Soil properties vary in space due to many causes. For this reason it is wise to know the magnitude and behaviour of the variability for adequate data analysis and decision making. Our work on spatial variability of soil properties in São Paulo, Brazil began in 1982 with a very simple soil sampling in a small field. Much progress has been made since then on sampling designs, field equipment and methods, and mostly on computation equipment and softwares. This paper reports the results corresponding to some aspects of this progress, as far as the field, analysis and computation work are concerned. The objective of this study was to illustrate the use of geostatistics in data analysis for three sampling conditions on long term no-tillage system. The analysis is done on a wide range of field scales, variables, sampling schemes as well as repeating sampling scheme for the same variable in different years. Semivariograms are compared for the same variables in different scales and sampling dates and depths as to provide a guide for sampling spacing and number of samples. Normalized crop yield parameters for many years are used in the discussion of time variability and on the use of yield maps to locate management zones. The time of the year in which measurements of soil physical properties are made affected the results both in terms of descriptive statistical and spatial dependence parameters. Crop yields changed (soybean decrease and maize increase) with time of no-tillage but the real cause was not identified. The length of time with no-tillage affected the range of dependence for the main crops (increased for soybean, maize and oats) and therefore increased the size of the homogeneous management zones. The evolution of the sampling grid from 20 m with 63 sampling points to 10 m with 302 sampling points allowed for a much better knowledge of the spatial variability of crop yields but it had the reverse effect on the spatial variability of soil physical properties.
geostatistics; semivariogram; temporal variation; grain crop yield