for this study was curated to remove duplicates and species with probable errors (i.e., different distribution reported, misidentification). Some records are reported only at the generic level. Locations of records reported on GBIF.org and FishNet2.net were plotted using ArcMap 10.7.1. The final checklist follows the most updated valid taxonomy (Frike et al. 2022). Fishes from the checklist were classified as primary, secondary, or peripheral freshwater fish following Myers (1938)MYERS, G.S. 1938. 4 Annual Report of the Board of Regents of the Smithsonian Institution Freshwater fishes and East Indian zoogeography. Annual Rep. Washington.. Details of the conservation status for each species were obtained from the IUCN Red List of Threatened Species (IUCN 2022).

3. Fish survey

A systematic survey of fishes was conducted at 36 locations (Table 1) along the littoral zone in the main channel of Río San Pedro (Figure 1C, 2A, 2B) and Río La Pasión (Figure 1D, 2D, 2E). At each location, surveys were done using complimentary fishing gears and consistent effort: 15 beach seine drags (8 × 2 m, 0.5 cm bar mesh), 100 castnet throws (2.7 m radius, 0.95 cm bar mesh), and two experimental gillnets deployed for 8 hours (100 × 2 m divided in 4 panels of 25 m with 6.4, 8.8, 10.2, 11.4 cm bar mesh). A sample of voucher specimens was preserved in 10% formalin and transferred to 70% ethanol. The collection was deposited at the Sistema de Colecciones Biológicas, Escuela de Biología, Universidad de San Carlos de Guatemala (USAC) and the Biodiversity Research and Teaching Collections (BRTC Ichthyology), Texas A&M University. Collection and preservation procedures followed the Guidelines for the Use of Fishes in Research (Use of Fishes in Research Committee, joint committee of the American Fisheries Society, the American Institute of Fishery Research Biologists 2014USE OF FISHES IN RESEARCH COMMITTEE (JOINT COMMITTEE OF THE AMERICAN FISHERIES SOCIETY, THE AMERICAN INSTITUTE OF FISHERY RESEARCH BIOLOGISTS AND THE AS OF I AND H. 2014. (Fisheries Guidelines for the Use of Fishes in Research. Society AF, Ed.). Maryland, p. 26.). Research was conducted under IACUC 2018-0454, CONAP research permit No.00375-B and collecting permit No. 3927.

Table 1
Georeferenced locations surveyed in 2019.
Figure 2
A. Río San Pedro main canal, B. Subsistence fishing in Río San Pedro, C. Indicator species for Río San Pedro. D. Río La Pasión main canal, E. Landing site in Río La Pasión, Sayaxché, F. Indicator species for La Pasión River. Credits: Yasmín Quintana.

4. Analysis

Species richness, diversity, and assemblage composition were estimated for each river using all data from the systematic survey. Species richness and diversity were estimated through rarefaction and extrapolation curves using the R package “iNEXT” 3.0 (Hsieh et al. 2022HSIEH, T., MA, K. & CHAO, A. 2022. iNEXT: Interpolation and Extrapolation for Species Diversity. R package version 3.0.0, http://chao.stat.nthu.edu.tw/wordpress/software_download/.
http://chao.stat.nthu.edu.tw/wordpress/s...
, R Core Team 2022R CORE TEAM. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.
https://www.r-project.org/...
). Richness (q = 0), Shannon diversity (q = 1), and Simpson diversity (q = 2) indexes were estimated as the mean of 200 bootstrap replications with 95% confidence intervals based on individual-based abundance data. Sample-size-based curves show rarefied and extrapolated diversity estimates regarding sample size and coverage-based curves (Hsieh et al. 2016HSIEH, T., MA, K. & CHAO, A. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution. 7:1451–1456.). Relative abundance percentage (No. of individuals of a species/Density of species * 100) for each species and location is presented in a bubble plot generated with the R package “ggplot2” (Wickham et al. 2007, R Core Team 2022R CORE TEAM. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.
https://www.r-project.org/...
). Indicator species and species fidelity to each river (i.e., probability of finding the species at each location of the study area) were identified using the function multipatt from the R package “indicspecies” (De Cáceres & Legendre 2009DE CACERES, M. & LEGENDRE, P. 2009. Associations between species and groups of sites: indices and statistical inference. Ecology. 90(12):5366–3574., R Core Team 2022R CORE TEAM. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.
https://www.r-project.org/...
) with 999 random permutations.

Nonmetric multidimensional scaling (NMDS) ordination was used to identify community dissimilarities between the littoral zone in two rivers. The input data for this analysis included 18 locations from each river and abundance data from species collected with seine and castnet at each location. Gillnet data were excluded from this analysis because of its lower efficiency than seine and castnet. Both beach seine and castnet are active techniques that collected similar species. The NMDS was performed after “Hellinger” data transformation using the function decostand from the R package “vegan” (Oksanen et al. 2022OKSANEN, J., SIMPSON, G., BLANCHET, F., KINDT, R., LEGENDRE, P., MINCHIN, P., O’HARA, R., SOLYMOS, P., STEVENS, M., SZOECS, E., WAGNER, H., BARBOUR, M., BEDWARD, M., BOLKER, B., BORCARD, D., CARVALHO, G., CHIRICO, M., DE CACERES, M., DURAND, S., EVANGELISTA, H., FITZJOHN, R., FRIENDLY, M., FURNEAUX, B., HANNIGAN, G., HILL, M., LAHTI, L., MCGLINN, D., OUELLETTE, M., RIBEIRO CUNHA, E., SMITH, T., STIER, A., TER BRAAK, C. & WEEDON, J. 2022. vegan: Community Ecology Package_. R package version 2.6-2, <https://CRAN.R-project.org/package=vegan>.
<https://CRAN.R-project.org/package=vega...
), with “Bray-Curtis” dissimilarity distances, using two axes. Statistical testing of community dissimilarities was done with a multivariate analysis of permutational variance (PERMANOVA) using the “adonis2” test (permutations = 999, method = bray) from the R package vegan (Anderson 2001ANDERSON, M. 2001. A new method for non‐parametric multivariate analysis of variance. Austral ecology. 26(1):32–46., Oksanen et al. 2022OKSANEN, J., SIMPSON, G., BLANCHET, F., KINDT, R., LEGENDRE, P., MINCHIN, P., O’HARA, R., SOLYMOS, P., STEVENS, M., SZOECS, E., WAGNER, H., BARBOUR, M., BEDWARD, M., BOLKER, B., BORCARD, D., CARVALHO, G., CHIRICO, M., DE CACERES, M., DURAND, S., EVANGELISTA, H., FITZJOHN, R., FRIENDLY, M., FURNEAUX, B., HANNIGAN, G., HILL, M., LAHTI, L., MCGLINN, D., OUELLETTE, M., RIBEIRO CUNHA, E., SMITH, T., STIER, A., TER BRAAK, C. & WEEDON, J. 2022. vegan: Community Ecology Package_. R package version 2.6-2, <https://CRAN.R-project.org/package=vegan>.
<https://CRAN.R-project.org/package=vega...
) after verifying homogeneity of dispersion in both rivers.

Maps were created using shapefiles for protected areas and basins from UNEP-WCMC, UICN (2022)UNEP-WCMC & IUCN. 2022. Protected Planet: The World Database on Protected Areas (WDPA) [Online], December 2022, Cambridge, UK: UNEP-WCMC and IUCN. Available at: www.protectedplanet.net. (last access in 18/12/2022).
www.protectedplanet.net...
, and Lehner & Grill (2003).

Results

A total of 70 species from 25 families and 15 orders was identified in this study (Table 2). Five of these species are endemic to Guatemala, Astyanax baileyi, A. dorioni, Pseudoxiphophorus diremptus, Scolichthys iota, and Xiphophorus signum. Six species are non-native to the Usumacinta River, Cyprinus carpio, Ctenopharyngodon idella, Pterygoplichthys pardalis, P. disjunctivus, Parachromis managuensis, and Oreochromis aureus. Public databases yielded 1,013 records from 64 species and 22 families (See Data Availability). Sixty-percent of these records belong to Río La Pasión, and 32% belong to Río San Pedro. At least 10 species not reported in public databases were reported in other studies (Barrientos et al. 2018BARRIENTOS, C., QUINTANA, Y., ELÍAS, D.J. & RODILES-HERNÁNDEZ, R. 2018. Native fish fauna and artisanal fisheries in the Usumacinta basin, Guatemala. Revista mexicana de biodiversidad. 89:118–130., Elías et al. 2020ELÍAS, D.J., MCMAHAN, C.D., MATAMOROS, W.A., GÓMEZ‐GONZÁLEZ, A.E., PILLER, K.R. & CHAKRABARTY, P. 2020. Scale (s) matter: Deconstructing an area of endemism for Middle American freshwater fishes. Journal of Biogeography. 47(11):2483–2501.). The 2019 survey yielded 10,937 fish specimens belonging to 42 species and 19 families. Including all records from previous studies and this study, the Río La Pasión had 69 fish species and the Río San Pedro had 56 fish species. The most species-rich families were Cichlidae and Poeciliidae, with 30% and 20% of the species, respectively. The two rivers share 78% of the species. Fourteen species (20%) are reported exclusively to Río La Pasión, including Cyprinus carpio, Ictiobus meridionalis, Astyanax baileyi, A. dorioni, Lacantunia enigmatica, Leptophilypnus guatemalensis, Kihnichthys ufermanni, Parachromis managuensis, Theraps irregularis, Wajpamheros nourissati, Pseydoxiphophorus diremptus, Scholicththys iota, Xiphophorus alvarezi, and X. signum. Mugil curema was reported exclusively from the Río San Pedro. Secondary freshwater species are widely distributed in the area, including 59% of reported species. Peripheral species comprise 22% of the species reported, and primary freshwater species comprised only 19% of the ichthyofauna. According to the most updated assessment of the IUCN Red List of Threatened Species, four species are classified as threatened under the category Vulnerable (Vu), including the Chiapas catfish Lacantunia enigmatica and the poeciliids Pseudoxiphophorus diremptus, Scolichthys iota, and Xiphophorus signum. Thirty-nine species are currently listed as Least Concern (LC), 16 species are Data Deficient (DD), and four species are Not evaluated (NE).

Table 2
List of species from Río La Pasión (LP) and Río San Pedro (SP) recorded by different studies, including their classification by salinity tolerance and the most updated IUCN Red List Status. The list indicates the endemic species to the country (‡) and non-native species (*). Data from Valdez-Moreno includes only data collected in their study, including connected tributaries (i.e., Río La Pasión includes data from Río El Subin).

During the 2019 survey, eight species were captured only with the gillnet (Table S1); these included Atractosteus tropicus, Brycon guatemalensis, Centropomus undecimalis, Ctenopharyngodon idella, Aplodinotus grunniens, Ictalurus meridionalis, Oreochromis spp., and Potamarius usumacintae. The iNEXT sample-size-based diversity curve indicates that species richness based on the multi-gear sampling was higher in the Río San Pedro (Figure 3A, Table 3). The estimated richness for Río La Pasión was 33 species, and the observed richness was 32 species. The expected richness estimated for Río San Pedro was 52 species, and the observed richness was 41 species. The Shannon Diversity index was slightly higher in Río San Pedro, and the Simpson diversity was similar in both rivers (Table 3). A high degree of completeness was observed in both rivers (Figure 3B). Indicator species varied between rivers. The armored catfish Pterygopichthys spp. and Gambusia sexradiata showed the highest indicator value for the Río La Pasión (Figure 2C, Table 4). The strongest indicator species for the Río San Pedro were Thorichthys meeki and Oscura heterospila (Figure 2F, Table 4). These indicator species were also the only ones present at all survey locations in their respective rivers (Table 4). Nine indicator species were found in the Río San Pedro and six in the Río La Pasión.

Figure 3
A. Sample-size-based diversity and B. coverage-based rarefaction and extrapolation curves for richness (q = 0), Shannon diversity (q = 1), and Simpson diversity (q = 2) estimated for Río La Pasión and Río San Pedro. Shaded areas indicate 95 % confidence intervals.
Table 3
Richness and diversity index estimated through rarefaction and extrapolation curves using the R package “iNEXT” 3.0 (Hsieh et al. 2022HSIEH, T., MA, K. & CHAO, A. 2022. iNEXT: Interpolation and Extrapolation for Species Diversity. R package version 3.0.0, http://chao.stat.nthu.edu.tw/wordpress/software_download/.
http://chao.stat.nthu.edu.tw/wordpress/s...
, R Core Team 2022R CORE TEAM. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.
https://www.r-project.org/...
). Diversity analysis were done using individual-based abundance data, with 200 bootstrap replications and 95% confidence intervals.
Table 4
Indicator species and fidelity identified from fish surveys. Fidelity = 1 indicates that the species was present in all surveyed locations.

The relative abundance of most species differed significantly between the two rivers (Figure 4). The three most common species in the Río La Pasión were Atherinella spp., Carlhubssia kidderi, and G. sexradiata. In the Río San Pedro, the most common species were Hyphessobrycon compressus, Thorichthys helleri, and Carlhubbsia kidderi. Hyphessobrycon compressus was not recorded in the Río La Pasión during the surveys. Visual examination of the NMDS analysis and PERMANOVA showed that species composition in littoral areas significantly differs between rivers (stress = 0.13; R2 = 0.33, p = 0.001) (Figure 5).

Figure 4
Relative abundance (%) of species recorded at each survey location.
Figure 5
NMDS plot visualization for community abundance data collected in 18 locations in Río La Pasión, and 18 locations in Río San Pedro (Stress = 0.13).

Discussion

This study provides an updated checklist with 69 species reported from the Río La Pasión and 56 species from the Río San Pedro, with a high percentage of shared species between rivers. This checklist surpasses the richness previously reported of 43 and 51 species, respectively, for each river (Valdez-Moreno et al. 2005VALDEZ-MORENO, M., POOL-CANUL, J. & CONTRERAS-BALDERAS, S. 2005. A checklist of the freshwater ichthyofauna from El Petén and Alta Verapaz, Guatemala, with notes for its conservation and management. Zootaxa. (1072):43–60.). The fish assemblage in La Pasión and San Pedro rivers is mainly composed of secondary freshwater fishes (59%) from the families Cichlidae and Poecilidae, which are the most species-rich families with numerous endemic species for the Usumacinta region (Miller 1966MILLER, R.R. 1966. Geographical distribution of Central American freshwater fishes. Copeia. 1966:773–802., Matamoros et al. 2015MATAMOROS, W.A., MCMAHAN, C.D., CHAKRABARTY, P., ALBERT, J.S. & SCHAEFER, J.F. 2015. Derivation of the freshwater fish fauna of Central America revisited: Myers’s hypothesis in the twenty‐first century. Cladistics. 31(2):177–188.). Peripheral and primary fishes comprise a lower portion of the checklist, as previously reported in the Usumacinta River basin (Valdez-Moreno et al. 2005VALDEZ-MORENO, M., POOL-CANUL, J. & CONTRERAS-BALDERAS, S. 2005. A checklist of the freshwater ichthyofauna from El Petén and Alta Verapaz, Guatemala, with notes for its conservation and management. Zootaxa. (1072):43–60., Barrientos et al. 2018BARRIENTOS, C., QUINTANA, Y., ELÍAS, D.J. & RODILES-HERNÁNDEZ, R. 2018. Native fish fauna and artisanal fisheries in the Usumacinta basin, Guatemala. Revista mexicana de biodiversidad. 89:118–130.), following the ichthyofauna composition expected for Central America. It has been hypothesized that primary freshwater fishes dispersed into the region more recently and have less diversification and dispersion compared to secondary freshwater fishes that arrived in the early Cenozoic (Myers 1966MYERS, G.S. 1966. Derivation of the freshwater fish fauna of Central America. Copeia. 1966:766–773.). However, a more recent proposed hypothesis based on the discovery of the relictually endemic catfish Lacantunia (Rodiles-Hernandez et al. 2005RODILES-HERNÁNDEZ, R., HENDRICKSON, D.A., LUNDBERG, J.G. & HUMPHRIES, J.M. 2005. Lacantunia enigmatica (Teleostei: Siluriformes) a new and phylogenetically puzzling freshwater fish from Mesoamerica. Zootaxa. (1000):1–24.) suggests that primary fishes in this region were more diverse that currently known, but these species went extinct before the closure of the Panamian Isthmus (Elías et al. 2022ELÍAS, D.J., FUENTES-MONTEJO, C.E., QUINTANA, Y. & BARRIENTOS, C.A. 2022. Non-native freshwater fishes in Guatemala, northern Central America: introduction sources, distribution, history, and conservation consequences. Neotropical Biology and Conservation. 17(1):59–85.). The increase in richness reported in this checklist is likely associated with three main factors. First, several species added are considered rare, based on the number of historical records and data collected in this study and increased research efforts and diversification of fishing methods in recent years (e.g., Barrientos et al. 2018BARRIENTOS, C., QUINTANA, Y., ELÍAS, D.J. & RODILES-HERNÁNDEZ, R. 2018. Native fish fauna and artisanal fisheries in the Usumacinta basin, Guatemala. Revista mexicana de biodiversidad. 89:118–130.) have improved the detection of rare species. Second, historically, surveys were more sporadic and biased to a few locations. In the last ten years, research along the basin has increased, and reporting on public databases (Heberling et al. 2021HEBERLING, J.M., MILLER, J.T., NOESGAARD, D., WEINGART, S.B. & D. SCHIGEL. 2021. Data integration enables global biodiversity synthesis. Proceedings of the National. Academy of Sciences (6):e2018093118.) and scientific publications has improved. Lastly, more non-native species have been reported in both river basins (Elías et al. 2022ELÍAS, D.J., FUENTES-MONTEJO, C.E., QUINTANA, Y. & BARRIENTOS, C.A. 2022. Non-native freshwater fishes in Guatemala, northern Central America: introduction sources, distribution, history, and conservation consequences. Neotropical Biology and Conservation. 17(1):59–85.).

Among the rare species added to this checklist are Astyanax bailey, Lacantunia enigmatica, Leptophylypnus guatemalensis, Wajpamheros nourissati, Parachromis multifasciatum, Xiphophorus alvarezi, Gambusia yucatana, Diatperus spp., and Eugerres plumieri. These species are only represented by a few specimens in museum records, particularly in the Río La Pasión, where the highest proportion of endemic species occur (Kihn-Pineda et al. 2006KIHN-PINEDA, H., CANO, E. & MORALES, A. 2006. Peces de las aguas interiores de Guatemala. In Biodiversidad de Guatemala (E. Cano ed.). Universidad del Valle de Guatemala, Guatemala, p.457–485., Elías et al. 2020ELÍAS, D.J., MCMAHAN, C.D., MATAMOROS, W.A., GÓMEZ‐GONZÁLEZ, A.E., PILLER, K.R. & CHAKRABARTY, P. 2020. Scale (s) matter: Deconstructing an area of endemism for Middle American freshwater fishes. Journal of Biogeography. 47(11):2483–2501.). This river has complex hydrology (Marshall 2007MARSHALL, J. 2007. The geomorphology and physiographic provinces of Central America. In Central America: geology, resources and hazards (J. BUNDSCHUH & G. ALVARADO, eds.). CRC Press, Boca Raton, FL, p.1–51., Demarest et al. 2014DEMAREST, A.A., ANDRIEU, C., TORRES, P., FORNÉ, M., BARRIENTOS, T. & WOLF, M. 2014. Economy, exchange, and power: new evidence from the late Classic Maya port city of Cancuen. Ancient Mesoamerica. 25(1):187–219.) that needs more exploration, and increased research efforts in the area have enhanced our understating of species distribution. For example, the eleotrid L. guatemalensis restricted to the upper La Pasión, was previously documented in Río San Ramon and Río Ixcán and was recently reported to Río Lacantún (Espinosa-Pérez et al. 2014ESPINOSA-PÉREZ, H., MARTÍNEZ, A. & SEPÚLVEDA, D. 2014. Leptophilypnus guatemalensis Thacker & Pezold, 2006 (Gobiiformes: Eleotridae): first record in México. Check List 10(6):1535–1537.). Species with low reporting, like the pelagic Potamarius usumacintae, Ictalurus meridionalis, and the benthopelagic Oreochromis aureus are common in fish markets (personal observation) but are rarely collected with fishing methods commonly used in fish surveys. Some species still need taxonomic verification to confirm their distribution in the area. For example, Atherinella schultzi is common in coastal zones of the lower Grijalva-Usumacinta and Río Coatzacoalcos in México (Miller et al. 2005MILLER, R., MINCKLEY, W. & NORRIS, S. 2005. Freshwater fishes of México. Chicago University of Chicago Press, USA., GBIF.org 2022GBIF.org. 2022. GBIF Ocurrence Download https://doi.org/10.15468/dl.x3k4f5, https://doi.org/10.15468/dl.eqmhd4 (last accessed in 03/11/2022).
GBIF.org...
), although a few reports exist in upper Usumacinta. The non-native Cyprinus carpio, Parachromis managuensis, Pterygoplichthys pardalis, and P. disjunctivus, although reported in the Mexican portion of the Usumacinta more than 20 years ago (Armador-del-Ángel and Wakida-Kusonoki 2014AMADOR-DEL ÁNGEL, L.E., WAKIDA-KUSUNOKI, A.T., MENDOZA, R. & KOLEFF, P. 2014. Peces invasores en el sureste de México. In Especies acuáticas invasoras en México (R. MENDOZA, P. KOLEFF, eds.) Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México, p. 425–433.) were only documented in La Pasión and San Pedro River recently (Elías et al. 2022ELÍAS, D.J., FUENTES-MONTEJO, C.E., QUINTANA, Y. & BARRIENTOS, C.A. 2022. Non-native freshwater fishes in Guatemala, northern Central America: introduction sources, distribution, history, and conservation consequences. Neotropical Biology and Conservation. 17(1):59–85.).

The survey from 2019, which includes 60% of the species in the checklist, indicates differences in fish assemblage composition with unique dominant species for each river. A higher richness was expected in the Río San Pedro, with a slight difference in the Simpson index between rivers. Similar to other community studies (e.g., Magurran & Henderson 2003MAGURRAN, A. & HENDERSON, P. 2003. Explaining the excess of rare species in natural species abundance distributions. Nature. (422):714–716.), only a few species were abundant and broadly distributed (i.e., Astyanax aeneus and Thorichthys helleri). This pattern could be associated with spatial and local environmental variation not considered here. Two cichlids, Thorichthys meeki and Oscura heterospila had the highest indicator and fidelity values for the Río San Pedro. The mosquito fish G. sexradiata and the invasive loricariid Pterygoplichthys spp. are the indicator species for the Río La Pasión. The armored catfish Pterygoplichthys spp. have become widely distributed in the Usumacinta Basin (Wakida-Kusunoki et al. 2007WAKIDA-KUSUNOKI, A.T., RUIZ-CARUS, R. & AMADOR-DEL-ANGEL, E. 2007. Amazon sailfin catfish, Pterygoplichthys pardalis (Castelnau, 1855) (Loricariidae), another exotic species established in southeastern Mexico. The Southwestern Naturalist. 52(1):141–144., Wakida Kusunoki et al. 2008WAKIDA KUSUNOKI, A.T. & AMADOR-DEL ÁNGEL, L.E. 2008. Nuevos registros de plecos (P. pardalis y P. disjunctivus) en el sureste de México. Hidrobiológica. (18):251–256., Escalera-Vázquez et al. 2019ESCALERA-VÁZQUEZ, L.H., GARCÍA-LÓPEZ, J.E., SOSA-LÓPEZ, A., CALDERÓN-CORTÉS, N. & HINOJOSA-GARRO, D. 2019. Impact of the non-native locariid fish Pterygoplichthys pardalis in native fish community on a seasonal tropical floodplain in Mexico. Aquatic Ecosystem Health & Management. 22(4):462–472., Gaitán et al. 2020GAITÁN, C.A., FUENTES-MONTEJO, C.E., GARCÍA, M.J. & ROMERO-GUEVARA, J.C. 2020. An update of the invasive Pterygoplichthys Gill, 1858 (Actinopterygii, Loricariidae) in Guatemala: new records and notes on its interactions with the local fauna. Neotropical Biology and Conservation. 15:285–300., Elías et al. 2022ELÍAS, D.J., FUENTES-MONTEJO, C.E., QUINTANA, Y. & BARRIENTOS, C.A. 2022. Non-native freshwater fishes in Guatemala, northern Central America: introduction sources, distribution, history, and conservation consequences. Neotropical Biology and Conservation. 17(1):59–85.); however, it is noteworthy that during this survey they were rarely found in the Río San Pedro (Quintana et al. 2023QUINTANA, Y., KEPPELER, F.W. & WINEMILLER, K.O. 2023. Does invasion by armored catfish shift trophic ecology of native fishes? Evidence from stable isotope analysis. Ecology. 104(5):e4024.) and its relevance in Río La Pasión is cause of concern. This study shows diversity patterns of common littoral species from the main canals, with a low representation of seasonal-migratory or rare species. Most migratory species reported to the Usumacinta River (see Soria-Barreto et al. 2019) were not collected in this study (Mugil curema, Megalops atlanticus, Centropomus poeyi, and Joturus pichardi) and their addition to the checklist would increase total richness to 73 species. Fish assemblage composition in fast-flow deep canal rivers like the Río San Pedro and Río La Pasión is strongly affected by seasonal environmental changes (e.g., Winemiller 1990WINEMILLER, K.O. 1990. Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs (60):331–367., 1996WINEMILLER, K.O. 1996. Dynamic diversity: Fish communities of tropical rivers. In Long-term Studies of Vertebrate Communities (M.L. CODY & J.A. SMALLWOOD, eds). Academic Press, Orlando, Florida. p.99–134., Galacatos et al. 2004GALACATOS, K., BARRIGA-SALAZAR, R. & STEWART, D.J. 2004. Seasonal and habitat influences on fish communities within the lower Yasuni River basin of the Ecuadorian Amazon. Environmental Biology of fishes. 71(1):33–51., Freitas et al. 2018FREITAS, C.E.C., LAURENSON, L., YAMAMOTO, K.C., FORSBERG, B.R., PETRERE JR, M., ARANTES, C. & SIQUEIRA-SOUZA, F.K. 2018. Fish species richness is associated with the availability of landscape components across seasons in the Amazonian floodplain. PeerJ. 6:e5080.), therefore, surveys along the year would be necessary better to document the fish assemblage in the area (Winemiller 1983WINEMILLER, K.O. 1983. An introduction to the freshwater fish communities. Brenesia. (21):47–66.).

All species classified as Vulnerable are considered rare and were not collected during the 2019 survey. Among the Vulnerable species, P. diremptus, S. iota, and X. signum are endemic to Guatemala and are classified under Category Two (In Danger) by the National Endangered Species List (CONAP 2021CONAP. 2021. Lista de Especies Amenazadas de Guatemala. https://conap.gob.gt/wp-content/uploads/2021/09/LEA-2021-Fauna-3-sp.-Flora-No-Maderable.pdf (last access in 10/12/2022).
https://conap.gob.gt/wp-content/uploads/...
). These species have restricted distribution in Río La Pasión, Alta Verapaz, where the abstraction of surface water, expansion of palm oil plantations, urban development, and expansion of agriculture represent the main threats to aquatic ecosystems (IUCN 2023IUCN. 2023. The IUCN Red List of Threatened Species. Version 2022–2. https://www.iucnredlist.org. (last access in 08/11/2022).
https://www.iucnredlist.org...
). Lacantunia enigmatica is also classified as Vulnerable but is not included in the National Endangered Species List. Lacantunia is distributed in Río La Pasión and Río Lacantún in México (Rodiles-Hernández et al. 2005RODILES-HERNÁNDEZ, R., HENDRICKSON, D.A., LUNDBERG, J.G. & HUMPHRIES, J.M. 2005. Lacantunia enigmatica (Teleostei: Siluriformes) a new and phylogenetically puzzling freshwater fish from Mesoamerica. Zootaxa. (1000):1–24., Quintana et al. 2019QUINTANA, Y., BARRIENTOS, C. & RODILES-HERNÁNDEZ, R. 2019. Range extension for Lacantunia enigmatica Rodiles-Hernández, Hendrickson & Lundberg, 2005 (Siluriformes, Lacantuniidae) in the Usumacinta river basin, Guatemala. Check List. (15):161–167.), where the main threats are habitat fragmentation due to dam constructions and unregulated fishing (IUCN 2023IUCN. 2023. The IUCN Red List of Threatened Species. Version 2022–2. https://www.iucnredlist.org. (last access in 08/11/2022).
https://www.iucnredlist.org...
). Other endemic species restricted to a few locations along the Río La Pasión in Alta Verapaz ( see A. baileyi and A. dorioni, L. guatemalensis, and C. tenui) are potentially at high risk of extinction due to rapid environmental degradation in the area (e.g., see Camacho-Valdez et al. 2022CAMACHO-VALDEZ, V., RODILES-HERNÁNDEZ, R., NAVARRETE-GUTIÉRREZ, D.A. & VALENCIA-BARRERA, E. 2022. Tropical wetlands and land use changes: The case of oil palm in neotropical riverine floodplains. PloS one. 17(5):p.e0266677.). Most species in this checklist are classified under the Least Concern category, following the pattern found for Central America (Contreras-MacBeath et al. 2022CONTRERAS-MACBEATH, T., ARDÓN, D.A., QUINTANA, Y., ANGULO, A., LYONS, T., LARDIZABAL, C., MCMAHAN, C.D., ELÍAS, D.J., MATAMOROS, W.A., BARRAZA, J.E. & GONZÁLEZ, R. 2022. Freshwater Fishes of Central America: Distribution, Assessment, and Major Threats. Diversity. 14(10):793.); however, some species could be at risk on a local scale. The current population trend is unknown for most species, and monitoring is lacking in the region. Among the Data Deficient species, several cichlids and catfishes are commonly targeted by artisanal and subsistence fisheries (Barrientos et al., 2018BARRIENTOS, C., QUINTANA, Y., ELÍAS, D.J. & RODILES-HERNÁNDEZ, R. 2018. Native fish fauna and artisanal fisheries in the Usumacinta basin, Guatemala. Revista mexicana de biodiversidad. 89:118–130.). The fisheries in Río La Pasión and Río San Pedro have significant socioeconomic importance; however, fishing regulations are rarely enforced (Gandin 2012GANDIN, J. 2012. Social perceptions of environmental changes and local development within the Usumacinta River Basin. APCBEE Procedia. (1):239–244., Barrientos et al. 2018BARRIENTOS, C., QUINTANA, Y., ELÍAS, D.J. & RODILES-HERNÁNDEZ, R. 2018. Native fish fauna and artisanal fisheries in the Usumacinta basin, Guatemala. Revista mexicana de biodiversidad. 89:118–130.). An international snook (Centropomus spp.) angling tournament has been held in the La Pasión River since 2017, creating temporary jobs for local communities. Snook are among the most valuable fishes in the Usumacinta Basin, and intense fishing has impacted stocks in most regions (Perera-García et al. 2011PERERA-GARCÍA, M.A., MENDOZA-CARRANZA, M., CONTRERAS-SÁNCHEZ, W.M., HUERTA-ORTÍZ, M. & PÉREZ-SÁNCHEZ, E. 2011. Reproductive biology of common snook Centropomus undecimalis (Perciformes: Centropomidae) in two tropical habitats. Revista de Biología Tropical. 59(2):669–681.). Periodic-like species such as snook (i.e., long-lived species with relatively low demographic resilience; Winemiller 2005WINEMILLER, K.O. 2005. Life history strategies, population regulation, and implications for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences (4):872–85.) can be severely impacted by unregulated fishing at the local scale. Simmilar to snook, Atractosteus tropicus and ariid catfishes are particularly vulnerable to overfishing.

This updated checklist advances our understanding of the ichthyofauna of the Usumacinta Basin in Guatemala. The Río San Pedro and Río La Pasión are highly threatened by intense anthropogenic activities, including the rapid increase of African palm monoculture and unregulated fisheries (Mifsut & Castro 2010MIFSUT, I. & CASTRO, M. 2010. La Cuenca del Río Usumacinta: Perfil y perspectivas para su conservación y desarrollo sustentable. In Las cuencas hidrográficas de México. Diagnóstico y priorización (H. COTLER-ÁVALOS, Ed.). México, D.F., p.193–197., Gandin 2012GANDIN, J. 2012. Social perceptions of environmental changes and local development within the Usumacinta River Basin. APCBEE Procedia. (1):239–244., Vaca et al. 2019VACA, R.A., GOLICHER, D.J., RODILES-HERNÁNDEZ, R., CASTILLO-SANTIAGO, M.Á., BEJARANO, M. & NAVARRETE-GUTIÉRREZ, D.A. 2019. Drivers of deforestation in the basin of the Usumacinta River: Inference on process from pattern analysis using generalised additive models. Plos one. 14(9):e0222908., Camacho-Valdez et al. 2020CAMACHO-VALDEZ, V., SAENZ-ARROYO, A., GHERMANDI, A., NAVARRETE-GUTIÉRREZ, D.A. & RODILES-HERNÁNDEZ, R. 2020. Spatial analysis, local people’s perception and economic valuation of wetland ecosystem services in the Usumacinta floodplain, Southern Mexico. PeerJ. 8:e8395., 2022CAMACHO-VALDEZ, V., RODILES-HERNÁNDEZ, R., NAVARRETE-GUTIÉRREZ, D.A. & VALENCIA-BARRERA, E. 2022. Tropical wetlands and land use changes: The case of oil palm in neotropical riverine floodplains. PloS one. 17(5):p.e0266677., Ferat et al. 2020FERAT, M.A., VILLA, I.G. & SEDAS, S.P. 2020. Evaluación de nitrógeno y fósforo total en escorrentías agropecuarias en la cuenca baja del río Usumacinta (Tabasco, México). Ecosistemas. 29(1):1879-1879.). A massive fish kill documented in 2015 in the Río La Pasión caused an estimated loss of 40-70 MT of the fish biomass. Although the primary source of the fish kill was not specified, it likely was due to agrochemicals and/or aquatic hypoxia (Ixquiac 2016IXQUIAC, M. 2016. Línea de base de poblaciones de peces en el Río La Pasión, afectación, pérdidas y daños del recurso pesquero y población humana afectada por la contaminación de las aguas del río La Pasión. FAO. Guatemala.). Moreover, the rapid increase of non-native species introductions in both rivers is cause for concern (Gaitán et al. 2020GAITÁN, C.A., FUENTES-MONTEJO, C.E., GARCÍA, M.J. & ROMERO-GUEVARA, J.C. 2020. An update of the invasive Pterygoplichthys Gill, 1858 (Actinopterygii, Loricariidae) in Guatemala: new records and notes on its interactions with the local fauna. Neotropical Biology and Conservation. 15:285–300., Elías et al. 2022ELÍAS, D.J., FUENTES-MONTEJO, C.E., QUINTANA, Y. & BARRIENTOS, C.A. 2022. Non-native freshwater fishes in Guatemala, northern Central America: introduction sources, distribution, history, and conservation consequences. Neotropical Biology and Conservation. 17(1):59–85.). The proliferation of Pterygoplichthys spp. in the La Pasión River is of particular concern since it can alter river ecosystem processes and displace native species (Capps et al. 2015CAPPS, K.A., ULSETH, A. & FLECKER, A.S. 2015. Quantifying the top-down and bottom-up effects of a non-native grazer in freshwaters. Biological Invasions. 17(4):1253–1266., Quintana et al. 2023QUINTANA, Y., KEPPELER, F.W. & WINEMILLER, K.O. 2023. Does invasion by armored catfish shift trophic ecology of native fishes? Evidence from stable isotope analysis. Ecology. 104(5):e4024.).

Given the relatively high incidences of species endemism, the Río San Pedro and Río La Pasión are critical for fish conservation. These rivers are among Central America’s 50 priority regions for biodiversity conservation (Calderón et al. 2004CALDERÓN, R., BOUCHER, T., BRYER, M., SOTOMAYOR, L. & KAPPELLE, M. 2004. Setting biodiversity conservation priorities in Central America: Action site selection for the development of a first portfolio. San José, Costa Rica.). Despite the coverage of Protected Areas within these two sub-basins, most of the management focus has been on terrestrial biota and largely neglects the need for aquatic ecosystem conservation. Conservation efforts focused on aquatic ecosystems and biodiversity are urgently needed to protect these unique rivers that harbor some of the richest fish fauna in Guatemala and several endemic species in the Mesoamerican region.

Supplementary Material

The following online material is available for this article:

Table S1 - Gear selectivity for species found during the 2019 survey.

Figure S1 - Map of Protected Areas coverage across Río San Pedro sub-basin and Río La Pasión sub-basin.

Acknowledgments

The author thanks the Russell E. Train Education for Nature Fellowship (award # RH31)-World Wildlife Fund, the Faculty For the Future Fellowship-Schlumberger Foundation, the American Association of University Women-International Fellowship (award # 2020-21), The Rufford Foundation (award # 26506-1), and the Tom Slick Fellowship – Texas A&M, for the financial support, and for the logistical support to the Estación Biológica las Guacamayas, Autoridad para el Manejo y Desarrollo Sostenible de la Cuenca del Lago Petén Itzá, Consejo Nacional de Áreas Protegidas-Sayaxché, Centro Universitario de Zacapa-USAC, and Escuela de Biología and Centro de Estudios del Mar y Acuicultura from the Universidad de San Carlos de Guatemala. Special thanks to K.O. Winemiller, Diego Elías, Josh Perkin, William Rogers, and Jacquelyn Grace for comments to improve the manuscript. Thanks to Diego J. Elías for designing the maps for this study. Thanks to Ben Fry for suggested edits. Thanks to Marlon Córdoba, Diego Juárez, César Fuentes, Francis Santos, and local fishers for assistance during field and laboratory work.

Data Availability

The datasets analyzed during the current study are available at https://doi.org/10.18738/T8/SSVWQC.

References

  • ÁLVAREZ-PLIEGO, N., SANCHEZ, A.J., FLORIDO, R., SALCEDO, M.A., MACOSSAY-CORTEZ, A., BRITO, R. & REYES, H. 2016. New records and extension of geographical distribution of Heterophallus echeagarayi (Poeciliidae) in the Usumacinta Province, Mexico. Cybium. 40(2):178–180.
  • ANDERSON, M. 2001. A new method for non‐parametric multivariate analysis of variance. Austral ecology. 26(1):32–46.
  • AMADOR-DEL ÁNGEL, L.E., WAKIDA-KUSUNOKI, A.T., MENDOZA, R. & KOLEFF, P. 2014. Peces invasores en el sureste de México. In Especies acuáticas invasoras en México (R. MENDOZA, P. KOLEFF, eds.) Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México, p. 425–433.
  • BARRIENTOS, C.1999. Caracterización de la ictiofauna con importancia alimenticia de los ríos San pedro y Sacluc en el área de influencia de la estación biológica las Guacamayas departamento de El Peten Guatemala. Bachelor tesis. Universidad de San Carlos de Guatemala, Guatemala.
  • BARRIENTOS, C., QUINTANA, Y., ELÍAS, D.J. & RODILES-HERNÁNDEZ, R. 2018. Native fish fauna and artisanal fisheries in the Usumacinta basin, Guatemala. Revista mexicana de biodiversidad. 89:118–130.
  • BETANCUR-R., R. & WILLINK, P. 2007. A New Freshwater Ariid (Otophysi: Siluriformes) from the Río Usumacinta Basin. Copeia. (4):818–828.
  • CALDERÓN, R., BOUCHER, T., BRYER, M., SOTOMAYOR, L. & KAPPELLE, M. 2004. Setting biodiversity conservation priorities in Central America: Action site selection for the development of a first portfolio. San José, Costa Rica.
  • CAMACHO-VALDEZ, V., RODILES-HERNÁNDEZ, R., NAVARRETE-GUTIÉRREZ, D.A. & VALENCIA-BARRERA, E. 2022. Tropical wetlands and land use changes: The case of oil palm in neotropical riverine floodplains. PloS one. 17(5):p.e0266677.
  • CAMACHO-VALDEZ, V., SAENZ-ARROYO, A., GHERMANDI, A., NAVARRETE-GUTIÉRREZ, D.A. & RODILES-HERNÁNDEZ, R. 2020. Spatial analysis, local people’s perception and economic valuation of wetland ecosystem services in the Usumacinta floodplain, Southern Mexico. PeerJ. 8:e8395.
  • CASTILLO-DOMÍNGUEZ, A., BARBA MACÍAS, E., NAVARRETE, A.D.J., RODILES-HERNÁNDEZ, R. & JIMÉNEZ BADILLO, M.D.L. 2011. Ictiofauna de los humedales del río San Pedro, Balancán, Tabasco, México. Revista de Biología Tropical. 59(2):693–708.
  • CAPPS, K.A., ULSETH, A. & FLECKER, A.S. 2015. Quantifying the top-down and bottom-up effects of a non-native grazer in freshwaters. Biological Invasions. 17(4):1253–1266.
  • CONAP. 2009. Conservación de la biodiversidad de las aguas interiores de Guatemala: análisis de vacíos. Consejo Nacional de Areas Protegidas, The Nature Conservancy, Guatemala.
  • CONAP. 2021. Lista de Especies Amenazadas de Guatemala. https://conap.gob.gt/wp-content/uploads/2021/09/LEA-2021-Fauna-3-sp.-Flora-No-Maderable.pdf (last access in 10/12/2022).
    » https://conap.gob.gt/wp-content/uploads/2021/09/LEA-2021-Fauna-3-sp.-Flora-No-Maderable.pdf
  • CONTRERAS-MACBEATH, T., ARDÓN, D.A., QUINTANA, Y., ANGULO, A., LYONS, T., LARDIZABAL, C., MCMAHAN, C.D., ELÍAS, D.J., MATAMOROS, W.A., BARRAZA, J.E. & GONZÁLEZ, R. 2022. Freshwater Fishes of Central America: Distribution, Assessment, and Major Threats. Diversity. 14(10):793.
  • CORRALES, L., BOURONCLE, C. & ZAMORA, J.C. 2015. An overview of forest biomes and ecoregions of Central America. Climate change impacts on tropical forests in Central America (A. Chiabai, ed). Routledge, New Yoork, p.33–54.
  • COTLER, H. 2010. Las cuencas hidrográficas de México. Diagnóstico y priorización. INE, México.
  • DE CACERES, M. & LEGENDRE, P. 2009. Associations between species and groups of sites: indices and statistical inference. Ecology. 90(12):5366–3574.
  • DEMAREST, A.A., ANDRIEU, C., TORRES, P., FORNÉ, M., BARRIENTOS, T. & WOLF, M. 2014. Economy, exchange, and power: new evidence from the late Classic Maya port city of Cancuen. Ancient Mesoamerica. 25(1):187–219.
  • DÜRR, J. 2017. Sugar-cane and oil palm expansion in Guatemala and its consequences for the regional economy. Journal of Agrarian Change. (17):557–570.
  • ELÍAS, D.J., FUENTES-MONTEJO, C.E., QUINTANA, Y. & BARRIENTOS, C.A. 2022. Non-native freshwater fishes in Guatemala, northern Central America: introduction sources, distribution, history, and conservation consequences. Neotropical Biology and Conservation. 17(1):59–85.
  • ELÍAS, D.J., MCMAHAN, C.D., MATAMOROS, W.A., GÓMEZ‐GONZÁLEZ, A.E., PILLER, K.R. & CHAKRABARTY, P. 2020. Scale (s) matter: Deconstructing an area of endemism for Middle American freshwater fishes. Journal of Biogeography. 47(11):2483–2501.
  • ESCALERA-VÁZQUEZ, L.H., GARCÍA-LÓPEZ, J.E., SOSA-LÓPEZ, A., CALDERÓN-CORTÉS, N. & HINOJOSA-GARRO, D. 2019. Impact of the non-native locariid fish Pterygoplichthys pardalis in native fish community on a seasonal tropical floodplain in Mexico. Aquatic Ecosystem Health & Management. 22(4):462–472.
  • ESPINOSA-PÉREZ, H., MARTÍNEZ, A. & SEPÚLVEDA, D. 2014. Leptophilypnus guatemalensis Thacker & Pezold, 2006 (Gobiiformes: Eleotridae): first record in México. Check List 10(6):1535–1537.
  • FERAT, M.A., VILLA, I.G. & SEDAS, S.P. 2020. Evaluación de nitrógeno y fósforo total en escorrentías agropecuarias en la cuenca baja del río Usumacinta (Tabasco, México). Ecosistemas. 29(1):1879-1879.
  • FISHNET2.NET. Fish specimen data used in this study was obtained from CAS, UF FMNH, LSUMZ, UMMZ, USNM. www.fishnet2.net (last access in 03/11/2022).
    » www.fishnet2.net
  • FREITAS, C.E.C., LAURENSON, L., YAMAMOTO, K.C., FORSBERG, B.R., PETRERE JR, M., ARANTES, C. & SIQUEIRA-SOUZA, F.K. 2018. Fish species richness is associated with the availability of landscape components across seasons in the Amazonian floodplain. PeerJ. 6:e5080.
  • FRICKE, R., ESCHMEYER, W. & VAN DER LAAN R. 2022. Eschmeyer’s catalog of fishes: genera, species, references. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp) (last access on 08/11/2022).
    » http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp)
  • GAITÁN, C.A., FUENTES-MONTEJO, C.E., GARCÍA, M.J. & ROMERO-GUEVARA, J.C. 2020. An update of the invasive Pterygoplichthys Gill, 1858 (Actinopterygii, Loricariidae) in Guatemala: new records and notes on its interactions with the local fauna. Neotropical Biology and Conservation. 15:285–300.
  • GALACATOS, K., BARRIGA-SALAZAR, R. & STEWART, D.J. 2004. Seasonal and habitat influences on fish communities within the lower Yasuni River basin of the Ecuadorian Amazon. Environmental Biology of fishes. 71(1):33–51.
  • GANDIN, J. 2012. Social perceptions of environmental changes and local development within the Usumacinta River Basin. APCBEE Procedia. (1):239–244.
  • GBIF.org 2022. GBIF Ocurrence Download https://doi.org/10.15468/dl.x3k4f5, https://doi.org/10.15468/dl.eqmhd4 (last accessed in 03/11/2022).
    » https://doi.org/10.15468/dl.x3k4f5» https://doi.org/10.15468/dl.eqmhd4» GBIF.org
  • GRANADOS-DIESELDORFF, P., CHRISTENSEN, M.F. & KIHN-PINEDA, P.H. 2012. Fishes from Lachuá lake, upper Usumacinta basin, Guatemala. Check List. (1):095–10.
  • HEBERLING, J.M., MILLER, J.T., NOESGAARD, D., WEINGART, S.B. & D. SCHIGEL. 2021. Data integration enables global biodiversity synthesis. Proceedings of the National. Academy of Sciences (6):e2018093118.
  • HSIEH, T., MA, K. & CHAO, A. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution. 7:1451–1456.
  • HSIEH, T., MA, K. & CHAO, A. 2022. iNEXT: Interpolation and Extrapolation for Species Diversity. R package version 3.0.0, http://chao.stat.nthu.edu.tw/wordpress/software_download/
    » http://chao.stat.nthu.edu.tw/wordpress/software_download/
  • IUCN. 2023. The IUCN Red List of Threatened Species. Version 2022–2. https://www.iucnredlist.org (last access in 08/11/2022).
    » https://www.iucnredlist.org
  • IXQUIAC, M. 2016. Línea de base de poblaciones de peces en el Río La Pasión, afectación, pérdidas y daños del recurso pesquero y población humana afectada por la contaminación de las aguas del río La Pasión. FAO. Guatemala.
  • JUÁREZ-SÁNCHEZ, D., BLAKE, J. & HELLGREN, E. 2019. Variation in neotropical river otter (Lontra longicaudis) diet: Effects of an invasive prey species. PLoS ONE. (14):e0217727.
  • KIHN-PINEDA, H., CANO, E. & MORALES, A. 2006. Peces de las aguas interiores de Guatemala. In Biodiversidad de Guatemala (E. Cano ed.). Universidad del Valle de Guatemala, Guatemala, p.457–485.
  • LEHNER, B. & GRILL, G. 2013. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrological Processes. 27(15):2171–2186.
  • MAGURRAN, A. & HENDERSON, P. 2003. Explaining the excess of rare species in natural species abundance distributions. Nature. (422):714–716.
  • MATAMOROS, W.A., MCMAHAN, C.D., CHAKRABARTY, P., ALBERT, J.S. & SCHAEFER, J.F. 2015. Derivation of the freshwater fish fauna of Central America revisited: Myers’s hypothesis in the twenty‐first century. Cladistics. 31(2):177–188.
  • MARSHALL, J. 2007. The geomorphology and physiographic provinces of Central America. In Central America: geology, resources and hazards (J. BUNDSCHUH & G. ALVARADO, eds.). CRC Press, Boca Raton, FL, p.1–51.
  • MIFSUT, I. & CASTRO, M. 2010. La Cuenca del Río Usumacinta: Perfil y perspectivas para su conservación y desarrollo sustentable. In Las cuencas hidrográficas de México. Diagnóstico y priorización (H. COTLER-ÁVALOS, Ed.). México, D.F., p.193–197.
  • MILLER, R.R. 1966. Geographical distribution of Central American freshwater fishes. Copeia. 1966:773–802.
  • MILLER, R., MINCKLEY, W. & NORRIS, S. 2005. Freshwater fishes of México. Chicago University of Chicago Press, USA.
  • MYERS, G.S. 1938. 4 Annual Report of the Board of Regents of the Smithsonian Institution Freshwater fishes and East Indian zoogeography. Annual Rep. Washington.
  • MYERS, G.S. 1966. Derivation of the freshwater fish fauna of Central America. Copeia. 1966:766–773.
  • OKSANEN, J., SIMPSON, G., BLANCHET, F., KINDT, R., LEGENDRE, P., MINCHIN, P., O’HARA, R., SOLYMOS, P., STEVENS, M., SZOECS, E., WAGNER, H., BARBOUR, M., BEDWARD, M., BOLKER, B., BORCARD, D., CARVALHO, G., CHIRICO, M., DE CACERES, M., DURAND, S., EVANGELISTA, H., FITZJOHN, R., FRIENDLY, M., FURNEAUX, B., HANNIGAN, G., HILL, M., LAHTI, L., MCGLINN, D., OUELLETTE, M., RIBEIRO CUNHA, E., SMITH, T., STIER, A., TER BRAAK, C. & WEEDON, J. 2022. vegan: Community Ecology Package_. R package version 2.6-2, <https://CRAN.R-project.org/package=vegan>
    » <https://CRAN.R-project.org/package=vegan>
  • PERERA-GARCÍA, M.A., MENDOZA-CARRANZA, M., CONTRERAS-SÁNCHEZ, W.M., HUERTA-ORTÍZ, M. & PÉREZ-SÁNCHEZ, E. 2011. Reproductive biology of common snook Centropomus undecimalis (Perciformes: Centropomidae) in two tropical habitats. Revista de Biología Tropical. 59(2):669–681.
  • QUINTANA, Y., BARRIENTOS, C. & RODILES-HERNÁNDEZ, R. 2019. Range extension for Lacantunia enigmatica Rodiles-Hernández, Hendrickson & Lundberg, 2005 (Siluriformes, Lacantuniidae) in the Usumacinta river basin, Guatemala. Check List. (15):161–167.
  • QUINTANA, Y., KEPPELER, F.W. & WINEMILLER, K.O. 2023. Does invasion by armored catfish shift trophic ecology of native fishes? Evidence from stable isotope analysis. Ecology. 104(5):e4024.
  • R CORE TEAM. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
    » https://www.r-project.org/
  • RODILES-HERNÁNDEZ, R., HENDRICKSON, D.A., LUNDBERG, J.G. & HUMPHRIES, J.M. 2005. Lacantunia enigmatica (Teleostei: Siluriformes) a new and phylogenetically puzzling freshwater fish from Mesoamerica. Zootaxa. (1000):1–24.
  • SABAJ, M.H. 2020. Codes for natural history collections in ichthyology and herpetology. Copeia. (3):593–669.
  • SORIA-BARRETO M., GONZÁLEZ-DÍAZ A., CASTILLO-DOMÍNGUEZ A., ÁLVAREZ-PLIEGO N. & RODILES-HERNÁNDEZ R. 2018. Diversidad íctica en la cuenca del Usumacinta, México. Revista mexicana de biodiversidad. (89):100–17.
  • TAPIA-SILVA, F., CONTRERAS-SILVA, A. & ROSALES-ARRIAGA, E. 2015. Hydrological characterization of the Usumacinta River basin towards the preservation of environmental services. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. (40):1505–1509.
  • UNEP-WCMC & IUCN. 2022. Protected Planet: The World Database on Protected Areas (WDPA) [Online], December 2022, Cambridge, UK: UNEP-WCMC and IUCN. Available at: www.protectedplanet.net (last access in 18/12/2022).
    » www.protectedplanet.net
  • USE OF FISHES IN RESEARCH COMMITTEE (JOINT COMMITTEE OF THE AMERICAN FISHERIES SOCIETY, THE AMERICAN INSTITUTE OF FISHERY RESEARCH BIOLOGISTS AND THE AS OF I AND H. 2014. (Fisheries Guidelines for the Use of Fishes in Research. Society AF, Ed.). Maryland, p. 26.
  • VACA, R.A., GOLICHER, D.J., RODILES-HERNÁNDEZ, R., CASTILLO-SANTIAGO, M.Á., BEJARANO, M. & NAVARRETE-GUTIÉRREZ, D.A. 2019. Drivers of deforestation in the basin of the Usumacinta River: Inference on process from pattern analysis using generalised additive models. Plos one. 14(9):e0222908.
  • VALDEZ-MORENO, M., POOL-CANUL, J. & CONTRERAS-BALDERAS, S. 2005. A checklist of the freshwater ichthyofauna from El Petén and Alta Verapaz, Guatemala, with notes for its conservation and management. Zootaxa. (1072):43–60.
  • WAKIDA-KUSUNOKI, A.T., RUIZ-CARUS, R. & AMADOR-DEL-ANGEL, E. 2007. Amazon sailfin catfish, Pterygoplichthys pardalis (Castelnau, 1855) (Loricariidae), another exotic species established in southeastern Mexico. The Southwestern Naturalist. 52(1):141–144.
  • WAKIDA KUSUNOKI, A.T. & AMADOR-DEL ÁNGEL, L.E. 2008. Nuevos registros de plecos (P. pardalis y P. disjunctivus) en el sureste de México. Hidrobiológica. (18):251–256.
  • WICKHAM, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org
    » https://ggplot2.tidyverse.org
  • WILLINK, P., BARRIENTOS, C., KIHN, H. & CHERNOFF, B. 2000. An ichthyological survey of Laguna del Tigre National Park, Peten, Guatemala. RAP Bulletin of Biological Assessment. (16):41–48.
  • WINEMILLER, K.O. 1983. An introduction to the freshwater fish communities. Brenesia. (21):47–66.
  • WINEMILLER, K.O. 1990. Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs (60):331–367.
  • WINEMILLER, K.O. 1996. Dynamic diversity: Fish communities of tropical rivers. In Long-term Studies of Vertebrate Communities (M.L. CODY & J.A. SMALLWOOD, eds). Academic Press, Orlando, Florida. p.99–134.
  • WINEMILLER, K.O. 2005. Life history strategies, population regulation, and implications for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences (4):872–85.
  • YÁÑEZ-ARANCIBIA, A., DAY, J. & CURRIE ALDER, B. 2009. Functioning of the Grijalva-Usumacinta River delta, México: challenges for coastal management. Ocean Y.B. (23):473–501.

Edited by

Associate Editor

Rosana Mazzoni

Publication Dates

  • Publication in this collection
    07 June 2024
  • Date of issue
    2024

History

  • Received
    22 Mar 2023
  • Accepted
    19 Mar 2024
Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
E-mail: contato@biotaneotropica.org.br