Acessibilidade / Reportar erro

Cytotoxicity and genotoxicity of calcium silicate-based cements on an osteoblast lineage

Abstract

Several calcium silicate-based biomaterials have been developed in recent years, in addition to Mineral Trioxide Aggregate (MTA). The aim of this study was to evaluate the cytotoxicity, genotoxicity and apoptosis/necrosis in human osteoblast cells (SAOS-2) of pure calcium silicate-based cements (CSC) and modified formulations: modified calcium silicate-based cements (CSCM) and three resin-based calcium silicate cements (CSCR1) (CSCR 2) (CSCR3). The following tests were performed after 24 hours of cement extract exposure: methyl-thiazolyl tetrazolium (MTT), apoptosis/necrosis assay and comet assay. The negative control (CT-) was performed with untreated cells, and the positive control (CT+) used hydrogen peroxide. The data for MTT and apoptosis were submitted to analysis of variance and Bonferroni’s posttest (p < 0.05), and the data for the comet assay analysis, to the Kruskal-Wallis and Dunn tests (p < 0.05). The MTT test showed no significant difference among the materials in 2 mg/mL and 10 mg/mL concentrations. CSCR3 showed lower cell viability at 10 mg/mL. Only CSC showed lower cell viability at 50 mg/mL. CSCR1, CSCR2 and CSCR3 showed a higher percentage of initial apoptosis than the control in the apoptosis test, after 24 hours exposure. The same cements showed no genotoxicity in the concentration of 2 mg/mL, with the comet assay. CSC and CSCR2 were also not genotoxic at 10 mg/mL. All experimental materials showed viability with MTT. CSC and CSCR2 presented a better response to apoptosis and genotoxicity evaluation in the 10 mg/mL concentration, and demonstrated a considerable potential for use as reparative materials.

Cytotoxicity, Immunologic; Mutagenicity Tests; Calcium Compounds

Sociedade Brasileira de Pesquisa Odontológica - SBPqO Av. Prof. Lineu Prestes, 2227, 05508-000 São Paulo SP - Brazil, Tel. (55 11) 3044-2393/(55 11) 9-7557-1244 - São Paulo - SP - Brazil
E-mail: office.bor@ingroup.srv.br