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Abstract: The spatial and temporal patterns and dynamics of biological community structure can be better understood 
through the lens of metacommunity theory, in which the effect of local (deterministic processes, ecological 
niche theory) and regional (stochastic processes, neutral theory) processes are evaluated as the main predictors 
of phytoplankton. The objective of this paper was to evaluate the effect of local environmental characteristics, 
spatial, and landscape predictors on the phytoplankton community in lakes of the Araguaia River floodplain. We 
evaluated the following questions: (i) What is the specific importance of physical and chemical water characteristics 
(local environmental predictors), dispersive processes (spatial predictors), and land use and occupancy (landscape 
predictors) in the phytoplankton metacommunity structure, both for taxonomic and functional groups? (ii) Does 
the buffer size used in land use and land cover measurement around the sampling units show differences in 
phytoplankton community prediction? All the predictors could explain the phytoplankton structure but the spatial 
were the most important. The buffers showed different predictive abilities, with taxonomic classification being 
related to larger sizes of buffers and functional groups the opposite. The great influence of spatial predictors can be 
explained by source-sink dynamics, where dispersal is so strong that it can diminish the effects of local predictors 
and guarantee a large flux of organisms to sink communities. In conclusion, dispersive processes have been shown 
to strongly influence the spatial structuring of the phytoplankton metacommunity and we highlight the need to 
consider buffers’ size when assessing the landscape’s effect on phytoplankton communities.
Keywords: Land use and occupation; Araguaia River; MBFG; dispersion.

Estrutura espacial de metacomunidades fitoplanctônicas e seus grupos funcionais em 
uma planície de inundação neotropical

Resumo: Os padrões espaciais e temporais e a dinâmica da estrutura da comunidade biológica podem ser 
compreendidos por meio das lentes da teoria de metacomunidades, no qual o efeito dos processos locais (processos 
determinísticos, teoria do nicho ecológico) e regionais (processos estocásticos, teoria neutra) são destacados como 
os principais preditores do fitoplâncton. O objetivo deste trabalho foi avaliar o efeito de preditores ambientais 
locais, espaciais e de paisagem sobre a comunidade fitoplanctônica em lagos da planície de inundação do Rio 
Araguaia. Avaliamos as seguintes questões: (i) Qual é a importância específica das características físicas e químicas 
da água (preditores ambientais locais), dos processos dispersivos (preditores espaciais) e do uso e ocupação do 
solo (preditores de paisagem) na estrutura da metacomunidade fitoplanctônica, tanto para grupos taxonômicos 
quanto funcionais? (ii) O tamanho do buffer usado na medição do uso e da ocupação do solo ao redor das unidades 
de amostragem mostra diferenças na previsão da comunidade fitoplanctônica? Todos os preditores explicaram a 
estrutura do fitoplâncton, mas os espaciais foram os mais importantes. Os buffers mostraram diferentes habilidades 
preditivas, com a classificação taxonômica sendo relacionada a tamanhos maiores de buffers e grupos funcionais, 
o oposto. A grande influência dos preditores espaciais pode ser explicada pela dinâmica fonte-sumidouro, em que 
a dispersão é tão forte que pode diminuir os efeitos dos preditores locais e garantir um grande fluxo de organismos 
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para as comunidades de sumidouros. Em conclusão, foi demonstrado que os processos dispersivos influenciam 
fortemente a estruturação espacial da metacomunidade de fitoplâncton e destacamos a necessidade de considerar 
o tamanho dos buffers ao avaliar o efeito da paisagem sobre as comunidades de fitoplâncton.
Palavras-chave: Uso e ocupação da terra; rio Araguaia; MBFG; Dispersão.

Introduction

The distribution of species and their abundances in aquatic 
environments are determined mainly by deterministic effects and niche 
filters (Huszar et al. 2015, Moresco et al. 2017). On the other hand, 
dispersive effects cannot be disregarded, as these can influence the 
structure of biological communities in a metacommunity context (Hill 
et al. 2017, Oliveira et al. 2020). This combination of deterministic 
(niche importance) and neutral (dispersal processes) effects can act in 
a complementary way in structuring metacommunities (Leibold et al. 
2004). Leibold et al. (2004) formulated four models/paradigms within 
metacommunity theory (species sorting, mass effects, patch dynamics, 
and neutral), and these vary according to the relative importance of 
local (deterministic) and regional (neutral) processes in structuring 
metacommunities. Furthermore, metacommunity structuring can be 
associated with more than one of these paradigms (Brown et al. 2017).

In addition to local abiotic variables, measures related to land use 
also influence the distribution of aquatic species and have come to be 
incorporated in several metacommunity studies (Machado et al. 2016, 
Costa et al. 2020, Rocha et al. 2020). Indeed, human activities can 
result in the deterioration of water quality, change in flow, and other 
impacts on aquatic ecosystems (Smith 2003), which influences species 
richness and composition. However, the impacts and magnitudes 
depend on the spatial scale (Zhang et al. 2018). Thus, larger scales 
comprising agricultural and urban landscapes may result in nutrient 
concentrations in aquatic environments, while smaller scales may 
result in local impacts, such as altered streamflow (Xiao et al. 2016, 
Petlusova et al. 2019).

Numerous studies conducted in aquatic environments have 
demonstrated the importance of local predictors such as nutrients, 
environmental conditions, competition, and predation (Wojciechowski 
et al. 2017a, b, Cunha & Juen 2020) on the structure of phytoplankton 
communities. Furthermore, spatial predictors such as distance 
between habitat patches, size of habitat patches, and connectivity in 
the geographic distribution of phytoplankton have been highlighted as 
important predictors of phytoplankton (Hill et al. 2017, Moresco et al. 
2017, Oliveira et al. 2020). Finally, in recent years studies have used 
different land use and land cover types as predictors of phytoplankton. 
However, there is no standard in the size and type of spatial scale used 
in these studies, and there are studies that use buffers of 30 meters 
(Machado et al. 2016), 50 meters (Meier et al. 2015), 50, 100, 250, and 
500 meters (Costa et al. 2020). 

Among the aquatic communities, phytoplankton present a good 
model for metacommunity assessment because they respond rapidly 
to diverse environmental and biotic variations in these ecosystems, 
besides presenting very short life cycles (i.e., several generations within 
a single seasonal season) (Amengual-Morro et al. 2012, Litchman et al. 
2012). Furthermore, studies with phytoplankton functional approaches 
facilitate the evaluation of biological responses as a function of 

environmental predictors (Machado et al. 2016), as well as being a 
complementary analysis for understanding ecosystem processes and 
stability, since several species present redundancy in their ecological 
functions, and by these redundancies promote ecosystem stability 
(Walker 1992, Thébault & Loreau 2005). 

There are several classifications of the phytoplankton community 
into functional groups: functional groups - FG (Reynolds 2002, 
Padisák et al. 2009), Morphofunctional Groups - MFG (Salmaso & 
Padisák 2007) and Morphology-Based Functional Groups - MBFG 
(Kruk et al. 2010). The MBFG divided species into seven groups, 
considering morphofunctional characteristics and their relationships 
with physiological needs. In the study by Lobo et al. (2018), all the cited 
classifications were tested in shallow floodplain lakes, and the MBFG 
classification best represented phytoplankton community dynamics. 
Furthermore, MBFG classification provides an objective and simple 
approach to classifying phytoplankton organisms (Kruk et al. 2010).

Therefore, this study assessed the following questions: (i) What is 
the specific importance of physical and chemical water characteristics 
(local predictors), dispersive processes (spatial predictors), and land use 
and land cover (landscape predictors) in structuring the phytoplankton 
metacommunity, both for taxonomic data and functional groups? ; 
(ii) Does the buffer size used in land use and land cover measurement 
around the sampling units (in this study, floodplain lakes) show 
differences in phytoplankton community prediction?Thus, as the study 
area comprises lakes of a floodplain and the analyzed period occurred 
in the high-water season (greater connectivity and environmental 
homogeneity; (Thomaz et al. 2007), we expect that local predictors 
have less influence on phytoplankton and the spatial predictor is the 
main structurer of the metacommunity. Furthermore, different buffer 
sizes will result in varying types of land use and land occupancy., as 
smaller buffers will primarily consist of native vegetation, because of 
riparian areas, while larger buffers may primarily comprise agricultural 
landscapes, as agriculture is the primary land use in the Araguaia 
River watershed. In this way, larger buffer sizes may capture a wider 
range of environmental characteristics that influence phytoplankton, 
such as nutrient concentration, temperature, exposure to sunlight, and 
additionally, water bodies scattered throughout the landscape may serve 
as quality habitat patches for phytoplankton, thus facilitating dispersion 
along the watershed by promoting connectivity between lakes.

Material and Methods

1. Study area

The Araguaia River has its source in the Serra Kayapó, near Emas 
National Park, in the State of Goiás, Brazil. It has a length of 2,110 
km and can be divided into three parts: upper, middle, and lower 
Araguaia. It has an area of approximately 377,000 km2 and is one 
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of the main watersheds draining the Brazilian cerrado (Latrubesse 
& Stevaux 2002). The middle Araguaia is composed of an alluvial 
floodplain with ferruginous coarse sand deposition (Latrubesse & 
Stevaux 2002, Aquino et al. 2008) that extends for 1,160 km. The 
entry of large tributaries such as the Vermelho River, Peixe River, 
Crixás River, Cristalino River, Mortes River, among others, notably 
increases the drainage area of the Araguaia (Latrubesse & Stevaux 
2002). The climate is classified as tropical with dry winter and has a 
strong seasonal variation with two periods: rainy, between October and 
April, and dry, from May to September (Alvares et al. 2013). In the last 
40 years, the Araguaia River has suffered impacts from human activities 
due to increased deforestation, mining, and aquaculture (Latrubesse & 
Stevaux 2006, Pelicice et al. 2021). Because it is one of the only large 
water systems that does not have dams, it is the target of projects to 
create hydroelectric reservoirs, especially in the upper Araguaia region 
(Latrubesse et al. 2019).

We sampled 15 lakes located in 5 tributaries (three lakes per 
tributary) of the Araguaia River (Vermelho River, Peixe River, Crixás 
River, Cristalino River, and Mortes River) and 35 lakes connected to 
the main river channel, all located in the middle Araguaia (Fig 1). We 
performed the sampling in January 2019, during the rainy season. We 
obtained samples of the phytoplankton community and physical and 
chemical variables of the water in the pelagic region of each lake.

2. Biological variables

We collected phytoplankton samples from the subsurface (ca. 50 cm) 
and stored them in 100 mL dark, amber flasks. Subsequently, they were 
fixed with a lugol solution. The phytoplankton density was estimated by 
the method of Utermöhl (1958) using a Zeiss inverted microscope with 
400× magnification. We identified the organisms down to the lowest 
possible taxonomic level, and the density was expressed as individuals 
per milliliter (ind/mL)(Komarek & Fott 1983, Komarek & Anagnostidis 
1983, Bicudo & Menezes 2006). After taxonomic identification, 
organisms were classified according to the morphology-based functional 
groups (MBFG) proposed by Kruk et al. (2010).

3. Physical and chemical variables

The following physical and chemical variables were determined 
in situ using a Horiba multiparameter probe (Model U-50): water 
temperature (ºC), turbidity (NTU), pH, dissolved oxygen (DO mg/L), 
electrical conductivity (mS/cm) and total dissolved solids (STD g/L). 

For the determination of cations and anions (nitrate, phosphate, 
ammonia, magnesium, potassium, and calcium), water samples were 
collected at an average depth of 20 cm from the water sheet (Baird et 
al. 2017), filtered (cellulose filters with porosity of 0.45 μm), frozen and 
subsequently analyzed in a chromatograph (APHA 2015).

Figure 1. Sampling units located in the Araguaia River Basin.
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4. Spatial variables

Spatial variables were obtained by converting the geographic latitude 
and longitude coordinates to the Cartesian plane using the geoXY 
function from the SoDA package (Chambers 2014). Subsequently, 
a distance-based Moran eigenvector map (dbMEM) (Legendre & 
Legendre 2012) was constructed to model the spatial structure using 
variables obtained from the Cartesian plane. Eigenvectors with positive 
spatial correlation and eigenvalues larger than Moran’s I expectation 
were retained for analysis. Finally, we determined which axes to use 
through forward selection, using two selection criteria: R² and the 
significance value p. MEMs closer to 1 indicate larger spatial scale, 
while those further away indicate smaller spatial scale.

We opted to use the dbMEM (directional dispersal) analysis in our 
study, despite the recognized importance of directional processes, such 
as water flow, in floodplain lakes (Naselli-Flores & Padisák 2016). 
However, the phytoplankton community in these environments is 
also influenced by non-directional dispersal processes, such as wind 
action and animal movement (Incagnone et al. 2015). Therefore, the 
dbMEM analysis is suitable because it can capture both directional 
and non-directional processes, providing a more comprehensive view 
of phytoplankton dispersal.

5. Landscape variables

To evaluate land use and occupation in the surroundings of the 
sampling points, we used the land cover map of the Araguaia River 
basin made available by MapBiomas (Souza et al., 2020 base year 
2019), in matrix format. Using the ArcGis 10.8 program, the land 
cover data were projected to the UTM SIRGAS 2000 22S coordinate 
system. 

The MapBiomas data presented twelve land use classes, so it was 
necessary to reclassify and group some of these classes, as shown in 
Table 1.

Subsequently, the reclassified file was converted to a vector file, 
where the sampling points were inserted. Buffers of different sizes (50, 
500, 1500, and 10000 meters) were delimited around each sampling 

point in the lakes by calculating the distance map, intersecting the 
land use with the delimited buffers. These results were converted 
into percentages and used in the analyses performed. Finally, we 
performed Redundancy Analysis (RDA) to select the spatial scales 
that best explained the variation in the phytoplankton community and 
its MBFG groups.

6. Statistical analyses

Aiming to achieve greater parsimony with the selection of local and 
spatial predictor variables, the collinearity between them was measured, 
and a selection of variables was made. This linear dependence was 
analyzed using variance inflation factors (VIF), and values above 10 
were removed (Borcard et al. 2018). After this, the forward selection 
analysis was performed, using two selection-stopping criteria (Borcard 
et al. 2018): the first was significance (associated variables with 
p-values < 0.05), and the second was the adjusted R2 of the global 
model (variables that had the adjusted R² greater than the global model) 
(Blanchet et al. 2008). This analysis was performed by the adespatial 
package (Dray et al. 2022). In addition, we added variables that were left 
out of the model, but whose effect on the phytoplankton community is 
well described in the scientific literature. We added variables that were 
left out of the model, but whose effect on the phytoplankton community 
is well described in the scientific literature. 

To assess the influence of each predictor matrix (environmental, 
spatial, and landscape) on the phytoplankton community (biological 
matrix), an RDA was performed (Borcard et al. 2018). Subsequently, 
for each predictor that significantly explained the variance in the 
biological matrix, variance partitioning was performed with partial 
Redundancy Analysis (PDR) to find out how much the biological 
matrix is explained by a) only the environmental matrix, b) only the 
spatial matrix, c) only the landscape matrix, and d) the junction of all 
(Legendre & Legendre 1998). These analyses were performed by the 
vegan package (Oksanen et al. 2022). To avoid the influence extreme 
density values, we standardized the data by Hellinger’s method from 
the standardize function of the vegan package.

Results

We identified 287 species along the middle Araguaia River, where 
the classes Zygnematophyceae (84 species) and Chlorophyceae (57 
species) had the highest species richness. Lakes 47 (Araguaia River, 
74 species), 09 (Peixe River, 57 species), and 21 (Crixás River, 57 
species) had the highest species richness. The density of organisms 
was highest in lakes 40 (Araguaia River, 2,161 individuals per mL), 
21 (Crixás River, 1,832 individuals per mL), and 37 (Araguaia River, 
1,734 individuals per mL), respectively. Only lake 21 is in a tributary, 
and in lake 40, Chroomonas coerulea exhibited a dominance, 
contributing to 49% of the phytoplankton density in that lake, 
surpassing other species. The lakes showed low nutrient concentration 
values, where all lakes were classified as ultraoligotrophic and with 
high mean temperatures (Table 2). We detected that different land 
use and land cover types dominated the different sizes of buffers. The 
50-meter buffers were mainly composed of water bodies and riparian 
vegetation, while the 10000-meter buffers had large proportions of 
forests and cerrado stricto sensu, but also large areas of agriculture 
(Fig 2).

Table 1. Comparison between the land uses obtained in MapBiomas and after 
reclassification.

Land use (MapBiomas) Reclassification
Pasture

Agriculture
Sugarcane
Soy
Crop mosaic
Planted forest Silviculture
Grassland Grassland
Savanna Cerrado stricto sensu
Water bodies Water bodies
Forest Forest
Exposed soil

Exposed soil
Mining
Urban Urban
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Table 2. Summaries of the physical and chemical characteristics of the lakes. Min = minimum values, Max = maximum values, Std. Dev. = standard deviation,  
DO = dissolved oxygen, Temp = temperature, TDS = total dissolved solids, Transp = transparency, TSI = trophic state index.

Min Median Mean Max Std. Dev.
DO (mg/L) 0.0 6.1 5.6 8.8 2.1
pH 4.9 6.3 6.3 7.1 0.5
Temp (ºC) 26.4 30.4 30.6 33.8 1.7
TDS (g/L) 0.004 0.025 0.023 0.041 0.009
Depth (m) 1.9 3.6 4.2 10.5 1.9
Transp (cm) 44.0 100.0 106.6 228.0 39.6
Nitrate (mg/L) 0.1 0.6 1.2 6.4 1.5
Ammonia (mg/L) 1.1 1.9 2.2 4.5 1.0
Potassium (mg/L) 2.2 4.9 5.0 9.0 1.6
Magnesium (mg/L) 0.003 0.011 0.017 0.083 0.017
Calcium (mg/L) 1.1 2.3 2.4 4.4 0.7
Phosphate (mg/L) 0.002 0.019 0.030 0.183 0.032

1. Variable selection

Based on the variable selection procedures, eight local predictors 
and seven spatial predictors were chosen concerning phytoplankton 
taxonomic classification. Regarding MBFG groups, eight local 
predictors and one spatial predictor were selected (Table 3).

Several buffer sizes were important in explaining both the taxonomic 
classification and the MBFG groups. Taxonomic classification was 
best explained by the 10,000-meter scale and was selected for variance 
partitioning, while for the MBFG groups, the 50-meter and 500-meter 
scales were significant, but the 50-meter scale obtained the greatest 
explanation and was selected for RDAp (Table 4).

The variance partitioning performed between taxonomic data and 
local, spatial, and landscape predictors had a residual of 0.795, and 
the spatial and landscape predictors were significant in explaining 
the variation in phytoplankton taxonomic composition. The spatial 
predictors explained 7.2%, and the landscape predictors explained 
0.5% (Table 5). The shared variance among all compartments was 
the third largest (5.0%), which may reveal a joint structuring of the 
predictors evaluated. Regarding the MBFG groups, since the RDA 
with local predictors were not significant (p = 0.1) we only performed 
with the spatial and landscape predictors, the variance partitioning had 
a residual of 0.783, and only the spatial (6.8%) and landscape (11.0%) 
predictors were explained.

Discussion

The results show the importance of spatial and landscape predictors for 
structuring the phytoplankton metacommunity of floodplain lakes. Local 
predictors had no influence on taxonomic data or functional groups, which 
may have been caused by important variables that were not evaluated, 
Furthermore, the significant results for spatial and landscape predictors 
were very low, indicating that there are additional processes structuring 
this community that have not been assessed. These results corroborate 
our first hypothesis that space would be the main predictor of the 
phytoplankton community, and local predictors would be less influential 

in the rainy season. This may have been caused by the homogenization of 
abiotic conditions occasioned by the flood pulse, which may decrease the 
strength that the environmental filter has on communities, but also by the 
permanence of the spatial filter still strong even during the rainy season 
(Junk et al. 1989, Carvalho et al. 2001, Thomaz et al. 2007). Furthermore, 
the large spatial scale assessed (reflected by the MEMs selected by forward 
selection) in this study may have captured better the influence of spatial 
predictors (dispersal processes) in the phytoplankton metacommunity since 
increasing the spatial scale may increase dispersal limitation in passively 
dispersing organisms (De Bie et al. 2012). 

Other studies in the same floodplain found the influence of local 
predictors as structuring the phytoplankton community (Machado et al. 
2016) or the influence of no predictors (Nabout et al. 2009, Moresco et 
al. 2017), and only Machado et al. (2016) assessed the effect of land use 
and land cover on the phytoplankton community. In this study, a buffer 
size of 30 meters was used, which was not significant in explaining the 
phytoplankton structure.The results of our study differ somewhat from 
others due to the greater influence of spatial and landscape predictors 
on phytoplankton, this may have been caused by the spatial scale we 
sampled (approximately 600 km of straight-line river course) and also 
by the size of the buffers we analysed, which may have better captured 
the influences of spatial predictor and landscape on phytoplankton. As 
a result, this metacommunity showed a dynamic more similar to mass 
effects paradigm due to the source-sink dynamics where the spatial 
predictor is strong enough that species occur in habitats that have 
even sub-optimal conditions (Leibold & Miller 2004). The species-
sorting effect is generally stronger in autotrophic organisms. However, 
increasing spatial scale can decrease its effect and increase dispersal 
limitation, which may explain this result from our study (Soininen 2014). 

As expected, different buffer sizes exhibited varying predictive 
abilities concerning taxonomic classification and MBFG groups. 
Regarding the variance partitioning, the landscape predictor explained 
only the taxonomic classification. Furthermore, taxonomic classification 
may be more associated with agricultural, given the predominance of 
these landscape types in larger buffers. In comparison, smaller buffers 
are predominantly occupied by riparian zone vegetation, at least within 
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Figure 2. Types of land use and land cover found around each sample unit in the 50 m (A) and 10000 m (B) buffers. The water classification encompasses water 
bodies not part of the lake but within the buffer.

this study area. The vegetation around the lake influences the chemical 
and physical properties of the water, either in the case of pollutant 
removal and decreasing allochthonous nutrient loading in the case 
of natural vegetation (Zhang et al. 2020) or even increasing nutrient 
loads coming from surface runoff when the land use is composed of 
agriculture (Broetto et al. 2017). Thus, we can expect MBFG groups to 
be associated with these 50-meter buffers, mainly because functional 

groups directly reflect the niche preferences of each species (Stendera & 
Johnson 2006, Kruk et al. 2010). On the other hand, the association of 
taxonomic data with 10000-meter buffers may reflect regional processes 
such as emigration and immigration, mainly due to the heterogeneity of 
habitats and landscape connectivity (Peres-Neto et al. 2012, Meier et 
al. 2015). Thus, the different buffer sizes may reflect distinct processes 
in the phytoplankton community.
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Table 3. Variables selected to compose the matrices of local and spatial predictors 
for each response matrix used in the study. DO = dissolved oxygen, TDS = total 
dissolved solids, MEM = Moran’s eigenvector map.

Taxonomy MBFG
Local predictors DO, TDS, 

Magnesium, 
Transparency, 
Nitrate, Ammonia, 
Phosphate

DO, TDO, 
Magnesium, 
Transparency, 
Nitrate, Ammonia, 
Phosphate

Spatial predictors MEM 1, MEM 2, 
MEM 3, MEM 5, 
MEM 6, MEM 8, 
MEM 9

MEM 3

Table 4. Results of RDAs between landscape predictors and taxonomic and 
MBFG group classification. Values in bold were significant (p < 0.05).

Buffer size Taxonomy MBFG
R² adjusted p R² adjusted p

50 meters 0.021 0.096 0.149 0.001
500 meters 0.069 0.001 0.082 0.027
1500 meters 0.047 0.002 0.034 0.183
10000 
meters 

0.109 0.001 0.046 0.114

Table 5. Partition of variance of local, spatial, and landscape predictors and 
their intersections. Values in bold showed significance (p < 0.005). not test. = 
compartments that cannot be tested.

Taxonomy MBFG
Predictor R2 Adjusted p R2 Adjusted p
Local 0.031 0.18 not test. not test.
Spatial 0.072 0.001 0.0680 0.001
Landscape 0.005 0.010 0.110 0.002
Local* 
Landscape

0.008 not test. not test. not test.

Local*Spatial –0.0072 not test. not test. not test.
Spatial* 
Landscape

0.047 not test. 0.0390 not test.

Local* Spatial* 
Landscape

0.050 not test. not test. not test.

Residual 0.795 not test. 0.783 not test.

The 10000-meter buffer referring to land use and land cover 
(landscape variables) was expected to reflect changes mainly in 
lake nutrient concentrations (Zhou et al. 2012) since land use 
changes to agricultural and/or urban areas increase nutrient fluxes to 
aquatic ecosystems (Silva et al. 2011, Su et al. 2013). Doubek et al., 
(2015) demonstrated the dominance relationship of nitrogen-fixing 

cyanobacteria in lakes surrounded by agricultural landscapes, with 
nutrient input and changes in water temperature brought by runoff being 
important factors in explaining this relationship. Other studies have also 
demonstrated the relationship between cyanobacteria and agricultural 
and urban landscapes (Paul et al. 2012). In turn, Dinophyceae, 
Crysophyceae, and diatoms have shown a relationship with forested 
areas (Katsiapi et al. 2012), which may reflect the preference of these 
organisms for oligotrophic environments (Reynolds 2002).

Conclusion

Our study reveals how space and landscape were important in 
structuring the phytoplankton community, serving as a basis for future 
environmental alterations in the Araguaia River, especially regarding dam 
construction and reduction in water levels that may decrease connectivity 
among lakes. Based on our analysis of different buffer sizes related to land 
use and occupancy in the phytoplankton community, we conclude that 
there is a differentiated impact on phytoplankton according to the buffer 
size. Our results demonstrate that larger buffers predominantly affect the 
overall composition and abundance of phytoplankton, whereas smaller 
buffers exert greater influence on functional groups. This distinction 
underscores the importance of considering not only the spatial extent 
of the buffer but also its qualitative characteristics when planning future 
studies in floodplains, particularly because floodplains may exhibit 
various types of land use and occupancy.
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