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Influence of genetic regulatory effects 
modified by environmental immune 
activation on periapical disease

Abstract: The objective of this study was to compare the periradicular 
responses in endodontic infections among members of two populations: 
an urban Brazilian population and a non-mixed indigenous population. 
Samples were collected immediately and 7 days after the cleaning and 
shaping procedures (after reducing the intracanal microbial load) 
in an attempt to characterize the expression of tumor necrosis factor 
(TNF)-α, interleukin (IL)-1β, IL-9, interferon (IFN)-γ, IL-17, IL-10, and 
the chemokines CXCR4, CCL2/monocyte chemotactic protein (MCP)-1, 
and CCR6. The endogenous cytokine and chemokine expression 
levels were analyzed using real-time PCR. Only the urban population 
showed a significant increase in TNF-α, CCL2/MCP-1, CXCR4, and 
CCR6 expression following the cleaning and shaping of the root canal 
system. The IFN-γ levels were increased at the 2nd collection (p < 0.05) 
in the indigenous population. In turn, a significant increase in IL-10 
and IL-17 expression (p < 0.05) was observed after the cleaning and 
shaping procedures (2nd collection) in both populations. No significant 
differences in the IL-1β, IL-9, and CCL4 expression levels were observed 
between the 1st and 2nd collections in both populations. The results 
demonstrate a cytokine and chemokine expression profile that is 
specific to each analyzed population. However, immune modulation 
mediated by IL-10 began on the 7th day after the beginning of the 
endodontic treatment in both populations.

Keywords: Cytokines; Root Canal Therapy; Population Groups; 
Indigenous Population.

Introduction

The host response against microorganisms present in the root canal 
system (RCS) involves immunological mechanisms, with some components 
acting to protect pulp and periapical tissue and other mediators being 
involved in periapical bone destruction, specifically bone resorption.1 
Our immune system is incredibly complex, with diverse armies of white 
blood cells and signaling proteins coursing through our veins, ready 
to mount an attack on potential invaders. Every individual’s immune 
system is slightly different and contains a unique mixture of hundreds 
of these cells and proteins. However, the main driver of this variation 
is unclear.2
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A wide variety of cells are present in human 
periradicular lesions, including CD4+ and CD8+ T 
lymphocytes, macrophages, antigen-presenting cells, 
mast cells, and eosinophils. However, T cells are the 
most numerous cells in these lesion.3

CD4+ T lymphocytes are subdivided into Th1 
and Th2 subsets according to the cytokines they 
produce. Other cells, such as Th17 and regulatory 
T (Treg) cells, also modulate the periapical immune 
response. The Th1 response is characterized by the 
production of interferon (IFN)-γ, interleukin (IL)-2, 
IL-12, and tumor necrosis factor (TNF), which are 
involved in the development and progression of 
periradicular bone destruction.3 The Th2 response 
induces the synthesis and activity of the IL-4, IL-5, 
IL-6, IL-9, and IL-13 cytokines, which are involved 
in the healing and regeneration of periradicular 
tissues.4 The Th17 subtype produces IL-17, which is 
a proinflammatory cytokine that acts on several cells 
involved in the innate response and is considered a 
bridge between the innate and adaptive responses.5 
Treg cells, which produce transforming growth 
factor (TGF)-β and IL-10, have an inhibitory effect 
on bone resorption during osteoclast formation and 
differentiation and regulate the immune response 
against infection.3

Chemokines are proteins that regulate and 
determine the nature of the immune response and 
control leukocyte trafficking. They are essential 
because they act as chemotactic agents and are 
precursors of osteoclasts. Their respective receptors 
(CXCR4 and CCR1) are also involved in the bone 
resorption process and homeostasis.6 Monocyte 
chemotactic protein (CCL2/MCP-1) has been 
detected in periapical granulomas and is associated 
with the modulation of human periapical lesions. 
MCP-1/CCL2-CCR2 activation plays a role in the 
activation and migration of macrophages while 
limiting polymorphonuclear (PMN) leukocyte 
infiltration.7 CCR6 has been shown to be important 
for B-lineage maturation and antigen-driven B 
cell differentiation and may regulate the migration 
and recruitment of dendritic and T cells during 
inflammatory and immunological responses.8

The systemic conditions of individuals affect 
these periapical immunoinflammatory responses.6,9 

Recently, analyses of genetic polymorphisms have 
demonstrated their effects on pulpal-periradicular 
responses.10,11,12 Additionally, researchers have 
recently shown that most immune responses are 
genetic, very personalized, and finely tuned.13 As 
a result, we are likely to respond to an infection 
in a very individualized manner. Moreover, the 
diversity and activity of leukocytes are controlled 
by genetic and environmental influences to maintain 
balanced immune responses.14 These factors may 
influence the extent and severity of the periapical 
inflammatory response.

The objective of this study was to compare the 
periradicular immune responses in two genetically 
diverse populations: an urban Brazilian population 
and a non-mixed indigenous population of the Tikuna 
– Wochtimaücü tribe (Amazonas, Brazil). Clinical 
samples were collected from the interstitial fluid 
adjacent to the infected root canal in both groups 
immediately after instrumentation of the RCS and 
seven days later. The expression of the cytokines 
TNF-α, IL-1-β, IL-9, IFN-γ, IL-17, and IL-10 and the 
chemokines CXCR4, CCL2/MCP-1, and CCR6 was 
evaluated using real-time PCR. The null hypothesis 
of this study is that each population carries several 
minor regulatory variants that have arisen over time 
in response to environmental factors, which may 
cause significant quantitative genetic variability 
among hosts in the regulation of the periapical 
immune response.

Methodology

Ethical considerations
This study was approved by the ethics committee 

of UFMG (CAAE: 65529617.0.0000.5149) and was 
presented to and approved by the xxx leadership. 
All participants read and signed an informed 
consent form.

Patients
Clinical samples were collected from 24 individuals 

with RCS infections. Twelve individuals belonged to 
the Tikuna tribe (Amazonas, Brazil) and were treated at 
the Endodontics Clinic of Paulista University, Manaus 
campus, Amazonas, Brazil. Twelve other individuals 
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living in the city of Belo Horizonte, Minas Gerais, 
Brazil, were treated at the Endodontics Clinic of the 
Federal University of Minas Gerais.

Collection of clinical specimens
Clinical samples were taken from teeth with 

pulp necrosis and apical periodontitis, which were 
diagnosed based on clinical and radiographic 
analyses and pulp sensitivity tests. The teeth did 
not present acute periapical symptoms at the time 
of the appointment. The sampling procedures were 
performed as previously described.7 Each tooth 
was isolated, and the root canals were cleaned and 
shaped using ProTaper universal NiTi files (Dentsply 
Maillefer, Ballaigues, Switzerland) and 2.5% sodium 
hypochlorite. Samples were collected immediately 
after root canal cleaning, when the cytokine expression 
corresponded to the response to the ongoing infection. 
After cleaning and drying, three paper points (#20) 
were introduced into the root canal and passively 
passed through the root apex (2 mm) into the periapical 
tissue, where they remained for 1 min.

The paper points were cut 4 mm from the tip, 
placed into microcentrifuge tubes, and stored at -70°C. 
This procedure was used to extract RNA from the 
periapical interstitial fluid. No endodontic dressing 
was inserted into the root canals. The coronal access 
cavities of the teeth were restored using eugenol-
based cement. Seven days later (day 7), the teeth 
were opened, and the periapical interstitial fluid 
was resampled to characterize cytokine/chemokine 
expression in the teeth with reduced root canal 
bacterial loads, as demonstrated elsewhere.15 Single- 
and multiple-root teeth were included in this study. 
In teeth with multiple canals, the first (day 0) and 
second (day 7) samples were collected from the same 
canal. At this time point, no teeth exhibited clinical 
signs or symptoms, and the root canals were filled 
using the lateral compaction technique.

Sample preparation
Total RNA was extracted from each sample using 

TRIzol reagent (Gibco/BRL Laboratories, Grand 
Island, NY, USA), as described elsewhere 7-9, and 
then stored at -70°C.

Real-time PCR
Complementary DNA was synthesized using 1 

μg of RNA and reverse-transcribed, as described 
previously.16 The primer sequences were designed 
using Primer Express software (Applied Biosystems, 
Foster City, USA) based on nucleotide sequences 
available in the GenBank database. Real-time PCR 
assays were performed using Primer Express software 
(Applied Biosystems). The primer sequences used 
for the quantitative PCR analysis of TNF-α, IL-1-β, 
IL-9, IFN-γ, IL-17, IL-10, CXCR4, CCL2/MCP-1, and 
CCR6 mRNA expression are provided in Table 1. 
PCR was performed under the following standard 
conditions: a holding stage at 95°C (10 min); a cycling 
stage of 40 cycles at 95°C (15 s), followed by 60°C (1 
min); and a melting curve stage at 95°C (15 s), 60°C 
(1 min), and 95 °C (15 s). A SYBR Green detection 
system (Applied Biosystems) was used to visualize 
primer amplification. Following amplification, a 
melting curve analysis was performed to determine 
the specificity of the amplified products. The 
melting curve was obtained from 60°C to 95°C, 
and continuous fluorescence measurements were 
recorded for every 1% increase in temperature. PCR 
products with melting temperatures that diverged 
from those established for standard DNA were 
considered false positives; for these cases, a null 
fluorescence value was assigned. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used 
as a housekeeping gene for normalization and was 
assayed with each set of reactions. All samples were 
assayed in duplicate. Each reaction was performed 
using a volume of 25 μL containing 1 μg of cDNA. 
Sequence Detection System (SDS) Software version 
2.4.1 (Applied Biosystems) was used to analyze the 
data after amplification. The results were obtained 
as threshold cycle (Ct) values, and the expression 
levels were calculated using the comparative 2-ΔΔCT 
method.16 The results were calculated as the mean 
value of duplicate assays for each patient, and the 
mRNA expression level for each specific primer in 
all samples was defined as the ratio to the GAPDH 
expression level (Table).
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Statistical analysis
SPSS for Windows (version 15.0; SPSS, Chicago, 

USA) was used to perform the data analysis. The 
data were subjected to the Shapiro–Wilk test to 
characterize normality. Because the samples did not 
present a normal distribution, the Wilcoxon test was 
used to determine significant differences between 
groups (p < 0.05).

Results

The mRNA expression levels were determined by 
real-time PCR and quantified by comparison with 
the internal control gene GAPDH. The assessment 
revealed significant increases in the expression 
of TNF-α, MCP-1, CXCR4 and CCR6 in teeth with 
reduced bacterial loads (second collection) compared 
to the initial levels (first collection) only in the urban 

individuals (Figure 1b, Figure 2a, c, d). Conversely, the 
mRNA level of the IFN-γ gene was increased on day 7 
(p < 0.05) (Figure 2b) in the indigenous population. 
The expression levels of IL-17A and the Treg mediator 
IL-10 were increased in both populations on day 7 
(p < 0.05) (Figure 1c, d).

Significant differences were not observed in the 
IL-1β, IL-9, or CCL4 mRNA expression levels between 
the first and second collections in either population 
(Figure 1a, Figure 3a, b).

Discussion

Subsets of pathogens and human hosts have 
been geographically compartmentalized over long 
periods of time. This study aimed to determine 
whether changes in human society brought about 
by technological advances, such as the ease of travel 

Table. Primer sequences.

MARKERS 5’- 3’ Sequence Mt (°C)

GAPDH
5’-GCA CCA CCA ACT GCT TAG CA- 3’

80
5’ -GGC ATG GAC TGT GGT CAT GAG – 3’

IL-1β
5’ -TGG CAG AAA GGG AAC AGA A- 3’

73
5’ -ACA ACA GGA AAG TCC AGG CTA- 3’

IFN-γ
5’ -GAA CTG TCG CCA GCA GCT AAA- 3’

80
5’ -TGC AGG CAG GAC AAC CAT TA- 3’

TNF-α
5’ -TTC TGG CTC AAA AAG AGA ATT G- 3’

76
5’ -TGG TGG TCT TGT TGC TTA AGG- 3’

IL-9
5’-CAT CAG TGT CTC TCC GTC CCA ACT GATG-3’

62.9
5’-GAT TTC TGT GTG GCA TTG GTC AG-3

IL-10
5’ -GGT TGC CAA GCC TTG TCT GA- 3’

81
5’ -TCC CCC AGG GAG TTC ACA T- 3’

IL-17
5’ -CAA TGA CCT GGA ATT ACC CAA- 3’

70
5’ -TGA AGG CAT GTG AAA TCG AGA- 3’

CXCR4
5’ -TGT TGG CTG AAA AGG TGG TC- 3’

80
5’ -AAA GAT GTC GGG AAT AGT C- 3’

CCL2/MCP-1
5’ -AAG ACC ATT GTG GCC AAG GA- 3’

80
5’ -CGG AGT TTG GGT TTG CTT GT- 3’

CCR6
5’-CCA TTC TGG GCA GTG AGT CA-3’ 

60.5
5’ -AGCAGCATCCCGCAGTTAA-3′

CCL4
5’ -TCT CCT CAT GCT AGT AGC TGC CTT- 3’

78
5’ -GCT TCC TCG CAG TGT AAG AAA AG- 3’

4 Braz. Oral Res. 2019;33:e109
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and wide availability of antibiotics, have led to an 
increased danger of pathogenic infections and human 
genetic variation that interfere with the periapical 
immune response.

Apical periodontitis is a condition characterized 
by inflammation or destruction of the periradicular 
tissues and is considered a defensive reaction of 
the organism against microorganisms and their 
byproducts. This inflammatory response involves 
the recruitment and activation of macrophages, 

plasma cells, mast cells, eosinophils, PMN cells, 
and T (CD4+ and CD8+) and B lymphocytes, as well 
as the expression of mediators, such as cytokines, 
chemokines, arachidonic acid and its metabolites, 
and neuropeptides.9,17 The diversity and activity of 
leukocytes are controlled by genetic and environmental 
influences to maintain a balanced immune response.14 
However, the relative contribution of environmental 
factors compared with genetic factors to variations 
in immune traits is unknown. Here, we analyzed the 

Figure 1 (a-d). Expression of TNF-α, IL-1, IL-17  and IL-10 genes in the periradicular tissues of indigenous and urban individuals 
with root canal infections. Levels of expression were determined by real-time PCR and quantified by comparison with an internal 
control (GAPDH). Bars represent the mean values of samples recovered from teeth that did or did not receive endodontic treatment; 
lines represent the standard error of the mean. *p < 0.05 by Wilcoxon or Mann–Whitney test.
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periradicular immune responses in two genetically 
and environmentally diverse populations located more 
than 3,000 km apart: an urban Brazilian population 
and a non-mixed indigenous population of the Tikuna 
– Wochtimaücü tribe (Amazonas, Brazil).

The progression of apical periodontitis and 
consequent bone resorption are attributed to the Th1 
response, which induces osteoclast differentiation 
and activation. Th1 cells produce a proinflammatory 
response that involves the production of IFN-γ, TNF-α, 

and IL-1β.18 TNF-α and IL-1β are proinflammatory 
and osteoclastogenic cytokines that are involved 
in the progression of periradicular lesions.19 In this 
study, IL-1β expression remained at baseline levels at 
both time points in the two evaluated populations, 
in agreement with previous results demonstrating 
that the levels of this cytokine were not significantly 
different between diseased teeth and healthy control 
teeth in urban individuals.20,21 Conversely, TNF-α 
expression was significantly increased only in 

Figure 2 (a-d). Expression of MCP-1, INF-γ, CXCR4 and CCR6 genes in the periradicular tissues of indigenous and urban 
individuals with root canal infections. Levels of expression were determined by real-time PCR and quantified by comparison with an 
internal control (GAPDH). Bars represent the mean values of samples recovered from teeth that did or did not receive endodontic 
treatment; lines represent the standard error of the mean. *p < 0.05 by Wilcoxon or Mann–Whitney test.
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the urban population 7 days after RCS cleaning 
and shaping. For both populations, the increased 
expression of mediators of the immune response may 
have advantages and disadvantages. On the positive 
side, a more intense immune response, such as that 
indicated by the increased TNF-α mRNA expression 
level in the urban population, may clear infections 
more rapidly. On the negative side, immune effectors 
can often be harsh and cause collateral damage to 
host tissues, e.g., increased periapical bone loss.

IFN-γ is the main activator of macrophages, which 
subsequently produce cytokines and other mediators 
that play significant roles in the development of 
periradicular diseases.22,23 Here, only the indigenous 
population showed a significant increase in IFN-γ 
expression on the seventh day. Conversely, a decrease 
in IFN-γ mRNA expression was demonstrated in 
the urban population after the root canal cleaning 
procedures.6,9 Moreover, epigenetic events may be 
relevant to IFN-γ modulation in dental pulp.10 The 
difference in the cytokine expression levels between 
the populations demonstrates that it is crucial to 
understand both the variability of immune responses 
at the population level and how this variability relates 
to disease susceptibility.24

IL-17A is expressed by members of the Th17 subtype 
and is believed to regulate osteoclastogenesis.25 IL-17 
expression and maintenance of the inflammatory 
response may play important roles in the elimination 
of microorganisms.26 Here, the levels of this cytokine 
were significantly increased after the cleaning and 
shaping procedures (second collection) in both 
populations, which is important for the exacerbation 
of inflammation and the clearance of microbial 
periapical contamination.3,27

Treg cells produce TGF-β and IL-10, which are 
important immunoregulatory cytokines that have an 
inhibitory effect on bone resorption; these cytokines 
are also involved in regulating the immune response 
against infection.3,28 In this study, both populations 
presented high IL-10 mRNA expression levels after the 
cleaning and shaping procedures, which suggested 
that immune regulation at this time point started 
to decrease the proinflammatory response that was 
initiated earlier. Although the results of this study 
reinforce the idea that the immune system responds to 
periapical infection in a very individualized manner,13 
periapical immune regulation occurred in a similar 
manner in both populations after the cleaning and 
shaping procedures.

Figure 3 (a, b). Expression of IL-9 and CCL4 genes in the periradicular tissues of indigenous and urban individuals with root canal 
infections. Levels of expression were determined by real-time PCR and quantified by comparison with an internal control (GAPDH). 
Bars represent the mean values of samples recovered from teeth that did or did not receive endodontic treatment; lines represent 
the standard error of the mean. *p < 0.05 by Wilcoxon or Mann–Whitney test.
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Th9 cells have been shown to have interesting 
plasticity and either act synergistically with Th2 
cells in some inflammatory processes or perform 
immunosuppressive actions via IL-10 production.29 In 
this study, no significant differences were observed in 
the IL-9 mRNA expression levels in either population 
after the cleaning and shaping procedures. This 
finding correlates with the increase in IL-10 expression 
that paralleled the increase in IL-17 expression at 
the second collection, which may interfere with the 
differentiation of the Th9 phenotype to the Th2 or 
Th1/Th17 subtype.

Chemokines are proteins that regulate and 
determine the nature of immune responses and 
control immune cell trafficking by directing the 
movements of cells required for the initiation of T 
cell-mediated immune responses; these actions are 
thought to be important for recruiting appropriate 
effector cells to sites of inflammation, including 
the differential recruitment of Th1 and Th2 cells.30 
Here, significant differences in mRNA expression 
of the CCL2/MCP-1 chemokine and the CXCR4 and 
CCR6 chemokine receptors were observed between 
the two analyzed time points only for the urban 
population. These chemokines and receptors, along 
with CCL4, were expressed at basal levels at both 
evaluation time points in the indigenous population. 
For these mediators, we suggest that the immune 
system responds in an individualized manner to 
root canal infections, depending on the genetic and 
environmental conditions. CCL2/MCP-1 not only 
influences inflammatory cell recruitment but also 
affects effector T cell differentiation because it leads to 
decreased IL-12 production by macrophages,31 which 
suppresses Th1 responses. In the urban population, 
its expression was high at the second collection, 
which paralleled the increase in the expression levels 
of the proinflammatory cytokines TNF-α and IL-17. 
No significant difference in CCL2 expression was 
observed after cleaning procedures elsewhere,6,9 but 

an opposite result was demonstrated by others.32 
CXCR4 is the receptor of the anti-inflammatory 
immune modulator ubiquitin;33 in this study, CXCR4 
was significantly increased in the urban population 
after the cleaning procedures, in parallel with IL-10, 
which is congruent with the results of a previous 
study.9 Moreover, CXCR4 and CCR6 act as co-receptors 
for HIV entry.3 CCR6 is preferentially expressed by 
immature dendritic cells and memory T cells.8 In 
the urban population, CCR6 mRNA expression was 
increased after the cleaning procedures, which is in 
agreement with findings showing that this mediator is 
essential for the recruitment of both proinflammatory 
IL-17-producing helper T cells (Th17) and Treg cells 
to sites of inflammation.35

The null hypothesis was accepted; minor regulatory 
variants that have arisen over time in response to 
environmental factors caused significant quantitative 
genetic variability among hosts in the regulation 
of the periapical immune response. Because the 
functional plasticity and redundancy of the immune 
system complicate the experimental study of each of 
its components, the results of this study contribute 
to the overall understanding of the specific immune 
responses that predominate in the periapical area in 
each individualized urban and indigenous population 
after instituting clinical endodontic therapy. However, 
to date, the genetic mechanisms and environmental 
factors that regulate the homeostasis of cell numbers and 
phenotypes in the peripheral immune system, especially 
in periapical lesions, remain poorly understood.
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