
ABSTRACT: Natural additives, particularly essential oils, have gained widespread recognition for their role in enhancing the attributes 

of natural edible polymers. Comprising a wealth of hydrophobic and volatile compounds, essential oils exhibit notable antioxidant and 

antimicrobial properties owing to their rich composition of terpenes and aromatic constituents. This review underscores the multifaceted 

biological properties of essential oils, encompassing their incorporation into films, edible coatings, and nanoencapsulated materials. The 

effect of utilizing several essential oils as natural additives in combination with different raw materials and plasticizers was compared to the 

evaluation of their impact on the material properties of films and edible coatings, offering an in-depth analysis of the specific essential oil 

variants featured in the recent literature. Among the essential oils reviewed, those derived from clove, cinnamon, and oregano emerge as 

the predominant choices, representing some of the most promising natural additives for biodegradable packaging. Nanoencapsulation 

techniques have also expanded the role of essential oils in sustainable food packaging by increasing their stability.
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INTRODUCTION

The importance of packaging in the food industry goes beyond product storage. Packages must act as a barrier against 
factors related to product degradation, for quality maintenance and conservation (Hamann et al. 2021). Synthetic polymeric 
materials constitute over 40% of the food packaging. However, they can cause environmental problems due to the gas 
emissions and the contamination of water bodies and landfills. Microplastics can represent a potential risk to life, especially 
when entering the food chain (Ahmad and Sarbon 2021, Filiciotto and Rothenberg 2020, Shankar and Rhim 2020).

Although the complete replacement of traditional petroleum-based plastics with biodegradable polymeric materials is 
unpractical nowadays, the application of these active biodegradable materials to food packaging appears to be feasible, at 
least in certain areas, such as food packaging (Ataei et al. 2020), to reduce the environmental impact of the massive use of 
synthetic plastics (Mahmud et al. 2024).

Biodegradable films have the same function as conventional films used as packaging. They protect food against external 
agents and provide a barrier against the permeability of water, gases, and light (Paulo et al. 2021). The presence of natural 
antimicrobial agents can confer antimicrobial activity to these films (Silva, R. S. et al. 2020, Hamann et al. 2021). In this 
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context, various types and combinations of biomolecules, e.g., polysaccharides, proteins, and lipids have been widely used 
for their excellent film formality and adequate structure, mechanical, and antimicrobial properties (Jamróz and Kopel 2020, 
Liyanapathiranage et al. 2023). Additionally, films are produced from polyhydroxyalkanoates (PHA) and polylactides (PLA). 
PHAs are natural thermoplastics that occur in a wide range of bacteria, while PLA are obtained through the polymerization 
of lactic acid, which is primarily produced via the fermentation of sugars derived from renewable resources such as corn 
and sugarcane (dos Santos et al. 2020, Filiciotto and Rothenberg 2020).

Essential oils (EOs) are natural substances obtained from aromatic plants and have antimicrobial and antioxidant 
capacity. They are non-toxic and have good acceptability among consumers. Moreover, the content of 25 mg of pure EO is 
recommended for human consumption (Baudoux 2018). However, these oils are volatile, and oxidizable, and their hydrophobic 
compounds have a strong odor. Therefore, their direct use is limited, as they can cause changes in the flavor of fruits and 
vegetables (Alves et al. 2022, Cai, C. et al. 2020, Rezende et al. 2020, Zhang et al. 2022). EOs can be also incorporated to films 
and coverings as natural antimicrobial and antioxidant agents (Khaneghah et al. 2018). These systems using EOs prevent 
microbial growth and spoilage of food products through the controlled release of antimicrobial substances, including the 
essential oil from packaging materials. The active packaging system also increases food stability and reduces the amount 
of chemicals used in the packaging system (Bangar et al. 2022). Several authors presented the EOs as natural additives in 
films, coatings, or nanoencapsulated as promising to replace the chemical additives.

Different biological properties of EOs were related mainly to antioxidant, antimicrobial (antibacterial and antifungal), and 
larvicide activities, contributing to the increase in the shelf life of food products (Lima et al. 2021, Bangar et al. 2022). Other 
biological properties reported for EOs are antiviral, antiseptic, immunostimulant, anti-inflammatory, analgesic, antihistamine, 
anticatarrhal, litholytic, antispasmodic, antiarrhythmic, and antilithiasic (Baudoux 2018). Table 1 presents some of their main 
applications, with an indication of whether they are suitable for ingestion, depending on their chemical composition.

Table 1. Characteristics and properties of essential oils.

Popular name Scientific name Ingestion Non 
ingestion Biochemical family Properties

Balsam fir Abies balsamea X Sesquiterpene; 
terpene Antifungal, antibacterial, antiviral

Celery Apium 
graveolens X Sesquiterpene; 

phthalide Antioxidant, tonic, sedative

Rosemary Salvia rosmarinus X
Terpene ketone; 
terpene oxide; 
terpene ester

Antioxidant, anti-inflammatory, antimycotic, 
antimicrobial, healing, analgesic/refreshing, 

anti-dandruff, mental stimulant

Garlic Allium sativum X Disulfide; cysteine Antiviral, antimicrobial, antifungal

Angelica Angelica 
archangelica X Nitrogen compound; 

cymarin
Antifungal, antibacterial, immunostimulant, 

antispasmodic, carminative, tonic

Star anise Illicium verum X Methyl-ester-phenol Antiseptic, antiviral, antispasmodic, 
antioxidant

Bergamot Citrus bergamia X Terpene aldehyde; 
coumarin Antibacterial, anti-inflammatory

Chamomile Matricaria 
chamomilla X

Sesquiterpene 
alcohol; terpene 
ketone; terpene 

ester; sesquiterpene; 
coumarin

Analgesic, anti-inflammatory, antiseptic, 
bactericidal, soothing, healing, relaxing, 

sedative

Cinnamon Cinnamomum 
verum X Phenol; aromatic 

aldehyde; coumarin
Antibacterial, antifungal, antidiabetic, 

antioxidant, anti-inflammatory

Lemongrass Cymbopogon 
citratus X Terpene aldehyde Antibacterial, antifungal, anti-inflammatory, 

antioxidant, analgesic, anxiolytic

Cardamom Elettaria 
cardamomum X Terpene ester Antiseptic, stimulant, aphrodisiac, diuretic, 

muscle relaxant, digestive stimulant, tonic

Continue...
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Table 1. Continuation...

Popular name Scientific name Ingestion Non 
ingestion Biochemical family Properties

Cedar Cedrela fissilis X Sesquiterpene Anxiolytic, antiseptic, anti-inflammatory, 
antispasmodic, antifungal,

Carrot Daucus carota X Sesquiterpene 
alcohol; terpene

Anti-inflammatory, antioxidant, moisturizing, 
healing

Cypress Cupressus 
sempervirens X

Sesquiterpene 
alcohol; terpene; 

sesquiterpene

Anti-inflammatory, antifungal, antitussive, 
antioxidant, antimicrobial

Citronella Cymbopogon 
(lemongrass) X Terpene aldehyde Anti-infectious, antibacterial, antiseptic, 

acaricidal

Coriander Coriandrum 
sativum X Terpenic alcohol; 

terpene Digestive, antiflatulent, antispasmodic

Copaiba Copaifera 
langsdorffii X Sesquiterpene

Healing, antiseptic, antibacterial, diuretic, 
anti-inflammatory, expectorant, analgesic, 

antirheumatic, antidiarrheal

Comin Cuminum 
cyminum X Aromatic aldehyde

Antioxidant, antiseptic, antispasmodic, 
antitoxic, aphrodisiac, bactericidal, 

carminative, depurative, digestive, diuretic, 
emmenagogue, larvicide, nervine, stimulant, 

tonic

Clove Eugenia 
caryophyllata X Phenol; terpene ester

Analgesic, anti-inflammatory, antibacterial, 
antiparasitic, antifungal, antioxidant, 

aphrodisiac, antidiabetic, antitumor, antiviral,

Curcuma Curcuma longa X Sesquiterpene
Immunostimulants, anti-inflammatory, 

antalgic, antioxidant, antiallergic, 
antibacterial, antifungal, antiviral, anticancer

Anise Pimpinella 
anisum X Terpene aldehyde; 

methyl-ester-phenol
Anticoagulant, antithrombotic, anti-

inflammatory, analgesic, sedative

Eucalyptus Eucalyptus 
staigeriana X

Phenol; terpenic 
alcohol; aromatic 
aldehyde; terpene 
aldehyde; terpene 

ketone

Analgesic, antiseptic, antibacterial, 
antispasmodic, antiviral, expectorant, 

antipyretic

Fennel Foeniculum 
vulgare X Methyl-ester-phenol Herbicide, insecticide, antioxidant, 

antimicrobial

Ginger Zingiber 
officinale X Sesquiterpene Antiseptic, anti-inflammatory, antioxidant, 

anti-infective, analgesic, digestive

Geranium Pelargonium X
Terpenic alcohol; 

terpene aldehyde; 
terpene ester

Antioxidants, bactericidal, anti-inflammatory, 
antiseptic, astringent

Hyssop Hyssopus 
officinalis X

Terpene ketone; 
terpenic oxide; 

methyl-ester-phenol

Expectorant, mucolytic, anti-asthmatic, 
antibacterial, antifungal, antiviral

Spearmint Mentha spicata X

Terpenic alcohol; 
terpene ketone; 
terpenic oxide; 
terpene ester

Antimicrobial, decongestant, digestive, anti-
inflammatory, antioxidant, analgesic, tonic, 

disinfectant, anticonvulsant

Jasmine Jasminum 
officinale X Terpene ester Antidepressant, anti-inflammatory, antiseptic, 

healing, sedative, moisturizing, anxiolytic

Lavender Lavandula spica X

Terpenic alcohol; 
terpene ketone; 
terpene ester; 

terpene; coumarin

Antispasmodic, soothing, relaxing, 
sedative, anti-inflammatory, analgesic, 

healing, antihypertensive, anti-infectious, 
antifungal, antiseptic, bactericidal, skin 

regenerating

Continue...
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Table 1. Continuation...

Popular name Scientific name Ingestion Non 
ingestion Biochemical family Properties

Orange Citrus × sinensis X Terpene; coumarin
Antioxidant, digestive, antipyretic, 
bactericide, antiseptic, respiratory 
decongestant, antilipid, anti-stress

Key lime Citrus × 
aurantiifolia X Terpene; coumarin

Antiseptic, antiviral, astringent, bactericidal, 
disinfectant, febrifuge, hemostatic, 

restorative, tonic

Lemon Citrus limon X Terpene; coumarin
Antibacterial, antifungal, antiviral, astringent, 

anticoagulant, immunosuppressive, 
antistress, hypotensive

Laurel Laurus nobilis X

Methyl-ester-
phenol; terpene 

ester; terpenic oxide; 
lactone

Bactericidal, fungicidal, anti-infectious, 
analgesic

Basil Ocimum 
basilicum X Methyl-ester-phenol Antiseptic, bactericidal, antiviral, fungicidal, 

anti-inflammatory, analgesic

Marjoram Origanum 
majorana X Terpenic alcohol Anxiolytic, analgesic, antispasmodic, tonic

Lemon balm Melissa officinalis X Terpene aldehyde; 
coumarin

Antispasmodic, analgesic, diaphoretic, mild 
laxative, antiviral, antibacterial, choleretic, 

carminative, expectorant, antipyretic, healing

Myrrh Commiphora 
myrrha X Sesquiterpene

Antifungal, tonic, sedative, antimicrobial, 
astringent, anti-inflammatory, antiseptic, 

aromatic, healing, deodorant, disinfectant, 
anesthetic

Spikenard Nardostachys 
jatamansi X Terpene; 

sesquiterpene

Anti-inflammatory, antipyretic, bactericidal, 
deodorant, fungicidal, laxative, sedative, 

cardiac and nervous system tonic

Frankincense Boswellia carterii X
Terpene; 

sesquiterpene; 
ketone

Analgesic, anti-inflammatory, expectorant, 
soothing

Oregano Origanum 
vulgare X Phenol; 

sesquiterpene
Antifungal, antiviral, antibacterial, 

immunostimulant, analgesic, antioxidant

Palmarosa Cymbopogon 
martinii X Terpenic alcohol

Antigenotoxic, antioxidant, antiseptic, 
antiviral, bactericidal, cytophylactic, febrifuge, 

aphrodisiac, antifungal, aromatic, soothing, 
healing, stimulant

Black sprice Picea mariana X Terpene

Anti-inflammatory, analgesic, expectorant, 
astringent, healing, detoxifying, deodorant, 

bactericidal, fungicide, antiseptic for the 
genitourinary system

Black pepper Piper nigrum X Sesquiterpene
Analgesic, antiseptic, antispasmodic, 

carminative, detoxifying, diuretic, antipyretic, 
laxative, rubefacient, stomachic

Damask rose Rosa × 
damascena X Nitrogen compound; 

sulfur compound

Antidepressant, anti-inflammatory, 
antiseptic, antispasmodic, aphrodisiac, 

bactericidal, cholagogue, depurative, diuretic, 
emmenagogue, hemostatic, liver and stomach 

stimulant, laxative, sedative, spleen, tonic

Sage Salvia officinalis X

Sesquiterpene 
alcohol; terpene 

ketone; sulfur 
compound

Relaxing, astringent, antiseptic, aromatic, cell 
regenerator, antidepressant, antispasmodic

Indian 
sandalwood Santalum album X Sesquiterpene 

alcohol

Anxiolytic, antiseptic, anti-inflammatory, 
antispasmodic, aphrodisiac, expectorant, 

hypotensive

Continue...
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Table 1. Continuation...

Popular name Scientific name Ingestion Non 
ingestion Biochemical family Properties

Mandarin orange Citrus reticulata X Terpene Antidepressant, antispasmodic, carminative

Tea tree Melaleuca 
alternifolia X Terpenic alcohol; 

terpene aldehyde

Curative, antiseptic, analgesic, anti-inflammatory, 
antispasmodic, bactericidal, healing, 

expectorant, fungicidal, balsamic, antiviral, 
febrifuge, insecticide, immunostimulant, 

diaphoretic, parasiticide, vulnerary

Bitter orange Citrus aurantium X Terpene
Antidepressant, antiseptic, diuretic, 

disinfectant, lymphatic stimulant, tonic, 
anti-infective

Thyme Thymus vulgaris X Phenol; terpenic 
alcohol Antibacterial, fungicidal, antiviral, analgesic

Thuja Thuja 
occidentalis X Terpene ketone Immunostimulant, antiviral, antimycotic

Verbena Verbena 
officinalis X

Terpene aldehyde, 
sesquiterpene 

alcohol

Antidepressant, analgesic, antispasmodic, 
fungicide, antiseptic

Wintergreen Gaultheria 
procumbens X Terpene ester Analgesic, anti-rheumatic, antiseptic

Ylang Ylang Cananga odorata X Terpene ester; 
sesquiterpene Bactericide, fungicide

Yuzu Citrus junos X Terpene Anxiolytic, anti-inflammatory, antioxidant

Juniper Juniperus 
communis X Terpene Antioxidant, antiseptic, anti-inflammatory, 

anti-rheumatic

Source: Adapted from Baudoux (2018).

Edible films, coatings, and nanoencapsulated EOs have packaging properties that protect the inside from the outside, 
limiting the transport of gases and water vapor between the food product and the environment. The term edible means 
ingestion together with the food which they are in contact with, which presents the need to be considered safe for humans 
(dos Santos et al. 2020, Erkmen and Barazi 2018).

Nanotechnological packaging systems are becoming more sophisticated, and, with the increasing development of 
technologies, it is leading to innovation in the field of smart packaging and used in food preservation and storage. The use 
of nanomaterials, e.g., in antimicrobial packaging can extend shelf life and delay food spoilage. This process is necessary to 
reduce the amount of chemicals utilized for food conservation (Junges et al. 2022).

Thus, the aims of this review were to make a compilation of very recent advances obtained in the field of natural agents 
utilized in the production of biodegradable films for food packaging (Table 2), and to present perspectives about their use 
by the food industry (Fig. 1).

Table 2. Characterization of biopolymer films containing essential oils.

Essential oil
(g.100 g-1)

Other compounds
(g.100 g-1)

Sw
(%)

WVP
(g.mm.d-1.
kPa-1.m-2)

TS
(Mpa)

EB
(%) Reference

Anise, 0.5 Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
1.0; Tween 80, nd 21.66 ± 0.51 21,168* 15.85 ± 0.06 7.81 ± 0.04 Mahdavi et al. 

(2017)

Anise, 1.0 Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
1.0; Tween 80, nd 16.14 ± 0.25 19,613* 16.75 ± 0.56 9.24 ± 0.08 Mahdavi et al. 

(2017)

Anise, 1.5 Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
1.0; Tween 80, nd 12.01 ± 0.65 9,504* 18.71 ± 0.32 10.61 ± 0.35 Mahdavi et al. 

(2017)

Anise, 2.0 Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
1.0; Tween 80, nd 9.49 ± 0.32 7,776* 21.38 ± 0.26 12.32 ± 0.05 Mahdavi et al. 

(2017)

Continue...
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Table 2. Continuation...

Essential oil
(g.100 g-1)

Other compounds
(g.100 g-1)

Sw
(%)

WVP
(g.mm.d-1.
kPa-1.m-2)

TS
(Mpa)

EB
(%) Reference

Apricot 
kernel, 0.125

Chitosan, 2.0 in acetic acid, 1.0; Tween 
80, 0.2 12.50 ± 1.67 48.0 13.92 ± 0.70 11.03 ± 1.34 Priyadarshi et 

al. (2018)

Apricot 
kernel, 0.25

Chitosan, 2.0 in acetic acid, 1.0; Tween 
80, 0.2 8.82 ± 1.21 46.4 14.41 ± 0.81 5.46 ± 0.59 Priyadarshi et 

al. (2018)

Apricot 
kernel, 0.5

Chitosan, 2.0 in acetic acid, 1.0; Tween 
80, 0.2 6.52 ± 0.95 29.5 17.67 ± 0.98 4.02 ± 0.14 Priyadarshi et 

al. (2018)

Apricot 
kernel, 1.0

Chitosan, 2.0 in acetic acid, 1.0; Tween 
80, 0.2 4.76 ± 1.03 26.2 19.36 ± 1.06 3.76 ± 0.43 Priyadarshi et 

al. (2018)

Basil, 1.0 Chitosan, 3.0 in hydrochloric acid, 0.3; 
glycerol, 0.9 nd nd 13.0 ± 4.3 23.0 ± 0.7 Amor et al. 

(2021)

Basil, 2.0 Chitosan, 3.0 in hydrochloric acid, 0.3; 
glycerol, 0.9 nd nd 10.8 ± 1.7 22.0 ± 5.4 Amor et al. 

(2021)

Basil, 3.0 Chitosan, 3.0 in hydrochloric acid, 0.3; 
glycerol, 0.9 nd nd 10.5 ± 2.3 22.0 ± 4.8 Amor et al. 

(2021)

Bergamot, 
0.15

Unicorn leatherjacket skin gelatin, 3.0; 
glycerol, 0.6; Tween 20, 0.0225 93.37 ± 0.57 10.9 ± 0.2 36.34 ± 3.14 8.76 ± 3.45 Ahmad et al. 

(2012)

Bergamot, 
0.3

Unicorn leatherjacket skin gelatin, 3.0; 
glycerol, 0.45; Tween 20, 0.045 93.14 ± 0.37 16.2 ± 0.3 30.8 ± 6.41 7.33 ± 2.12 Ahmad et al. 

(2012)

Bergamot, 
0.45

Unicorn leatherjacket skin gelatin, 3.0; 
glycerol, 0.3; Tween 20, 0.0675 93.07 ± 0.45 16.8 ± 0.5 27.94 ± 3.34 7.18 ± 4.60 Ahmad et al. 

(2012)

Bergamot, 
0.6

Unicorn leatherjacket skin gelatin, 3.0; 
glycerol, 0.15; Tween 20, 0.09 90.04 ± 0.46 16.2 ± 0.9 27.96 ± 7.24 3.70 ± 2.04 Ahmad et al. 

(2012)

Bergamot, 
0.75

Unicorn leatherjacket skin gelatin, 3.0; 
Tween 20, 0.1125 89.82 ± 0.96 15.9 ± 1.1 23.75 ± 6.85 3.06 ± 2.00 Ahmad et al. 

(2012)

Bergamot, 
0.5 Chitosan, 1.0 in acetic acid, 0.5 nd 112.5* 65 ± 10 7 ± 4

Sánchez-
González et al. 

(2010)

Bergamot, 
1.0 Chitosan, 1.0 in acetic acid, 0.5 nd 74.3* 63 ± 21 5.5 ± 0.7

Sánchez-
González et al. 

(2010)

Bergamot, 
2.0 Chitosan, 1.0 in acetic acid, 0.5 nd 79.5* 50 ± 8 6 ± 2

Sánchez-
González et al. 

(2010)

Bergamot, 
3.0 Chitosan, 1.0 in acetic acid, 0.5 nd 56.2* 22 ± 8 1.7 ± 0.4

Sánchez-
González et al. 

(2010)

Black 
pepper, 0.05

Gelatin, 5.0; cloisite Na+, 0.05; Tween, 
0.0375 nd 14.64* 64.05 ± 2.61 7.77 ± 0.91 Saranti et al. 

(2021)

Caraway, 1.0 Chitosan, 1.0 in acetic acid, 1.0 18.14 ± 4.03 3.36* 44.47 ± 4.40 31.53 ± 4.28 Hromiš et al. 
(2015)

Caraway, 1.0 Chitosan, 1.0 in acetic acid, 1.0; beeswax, 
1.8; Tween 20, 0.5 17.33 ± 1.98 4.02* 8.78 ± 0.88 14.74 ± 2.96 Hromiš et al. 

(2015)

Caraway, 1.0 Chitosan, 1.0 in acetic acid, 1.0; beeswax, 
3.6; Tween 20, 0.5 9.08 ± 1.68 4.10* 3.90 ± 0.29 10.97 ± 1.48 Hromiš et al. 

(2015)

Caraway, 1.0 Chitosan, 1.0 in acetic acid, 1.0; beeswax, 
5.4; Tween 20, 0.5 6.11 ± 0.95 5.08* 2.75 ± 0.46 6.04 ± 1.67 Hromiš et al. 

(2015)

Caraway, 1.0 Chitosan, 1.0 in acetic acid, 1.0; beeswax, 
7.2; Tween 20, 0.5 1.86 ± 0.40 3.61* 2.14 ± 0.14 4.92 ± 1.22 Hromiš et al. 

(2015)

Caraway, 1.0 Chitosan, 1.0 in acetic acid, 1.0; beeswax, 
9.0; Tween 20, 0.5 2.21 ± 1.47 3.36* 2.04 ± 0.25 5.55 ± 1.62 Hromiš et al. 

(2015)

Cedarwood, 
0.045

Sugar beet lignocellulose, 0.9; glycerol, 
0.1; Span 80, 0.01 25.9 ± 1.5 22.5 ± 0.9 47.4 ± 5.0 11.4 ± 1.6

Shen and 
Kamdem 
(2015a)

Continue...
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Table 2. Continuation...

Essential oil
(g.100 g-1)

Other compounds
(g.100 g-1)

Sw
(%)

WVP
(g.mm.d-1.
kPa-1.m-2)

TS
(Mpa)

EB
(%) Reference

Cedarwood, 
0.09

Sugar beet lignocellulose, 0.9; glycerol, 
0.1; Span 80, 0.01 24.9 ± 0.9 21.6 ± 0.9 36.1 ± 5.1 9.9 ± 1.5

Shen and 
Kamdem 
(2015a)

Cedarwood, 
0.135

Sugar beet lignocellulose, 0.9; glycerol, 
0.1; Span 80, 0.01 21.8 ± 1.2 19.9 ± 0.9 28.1 ± 2.9 6.4 ± 0.5

Shen and 
Kamdem 
(2015a)

Cedarwood, 
0.1

Chitosan, 1.0 in acetic acid, 1.0; Tween 
80, 0.001 nd 27.6* 36.54 ± 3.78 25.80 ± 1.53

Shen and 
Kamdem 
(2015b)

Cedarwood, 
0.2

Chitosan, 1.0 in acetic acid, 1.0; Tween 
80, 0.002 nd 23.3* 28.47 ± 1.42 18.33 ± 2.17

Shen and 
Kamdem 
(2015b)

Cedarwood, 
0.3

Chitosan, 1.0 in acetic acid, 1.0; Tween 
80, 0.003 nd 13.8* 22.29 ± 0.83 5.07 ± 1.01

Shen and 
Kamdem 
(2015b)

Cinnamon, 
0.025 Soy protein isolate, 1.0; glycerol, 0.3 nd 15.36 ± 0.48 11 ± 4 3.4 ± 1.8 Atarés et al. 

(2010)

Cinnamon, 
0.05 Soy protein isolate, 1.0; glycerol, 0.3 nd 11.04 ± 1.2 17.6 ± 1.6 7.5 ± 0.4 Atarés et al. 

(2010)

Cinnamon, 
0.075 Soy protein isolate, 1.0; glycerol, 0.3 nd 12 ± 1.2 15.2 ± 1.3 7.2 ± 1.6 Atarés et al. 

(2010)

Cinnamon, 
0.1 Soy protein isolate, 1.0; glycerol, 0.3 nd 13.2 ± 2.4 14.1 ± 1 7.5 ± 0.6 Atarés et al. 

(2010)

Cinnamon, 
0.1

Pullulan polysaccharides, 2.0; glycerol, 
0.3 nd 1,776* 49.3 2.8 Feng et al. 

(2020)

Cinnamon, 
0.2

Pullulan polysaccharides, 2.0; glycerol, 
0.3 nd 1,464* 48.8 2.9 Feng et al. 

(2020)

Cinnamon, 
0.3

Pullulan polysaccharides, 2.0; glycerol, 
0.3 nd 1,344* 47.1 3.3 Feng et al. 

(2020)

Cinnamon, 
0.4

Sodium starch octenyl succinate, 
4.0; corn oil, 1.6; glycerol, 1.6; sodium 

alginate, 1.2
nd 3.18* 17.18 ± 0.14 22.58 ± 1.59 Sun et al. 

(2020)

Cinnamon, 
0.8

Sodium starch octenyl succinate, 
4.0; corn oil, 1.2; glycerol, 1.6; sodium 

alginate, 1.2
nd 2.69* 10.80 ± 0.62 35.25 ± 2.21 Sun et al. 

(2020)

Cinnamon, 
1.2

Sodium starch octenyl succinate, 
4.0; corn oil, 0.8; glycerol, 1.6; sodium 

alginate, 1.2
nd 2.47* 10.29 ± 0.32 39.62 ± 2.26 Sun et al. 

(2020)

Cinnamon, 
1.6

Sodium starch octenyl succinate, 
4.0; corn oil, 0.4; glycerol, 1.6; sodium 

alginate, 1.2
nd 1.79* 8.77 ± 0.35 45.22 ± 1.80 Sun et al. 

(2020)

Cinnamon, 
2.0

Sodium starch octenyl succinate, 4.0; 
glycerol, 1.6; sodium alginate, 1.2 nd 2.22* 8.65 ± 0.21 53.25 ± 3.65 Sun et al. 

(2020)

Cinnamon, 
0.5

Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
30.0; Tween 80, 20.0 17.28 ± 0.97 147,024.0* 43.11 ± 6.39 28.05 ± 2.91 Zhang et al. 

(2019)

Cinnamon, 
0.4

Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
1.5; Tween 80, 0.0008 21.06 ± 0.65 11.68* 13.35 ± 1.23 16.57 ± 0.77 Ojagh et al. 

(2010)

Cinnamon, 
0.8

Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
1.5; Tween 80, 0.0016 16.8 ± 0.85 10.66* 17.43 ± 1.08 11.26 ± 1.39 Ojagh et al. 

(2010)

Cinnamon, 
1.5

Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
1.5; Tween 80, 0.003 13.6 ± 1.55 8.76* 24.10 ± 1.47 6.42 ± 0.63 Ojagh et al. 

(2010)

Cinnamon, 
2.0

Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
1.5; Tween 80, 0.004 10.4 ± 0.94 8.67* 19.23 ± 2.25 3.58 ± 0.35 Ojagh et al. 

(2010)
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Table 2. Continuation...

Essential oil
(g.100 g-1)

Other compounds
(g.100 g-1)

Sw
(%)

WVP
(g.mm.d-1.
kPa-1.m-2)

TS
(Mpa)

EB
(%) Reference

Cinnamon, 
1.0

Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
0.6; Tween 20, 0.1 39.02 ± 3.17 7.7* 38.7* 12.2* Peng and Li 

(2014)

Cinnamon, 
0.8

Sugar palm (SP) starch, 10.0; SP 
cellulose, 0.05; glycerol, 1.5; sorbitol, 1.5; 

Tween 80, 1.5
nd nd 4.81 17.2475 Syafiq et al. 

(2021)

Cinnamon, 
1.2

Sugar palm (SP) starch, 10.0; SP 
cellulose, 0.05; glycerol, 1.5; sorbitol, 1.5; 

Tween 80, 1.5
nd nd 4.94 16.350 Syafiq et al. 

(2021)

Cinnamon, 
1.6

Sugar palm (SP) starch, 10.0; SP 
cellulose, 0.05; glycerol, 1.5; sorbitol, 1.5; 

Tween 80, 1.5
nd nd 5.08 15.575 Syafiq et al. 

(2021)

Cinnamon, 
2.0

Sugar palm (SP) starch, 10.0; SP 
cellulose, 0.05; glycerol, 1.5; sorbitol, 1.5; 

Tween 80, 1.5
nd nd 5.3 ± 0.27 13.9 ± 5.57 Syafiq et al. 

(2021)

Cinnamon, 
0.5

Silver carp skin gelatin, 4.0; glycerol, 1.0; 
Tween 80, 0.5 nd 10.80 17.77 ± 1.93 125.60 ± 

2.50
Wu et al. 

(2017)

Cinnamon, 
1.0

Silver carp skin gelatin, 4.0; glycerol, 1.0; 
Tween 80, 0.5 nd 13.56 12.66 ± 1.47 119.05 ± 1.41 Wu et al. 

(2017)

Cinnamon, 
2.0

Silver carp skin gelatin, 4.0; glycerol, 1.0; 
Tween 80, 0.5 nd 13.13 8.55 ± 0.39 95.55 ± 2.54 Wu et al. 

(2017)

Cinnamon, 
4.0

Silver carp skin gelatin, 4.0; glycerol, 1.0; 
Tween 80, 0.5 nd 17.02 5.03 ± 0.32 122.17 ± 0.05 Wu et al. 

(2017)

Cinnamon, 
6.0

Silver carp skin gelatin, 4.0; glycerol, 1.0; 
Tween 80, 0.5 nd 15.64 4.64 ± 1.19 84.33 ± 5.37 Wu et al. 

(2017)

Cinnamon, 
0.05 / 

perilla, 0.45

Chitosan, 3.0 in acetic acid, 2.0; collagen, 
3.0; glycerol, 0.5; anthocyanidin 0.4 nd 32.12 ± 2.68 7.20* 140.00 ± 

8.43
Zhao et al. 

(2022)

Cinnamon, 
0.1 / perilla, 

0.9

Chitosan, 3.0 in acetic acid, 2.0; collagen, 
3.0; glycerol, 0.5; anthocyanidin 0.4 nd 31.40 ± 3.65 4.56* 140.96 ± 7.65 Zhao et al. 

(2022)

Cinnamon, 
0.15 / perilla, 

1.35

Chitosan, 3.0 in acetic acid, 2.0; collagen, 
3.0; glycerol, 0.5; anthocyanidin 0.4 nd 19.49 ± 2.22 6.00* 114.29 ± 5.10 Zhao et al. 

(2022)

Cinnamon, 
0.2 / perilla, 

1.8

Chitosan, 3.0 in acetic acid, 2.0; collagen, 
3.0; glycerol, 0.5; anthocyanidin 0.4 nd 19.46 ± 1.53 7.68* 91.61 ± 5.28 Zhao et al. 

(2022)

Cinnamon, 
0.3 / perilla, 

2.7

Chitosan, 3.0 in acetic acid, 2.0; collagen, 
3.0; glycerol, 0.5; anthocyanidin 0.4 nd 12.83 ± 0.44 11.76* 92.20 ± 3.80 Zhao et al. 

(2022)

Cinnamon, 
0.5 / lemon, 

0.5

Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
0.6; Tween 20, 0.1 25.32 ± 2.14 6.5* 48* 8.9* Peng and Li 

(2014)

Cinnamon, 
0.5 / thyme, 

0.5

Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
0.6; Tween 20, 0.1 43.66 ± 4.03 7.3* 42* 14.4* Peng and Li 

(2014)

Citronella, 
0.1

Chitosan, 1.0 in acetic acid, 1.0; Tween 
80, 0.001 nd 30.2* 33.00 ± 1.94 14.50 ± 0.50

Shen and 
Kamdem 
(2015b)

Citronella, 
0.2

Chitosan, 1.0 in acetic acid, 1.0; Tween 
80, 0.002 nd 27.6* 29.42 ± 0.47 24.50 ± 0.50

Shen and 
Kamdem 
(2015b)

Citronella, 
0.3

Chitosan, 1.0 in acetic acid, 1.0; Tween 
80, 0.003 nd 24.2* 17.12 ± 2.25 8.25 ± 1.92

Shen and 
Kamdem 
(2015b)
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Essential oil
(g.100 g-1)

Other compounds
(g.100 g-1)

Sw
(%)

WVP
(g.mm.d-1.
kPa-1.m-2)

TS
(Mpa)

EB
(%) Reference

Clove, 0.025 Chitosan, 1.0 in acetic acid, 1.0; oleic 
acid, 1.0 nd 43.72* 6.7 ± 0.4 56.7 ± 1.7 Wang et al. 

(2021)

Clove, 0.05 Chitosan, 1.0 in acetic acid, 1.0; oleic 
acid, 1.0 nd 39.92* 6.2 ± 0.8 69.0 ± 2.6 Wang et al. 

(2021)

Clove, 0.75 Chitosan, 1.0 in acetic acid, 1.0; oleic 
acid, 1.0 nd 34.73* 6.3 ± 1.3 78.6 ± 3.1 Wang et al. 

(2021)

Clove, 0.07 Polyhydroxybutyrate, 1.197; poly(ethylene 
glycol), 0.133 nd nd 13.76 ± 0.35 3.70 ± 0.49 Silva, I. D. L. et 

al. (2020)

Clove, 0.14 Polyhydroxybutyrate, 1.134; poly(ethylene 
glycol), 0.126 nd nd 12.22 ± 0.32 3.08 ± 0.08 Silva, I. D. L. et 

al. (2020)

Clove, 0.21 Polyhydroxybutyrate, 1.071; poly(ethylene 
glycol), 0.119 nd nd 8.10 ± 1.84 9.77 ± 1.01 Silva, I. D. L. et 

al. (2020)

Clove, 0.18 Silica nanoparticles, 1.0; poly(L-lactic 
acid), 1.6; polycaprolactone, 0.4 nd 0.21* 19.40 ± 0.74 26.4 ± 0.57 Lu et al. (2021)

Clove, 0.18 Silica nanoparticles, 2.0; poly(L-lactic 
acid), 1.6; polycaprolactone, 0.4 nd 0.34* 16.90 ± 0.88 30.6 ± 0.95 Lu et al. (2021)

Clove, 0.18 Silica nanoparticles, 3.0; poly(L-lactic 
acid), 1.6; polycaprolactone, 0.4 nd 0.51* 11.8 ± 0.16 30.7 ± 1.12 Lu et al. (2021)

Clove, 0.1 Hybrid sorubim protein isolate, 1.5; 
glycerol, 0.37 30.10 ± 0.01 6.05 ± 1.5 3.92 ± 0.5 23.38 ± 0.7 Silva, R. S. et 

al. (2020)

Clove, 0.1 Hybrid sorubim protein isolate, 2.5; 
glycerol, 0.37 25.55 ± 0.01 5.72 ± 1.1 4.04 ± 1.0 14.40 ± 1.7 Silva, R. S. et 

al. (2020)

Clove, 0.1 Hybrid sorubim protein isolate, 1.5; 
glycerol, 0.37 44.90 ± 0.04 9.0 ± 1.2 0.55 ± 0.1 44.39 ± 1.9 Silva, R. S. et 

al. (2020)

Clove, 0.1 Hybrid sorubim protein isolate, 2.5; 
glycerol, 0.37 37.03 ± 0.04 9.33 ± 1.0 1.76 ± 0.3 23.71 ± 0.2 Silva, R. S. et 

al. (2020)

Clove, 0.3 Hybrid sorubim protein isolate, 2.0; 
glycerol, 0.6 31.27 ± 3.59 6.35 ± 1.24 1.14 ± 0.0 16.14 ± 0.8 Silva, R. S. et 

al. (2020)

Clove, 0.5 Hybrid sorubim protein isolate, 1.5; 
glycerol, 0.87 29.57 ± 0.02 4.32 ± 1.2 1.27 ± 0.4 16.28 ± 0.7 Silva, R. S. et 

al. (2020)

Clove, 0.5 Hybrid sorubim protein isolate, 2.5; 
glycerol, 0.87 22.05 ± 0.04 5.16 ± 1.0 6.7 ± 0.4 10.40 ± 1.0 Silva, R. S. et 

al. (2020)

Clove, 0.5 Hybrid sorubim protein isolate, 1.5; 
glycerol, 0.87 33.73 ± 0.05 8.93 ± 1.6 2.00 ± 1.7 27.00 ± 0.3 Silva, R. S. et 

al. (2020)

Clove, 0.5 Hybrid sorubim protein isolate, 2.5; 
glycerol, 0.87 30.71 ± 0.03 8.77 ± 1.7 1.49 ± 0.2 17.75 ± 1.0 Silva, R. S. et 

al. (2020)

Clove, 0.4 Nile tilapia protein isolate, 1.5; glycerol, 
0.2; nanoclay, 0.3 65.47 ± 2.16 2.38 ± 0.14 2.21 ± 0.40 0.29 ± 0.20 Scudeler et al. 

(2020)

Clove, 0.4 Nile tilapia protein isolate, 1.5; glycerol, 
0.4; nanoclay, 0.1 53.55 ± 3.06 3.14 ± 0.60 2.25 ± 0.31 1.22 ± 0.05 Scudeler et al. 

(2020)

Clove, 0.3 Bocaiuva flour, 1.5; glycerol, 0.5 2.6 ± 0.3 6.9 ± 0.4 16.4 ± 0.04 62.2 ± 0.02 da Silva et al. 
(2020)

Clove, 0.3 Bocaiuva flour, 2.5; glycerol, 0.5 4.1 ± 0.1 6.5 ± 2.4 30.2 ± 0.05 49.3 ± 0.04 da Silva et al. 
(2020)

Clove, 0.3 Bocaiuva flour, 1.5; glycerol, 0.7 2.6 ± 0.3 5.2 ± 1.2 6.8 ± 0.01 38.8 ± 0.01 da Silva et al. 
(2020)

Clove, 0.3 Bocaiuva flour, 2.5; glycerol, 0.7 3.5 ± 0.3 7.2 ± 1.3 10.8 ± 0.02 68.5 ± 0.05 da Silva et al. 
(2020)

Clove, 0.5 Bocaiuva flour, 2.0; glycerol, 0.6 4.3 ± 0.7 8.7 ± 1.7 16.1 ± 0.01 56.9 ± 0.04 da Silva et al. 
(2020)

Clove, 0.7 Bocaiuva flour, 1.5; glycerol, 0.5 2.7 ± 0.2 6.8 ± 1.1 4.8 ± 0.02 26.0 ± 0.05 da Silva et al. 
(2020)
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Essential oil
(g.100 g-1)

Other compounds
(g.100 g-1)

Sw
(%)

WVP
(g.mm.d-1.
kPa-1.m-2)

TS
(Mpa)

EB
(%) Reference

Clove, 0.7 Bocaiuva flour, 2.5; glycerol, 0.5 4.9 ± 0.8 3.8 ± 0.3 20.7 ± 0.03 30.4 ± 0.09 da Silva et al. 
(2020)

Clove, 0.7 Bocaiuva flour, 1.5; glycerol, 0.7 2.8 ± 0.2 7.9 ± 1.5 5.0 ± 0.01 43.8 ± 0.06 da Silva et al. 
(2020)

Clove, 0.7 Bocaiuva flour, 2.5; glycerol, 0.7 4.4 ± 0.4 9.3 ± 3.2 12.9 ± 0.03 47.1 ± 0.03 da Silva et al. 
(2020)

Clove, 1.0 Chitosan, 1.0 in acetic acid, 1.0; glycerol, 
0.40; halloysite nanotubes, 0.05 29.83 ± 0.56 24.4* 14.5* 24* Lee et al. 

(2018)

Clove, 1.0 Chitosan, 1.0 in acetic acid, 1.0; glycerol, 
0.40; halloysite nanotubes, 0.1 30.23 ± 0.81 23.5* 18* 25* Lee et al. 

(2018)

Clove, 1.0 Chitosan, 1.0 in acetic acid, 1.0; glycerol, 
0.40; halloysite nanotubes, 0.15 30.21 ± 0.82 22.7* 21.5* 27* Lee et al. 

(2018)

Clove, 1.0 Chitosan, 1.0 in acetic acid, 1.0; glycerol, 
0.40; halloysite nanotubes, 0.2 29.91 ± 0.65 22.0* 19* 26* Lee et al. 

(2018)

Clove, 1.0 Chitosan, 1.0 in acetic acid, 1.0; glycerol, 
0.40; halloysite nanotubes, 0.25 29.77 ± 1.35 21.3* 15.5* 24* Lee et al. 

(2018)

Clove, 1.0 Chitosan, 1.0 in acetic acid, 1.0; glycerol, 
0.40; halloysite nanotubes, 0.3 29.59 ± 0.51 20.9* 15* 23* Lee et al. 

(2018)

Clove  
(1 μL.cm-2)

Hake protein powder, 1.5; glycerol (59 g 
100 g-1 protein) 10* 3.3* 7.3 ± 2.3 55.7± 31.7 Teixeira et al. 

(2014)

Clove, 0.4 
/ Oregano, 

0.4

Nile tilapia protein isolate, 1.5; glycerol, 
0.2; nanoclay, 0.1 13.40 ± 0.65 2.75 ± 0.74 2.41 ± 0.42 0.48 ± 0.08 Scudeler et al. 

(2020)

Clove, 0.2 
/ Oregano, 

0.2

Nile tilapia protein isolate, 1.0; glycerol, 
0.3; nanoclay, 0.2 60.78 ± 2.12 3.75 ± 0.48 0.65 ± 0.18 0.93 ± 0.24 Scudeler et al. 

(2020)

Clove, 0.4 
/ Oregano, 

0.4

Nile tilapia protein isolate, 1.5; glycerol, 
0.4; nanoclay, 0.3 45.92 ± 3.01 3.19 ± 0.05 1.36 ± 0.41 0.65 ± 0.12 Scudeler et al. 

(2020)

Eucalyptus, 
0.5

Chitosan, 1.5 in acetic acid, 0.7; glycerol 
0.225; Tween 80, 0.001 23.94 ± 1.66 2.45* 34.5 ± 0.5 25.24 ± 0.5 Azadbakht et 

al. (2018)

Eucalyptus, 
1.0

Chitosan, 1.5 in acetic acid, 0.7; glycerol 
0.225; Tween 80, 0.002 19.63 ± 1.22 4.38* 30.0 ± 0.2 28.03 ± 0.61 Azadbakht et 

al. (2018)

Eucalyptus, 
1.5

Chitosan, 1.5 in acetic acid, 0.7; glycerol 
0.225; Tween 80, 0.003 15.88 ± 2.01 5.36* 26.6 ± 0.32 35.74 ± 0.72 Azadbakht et 

al. (2018)

Fingerroot, 
1.5

HPMC, 2.0; montmorillonite, 0.1; 
beeswax, 0.4; stearic acid, 0.4; glycerol, 

0.67
nd 56.69 ± 1.35 5* 7.5*

Klangmuang 
and 

Sothornvit 
(2016)

Garlic (1 
μL•cm-2)

Hake protein powder, 1.5; glycerol (59 g 
100 g-1 protein) 23* 3.7* 6.6 ± 2.7 53.3 ± 21.1 Teixeira et al. 

(2014)

Garlic, 1.0 
and thyme, 

1.0
Zein, 2.0 in ethanol (90% vol.) 2.11 ± 0.07 0.0454* 4.83 ± 0.10 0.80 ± 0.04 Pereira et al. 

(2019)

Garlic, 1.5 
and thyme, 

1.5
Zein, 2.0 in ethanol (90% vol.) 0.83 ± 0.04 0.0444* 4.23 ± 0.15 0.76 ± 0.04 Pereira et al. 

(2019)

Garlic, 2.5 
and thyme, 

2.5
Zein, 2.0 in ethanol (90% vol.) 0.54 ± 0.03 0.0380* 3.26 ± 0.03 0.42 ± 0.03 Pereira et al. 

(2019)

Ginger, 0.1 Chitosan, 1.0 in acetic acid, 1.0; glycerol, 
0.1; Tween 80, 0.05 nd nd 31.9 ± 0.33 18.18 ± 0.02 Remya et al. 

(2016)

Ginger, 0.2 Chitosan, 1.0 in acetic acid, 1.0; glycerol, 
0.1; Tween 80, 0.05 nd nd 31.8 ± 0.52 18.19 ± 0.05 Remya et al. 

(2016)
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Essential oil
(g.100 g-1)

Other compounds
(g.100 g-1)

Sw
(%)

WVP
(g.mm.d-1.
kPa-1.m-2)

TS
(Mpa)

EB
(%) Reference

Ginger, 0.3 Chitosan, 1.0 in acetic acid, 1.0; glycerol, 
0.1; Tween 80, 0.05 nd nd 30.9 ± 0.35 18.20 ± 0.02 Remya et al. 

(2016)

Ginger, 
0.025 Soy protein isolate, 1.0; glycerol, 0.3 nd 6 ± 3 13.51 ± 0.67 1.7 ± 0.6 Atarés et al. 

(2010)

Ginger, 0.05 Soy protein isolate, 1.0; glycerol, 0.3 nd 4 ± 2 14.02 ± 0.94 1.0 ± 0.6 Atarés et al. 
(2010)

Ginger, 
0.075 Soy protein isolate, 1.0; glycerol, 0.3 nd 8 ± 4 16.08 ± 1.2 3 ± 2 Atarés et al. 

(2010)

Ginger, 0.1 Soy protein isolate, 1.0; glycerol, 0.3 nd 8 ± 5 16.32 ± 1.92 3 ± 3 Atarés et al. 
(2010)

Ginger, 1.0 Chitosan, 1.5 in acetic acid, 1.0; glycerol, 
0.45; Tween, 0.002 15 ± 0 nd 18 ± 3 35 ± 10 Souza et al. 

(2017)

Ginger, 1.5
HPMC, 2.0; montmorillonite, 0.1; 

beeswax, 0.4; stearic acid, 0.4; glycerol, 
0.67

nd 65.68 ± 4.57 9.5* 66*

Klangmuang 
and 

Sothornvit 
(2016)

Lavander, 
0.5 Chitosan, 1.5; Tween 80, 0.1 18.30 ± 0.82 11.40* 17.54 ± 0.98 17.18 ± 0.72 Zhang et al. 

(2013)

Lavander, 
1.0 Chitosan, 1.5; Tween 80, 0.1 16.05 ± 0.66 10.54* 28.57 ± 0.56 18.23 ± 0.02 Zhang et al. 

(2013)

Lavander, 
1.5 Chitosan, 1.5; Tween 80, 0.1 14.02 ± 0.57 9.24* 31.12 ± 0.63 17.83 ± 0.95 Zhang et al. 

(2013)

Lemon, 1.0 Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
0.6; Tween 20, 0.1 28.95 ± 1.63 7.7* 46* 8.9* Peng and Li 

(2014)

Lemon, 0.5 / 
thyme, 0.5

Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
0.6; Tween 20, 0.1 34.88 ± 3.05 7.0* 44.7* 10.6* Peng and Li 

(2014)

Lemongrass, 
0.15

Unicorn leatherjacket skin gelatin, 3.0; 
glycerol, 0.6; Tween 20, 0.0225 93.54 ± 0.66 10.5 ± 0.3 43.82 ± 6.56 3.48 ± 0.92 Ahmad et al. 

(2012)

Lemongrass, 
0.3

Unicorn leatherjacket skin gelatin, 3.0; 
glycerol, 0.45; Tween 20, 0.045 92.3 ± 0.65 8.9 ± 0.6 39.05 ± 5.96 4.13 ± 2.14 Ahmad et al. 

(2012)

Lemongrass, 
0.45

Unicorn leatherjacket skin gelatin, 3.0; 
glycerol, 0.3; Tween 20, 0.0675 92.04 ± 0.57 8.6 ± 0.5 34.07 ± 3.61 4.80 ± 1.04 Ahmad et al. 

(2012)

Lemongrass, 
0.6

Unicorn leatherjacket skin gelatin, 3.0; 
glycerol, 0.15; Tween 20, 0.09 89.81 ± 0.5 9.7 ± 0.7 25.84 ± 2.36 5.90 ± 1.66 Ahmad et al. 

(2012)

Lemongrass, 
0.75

Unicorn leatherjacket skin gelatin, 3.0; 
Tween 20, 0.1125 89.16 ± 0.65 9.2 ± 0.4 21.21 ± 3.36 5.66 ± 2.34 Ahmad et al. 

(2012)

Lemongrass, 
0.015

Chitosan, 1.5 in acetic acid, 1.5; glycerol, 
0.5; Tween 20, 0.5 7.39 ± 0.92 2,039.0* 14.61 ± 1.78 37.47 ± 4.06 Lyn and 

Hanani (2020)

Lemongrass, 
0.045

Chitosan, 1.5 in acetic acid, 1.5; glycerol, 
0.5; Tween 20, 0.5 7.02 ± 0.01 1,978.6* 11.20 ± 1.68 38.22 ± 2.75 Lyn and 

Hanani (2020)

Lemongrass, 
0.075

Chitosan, 1.5 in acetic acid, 1.5; glycerol, 
0.5; Tween 20, 0.5 6.70 ± 0.56 1,944.0* 9.10 ± 0.71 55.95 ± 2.62 Lyn and 

Hanani (2020)

Lemongrass, 
0.105

Chitosan, 1.5 in acetic acid, 1.5; glycerol, 
0.5; Tween 20, 0.5 5.97 ± 1.31 1,926.7* 8.48 ± 1.12 56.24 ± 4.07 Lyn and 

Hanani (2020)

Lemongrass, 
0.135

Chitosan, 1.5 in acetic acid, 1.5; glycerol, 
0.5; Tween 20, 0.5 5.22 ± 0.43 1,900.8* 7.93 ± 1.19 65.34 ± 3.82 Lyn and 

Hanani (2020)

Lemongrass, 
1.0

Sodium alginate, 3.0; glycerol, 2.0; Tween 
80, 3.0 nd 18.32* 6.1* 32 ± 9 Acevedo-Fani 

et al. (2015)

Orange 
peel, 0.25

Tonguefish skin gelatin, 3.0; chitosan, 2.0; 
glycerol, 2.5; acetic acid, 1.0 28.25 ± 1.53 0.96* 20.43 ± 0.82 2.73 ± 0.04 Li et al. (2021)

Orange 
peel, 0.5

Tonguefish skin gelatin, 3.0; chitosan, 2.0; 
glycerol, 2.5; acetic acid, 1.0 25.55 ± 0.62 0.74* 19.35 ± 0.31 3.55 ± 0.07 Li et al. (2021)

Continue...



12

R. S. Cesca et al.

Bragantia, Campinas, 83, e20230132, 2024

Table 2. Continuation...

Essential oil
(g.100 g-1)

Other compounds
(g.100 g-1)

Sw
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Orange 
peel, 1.0

Tonguefish skin gelatin, 3.0; chitosan, 2.0; 
glycerol, 2.5; acetic acid, 1.0 23.45 ± 0.70 1.08* 17.80 ± 0.91 4.23 ± 0.23 Li et al. (2021)

Oregano, 
0.4

Nile tilapia protein isolate, 1.5; glycerol, 
0.2; nanoclay, 0.3 67.49 ± 4.25 2.98 ± 0.87 2.54 ± 0.32 0.30 ± 0.10 Scudeler et al. 

(2020)

Oregano, 
0.4

Nile tilapia protein isolate, 1.5; glycerol, 
0.4; nanoclay, 0.1 30.62 ± 2.39 2.56 ± 0.46 1.17 ± 0.46 1.95 ± 0.01 Scudeler et al. 

(2020)

Oregano, 
0.5 Sodium alginate, 1.5; glycerol, 0.3645 nd 328.3* 55.5 ± 5.7 3.0 ± 0.08 Benavides et 

al. (2012)

Oregano, 1.0 Sodium alginate, 1.5; glycerol, 0.3645 nd 328.3* 46.5 ± 5.4 2.8 ± 0.06 Benavides et 
al. (2012)

Oregano, 1.5 Sodium alginate, 1.5; glycerol, 0.3645 nd 259.2* 31.1 ± 6.0 2.7 ± 0.11 Benavides et 
al. (2012)

Oregano  
(1 μL.cm-2)

Hake protein powder, 1.5; glycerol  
(59 g 100 g-1 protein) 10* 6.7* 6.4 ± 4.0 83.2 ± 50.3 Teixeira et al. 

(2014)

Perilla, 0.2 Chitosan, 2.0 in 0.5 acetic acid; glycerol, 
nd

37.993 ± 
4.162 5.352* 11.760 ± 

0.920
13.267 ± 

2.127
Zhang et al. 

(2018)

Perilla, 0.6 Chitosan, 2.0 in 0.5 acetic acid; glycerol, 
nd

27.437 ± 
2.778 5.112* 12.300 ± 

0.915
12.466 ± 

5.047
Zhang et al. 

(2018)

Perilla, 1.0 Chitosan, 2.0 in 0.5 acetic acid; glycerol, 
nd

21.996 ± 
4.366 5.520* 12.477 ± 

0.208 9.365 ± 1.434 Zhang et al. 
(2018)

Plai, 1.5
HPMC, 2.0; montmorillonite, 0.1; 

beeswax, 0.4; stearic acid, 0.4; glycerol, 
0.67

nd 77.73 ± 6.93 11.5* 52*

Klangmuang 
and 

Sothornvit 
(2016)

Rosemary, 
0.5

Chitosan, 2.0 in acetic acid, 1.0; Tween 
80, 0.2 15.5* 6.9* 68.51 ± 12.22 4.97 ± 0.68 Abdollahi et 

al. (2012)

Rosemary, 
1.0

Chitosan, 2.0 in acetic acid, 1.0; Tween 
80, 0.2 13.5* 6.8* 68.90 ± 

13.68 5.07 ± 0.79 Abdollahi et 
al. (2012)

Rosemary, 
1.5

Chitosan, 2.0 in acetic acid, 1.0; Tween 
80, 0.2 13* 5.9* 65.46 ± 4.63 4.61 ± 0.81 Abdollahi et 

al. (2012)

Rosemary, 
1.0

Chitosan, 1.5 in acetic acid, 1.0; glycerol, 
0.45; Tween, 0.002 20 ± 1 nd 28 ± 4 35 ± 5 Souza et al. 

(2017)

Sage, 1.0 Chitosan, 1.5 in acetic acid, 1.0; glycerol, 
0.45; Tween, 0.002 19 ± 0 nd 31 ± 3 35 ± 5 Souza et al. 

(2017)

Sage, 1.0 Sodium alginate, 3.0; glycerol, 2.0; Tween 
80, 3.0 nd 16.42* 4.8* 78 ± 5 Acevedo-Fani 

et al. (2015)

Shirazi 
thyme, 0.5

Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
1.0 nd nd 6 ± 0.4 19 ± 0.6 Moradi et al. 

(2012)

Shirazi 
thyme, 1.0

Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
1.0 nd nd 3 ± 0.3 10 ± 10 Moradi et al. 

(2012)

Shirazi 
thyme, 0.5

Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
1.0; grape seed extract, 1.0 nd nd 23 ± 0.7 17 ± 50 Moradi et al. 

(2012)

Shirazi 
thyme, 1.0

Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
1.0; grape seed extract, 1.0 nd nd 15 ± 0.6 39 ± 30 Moradi et al. 

(2012)

Tea tree, 0.5 HPMC, 5.0; Tween 85, 0.1 nd 64.8* 55 ± 10 0.09 ± 0.04
Sánchez-

González et al. 
(2009)

Tea tree, 1.0 HPMC, 5.0; Tween 85, 0.1 nd 57.0* 52 ± 9 0.11 ± 0.05
Sánchez-

González et al. 
(2009)

Continue...
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Table 2. Continuation...

Essential oil
(g.100 g-1)

Other compounds
(g.100 g-1)

Sw
(%)

WVP
(g.mm.d-1.
kPa-1.m-2)

TS
(Mpa)

EB
(%) Reference

Tea tree, 2.0 HPMC, 5.0; Tween 85, 0.1 nd 45.8* 42 ± 2 0.11 ± 0.05
Sánchez-

González et al. 
(2009)

Tea tree, 0.5 Chitosan, 1.0 in malic acid, 2.0; lecithin, 
0.1 19.41 ± 0.55 3.8 ± 0.4 3.51 ± 0.72 150.55 ± 

25.10
Cazón et al. 

(2021)

Tea tree, 1.0 Chitosan, 1.0 in malic acid, 2.0; lecithin, 
0.1 19.26 ± 0.82 3.7 ± 0.2 1.54 ± 0.30 317.33 ± 

22.84
Cazón et al. 

(2021)

Tea tree, 0.5 Chitosan, 1.0 in lactic acid, 2.0; lecithin, 
0.1 59.37 ± 0.90 4.2 ± 1.0 4.40 ± 1.11 25.54 ± 7.30 Cazón et al. 

(2021)

Tea tree, 1.0 Chitosan, 1.0 in lactic acid, 2.0; lecithin, 
0.1 58.68 ± 2.28 4.2 ± 0.0 4.09 ± 0.61 33.10 ± 3.08 Cazón et al. 

(2021)

Tea tree, 1.0 Chitosan, 1.5 in acetic acid, 1.0; glycerol, 
0.45; Tween, 0.002 19 ± 0 nd 24 ± 2 38 ± 7 Souza et al. 

(2017)

Thyme, 1.0 Chitosan, 1.5 in acetic acid, 1.0; glycerol, 
0.45; Tween, 0.002 20 ± 1 nd 31 ± 3 38 ± 2 Souza et al. 

(2017)

Thyme, 0.2 Chitosan, 2.0 in acetic acid, 2.0 nd 38.22 ± 3.12 69.8* 3.6 ± 0.25 Altiok et al. 
(2010)

Thyme, 0.4 Chitosan, 2.0 in acetic acid, 2.0 nd 41.91 ± 2.83 77.4* 3.6 ± 0.22 Altiok et al. 
(2010)

Thyme, 0.6 Chitosan, 2.0 in acetic acid, 2.0 nd 31.05 ± 1.95 89.6* 3.2 ± 0.24 Altiok et al. 
(2010)

Thyme, 0.8 Chitosan, 2.0 in acetic acid, 2.0 nd 34.37 ± 1.51 87.3* 2.7 ± 0.25 Altiok et al. 
(2010)

Thyme, 1.0 Chitosan, 2.0 in acetic acid, 2.0 nd 34.57 ± 4.29 85.9* 1.9 ± 0.20 Altiok et al. 
(2010)

Thyme, 1.2 Chitosan, 2.0 in acetic acid, 2.0 nd 32.94 ± 3.32 87.2* 1.8 ± 0.22 Altiok et al. 
(2010)

Thyme, 1.0 Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
0.6; Tween 20, 0.1 42.96 ± 1.03 7.9* 36.7* 13.9* Peng and Li 

(2014)

Thyme, 1.0 Sodium alginate, 3.0; glycerol, 2.0;  
Tween 80, 3.0 nd 18.84* 5.0* 41 ± 12 Acevedo-Fani 

et al. (2015)

Tung, 0.045 Sugar beet lignocellulose, 0.9; glycerol, 
0.1; Span 80, 0.01 nd 22.5 ± 0.9 45.7 ± 6.9 7.7 ± 0.6

Shen and 
Kamdem 
(2015a)

Tung, 0.09 Sugar beet lignocellulose, 0.9; glycerol, 
0.1; Span 80, 0.01 nd 20.7 ± 0.9 34.3 ± 3.0 3.2 ± 0.5

Shen and 
Kamdem 
(2015a)

Tung, 0.135 Sugar beet lignocellulose, 0.9; glycerol, 
0.1; Span 80, 0.01 nd 17.3 ± 0.9 32.8 ± 1.8 2.4 ± 0.6

Shen and 
Kamdem 
(2015a)

Turmeric, 1.0 Sodium alginate, 1.5; Tween 80, 0.25 nd 164.2 14.18 ± 2.31 5.28 ± 1.81 Phal et al. 
(2020)

Turmeric, 2.0 Sodium alginate, 1.5; Tween 80, 0.5 nd 198.7 10.22 ± 1.06 10.73 ± 3.49 Phal et al. 
(2020)

Turmeric, 3.0 Sodium alginate, 1.5; Tween 80, 0.75 nd 259.2 7.74 ± 1.38 14.47 ± 6.76 Phal et al. 
(2020)

Turmeric  
(15 μL.cm-2)

Chitosan, 2.0 in acetic acid, 1.5; glycerol, 
0.3; Tween 80, 1.5 μL.cm-2 13.11 ± 2.24 43.88* 32.92 ± 1.81 9.64 ± 1.22 Li et al. (2019)

Wormwood, 
1.0

Chitosan, 2.0 in acetic acid, 1.0; glycerol, 
0.6; Tween 80, 0.002 90.38 ± 1.27 nd 2.19 ± 0.20 65.20 ± 4.64 Moalla et al. 

(2021)

SW: water solubility; WVP: water vapor permeability; TS: tensile strength; EB: elongation at break; HPMC: hydroxypropyl methylcellulose; *data obtained from 
graph/unit conversion; nd: not determined.
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Figure 1. The role of essential oils in food packaging films, coatings and nanoencapsulated materials.

Films containing essential oils

Clove (Eugenia caryophyllata) EO has the volatile aromatic oil eugenol as its main component, which has antibacterial, 
antifungal, antioxidant, insecticidal, and antiviral properties (Silva, I. D. L. et al. 2020, Wang et al. 2020). The presence of 
eugenol also increases the anti-inflammatory and the antioxidant properties of films and coating for, e.g., apples, strawberries, 
and ground beef (Santana et al. 2021).

Clove EO was incorporated with polyethylene glycol to polyhydroxybutyrate films, and the addition of 15% w/w changed 
the chemical structure of the material, resulting in less energy during film processing and more flexible films (Silva, I. D. L. 
et al. 2020). Clove EO was utilized in the formulation of cassava starch-based films in combination with montmorillonite 
clay and glycerol. The effect of the components and their concentrations on the solubility, color, water vapor permeability, 
and opacity of the films was investigated, and the results obtained with the highest concentration of clove EO showed higher 
solubility, water vapor permeability, and luminosity (Chevalier et al. 2020).

Clove EO, cellulosic nanocrystals obtained from the Kudzu plant (Pueraria montana), and corn starch were utilized 
to produce films for red grape packaging. Results showed red grapes with extended physical and chemical stabilities,  
due to the maintenance of weight and firmness during storage (Bangar et al. 2022). Clove EO was also utilized in the  
development of films based on bocaiuva (Acromonia aculeata) flour, contributing to the good opacity, easy handling, and 
homogeneity of the films, which are desirable characteristics for packaging materials (da Silva et al. 2020). 

The development of poly(lactic acid) composite films containing nanoparticles of mesoporous silica loaded with clove 
EO was reported elsewhere, and the compatibility of mesoporous silica loaded with clove EO was analyzed. It was concluded 
that the loaded nanoparticles inhibited Staphylococcus aureus and Escherichia coli strains (Lu et al. 2021). The incorporation 
of clove EO and nisin to chitosan-based films improved the shelf life of chilled pork burgers. The combination of chitosan, 
nisin, and clove EO was responsible to extend the hamburger’s shelf life about twice as compared to the control treatment 
(Venkatachalam and Lekjing 2020).

Results from a study comparing clove and rosemary (Salvia rosmarinus) EOs indicated that clove EO had the highest 
antifungal activity, increasing the shelf life of whole grain breads when compared to the rosemary EO. However, it was 
reported that the rosemary EO had greater activity against bacterial strains (Santos et al. 2021).
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Oregano (Origanum vulgare) EO has being widely used in the production of films by the casting and extrusion technique. 
The concentration of oregano EO used in the formulation of the films has been quite variable, depending on the type and 
concentration of biopolymers and plasticizer, which influences the antimicrobial and antioxidant activity by increasing shelf 
life, without altering sensory characteristic and functional properties of the films. The oregano EO also acts as a plasticizer, 
reducing hardness and increasing the elongation of the films (Paulo et al. 2021).

Rosemary and oregano EOs were included in the formulation of edible films prepared from gelatin and chitosan, 
which were evaluated for their mechanical properties and morphology. The films presented antimicrobial activity against 
the microorganisms E. coli and S. aureus and antioxidant potential. However, the highest antimicrobial and antioxidant 
activities were obtained with the films included of oregano EO, which also resulted in an increased perforation resistance 
(Galindo et al. 2019).

Composite films based on fish skin gelatin, chitosan, and orange (Citrus × sinensis) peel EO showed slightly lower 
degradation temperature and weight loss compared to the control film (without orange peel EO). The incorporation of EO 
orange peel (0.25–1.0%, v.v-1) into the films reduced the values of tensile strength, modulus of elasticity, water solubility, 
moisture content, and water vapor permeability. However, the insertion of orange peel EO raised elongation at break, 
contact angle and opacity. These characteristics on the films added of orange peel EO had improved their antioxidative and 
antibacterial activities and flexibility compared to the control film without orange peel EO (Li et al. 2021).

Clove, cinnamon (Cinnamomum verum), and orange EOs were utilized in the preparation of poly(lactic acid) films and 
evaluated as antimicrobial agents in juices, milks, and teas. Among the three EOs studied, orange EO showed no inhibition 
against S. aureus bacteria. In general, cinnamon and clove EOs showed the greatest potential inhibitors against the three S. 
aureus strains used, but clove EO was identified as the most efficient antimicrobial agent (Lima et al. 2021).

Cinnamon EO was emulsified by octenylsuccinate anhydride modified starch on a pullulan solution to obtain pullulan-
based films. The cinnamon EO decreased tensile strength, water content, and water vapor permeability, while increasing 
elongation at break. The growth of S. aureus and E. coli was inhibited by 60 and 45%, respectively (Feng et al. 2020).

Cinnamon EO was incorporated into starch nanocellulose films, positively affecting the antibacterial, physical, 
and mechanical properties of the films aimed for food packaging applications (Syafiq et al. 2021). Results from films 
prepared using cinnamon as antimicrobial agent, glycerol as plasticizer, and Tween 80 as surfactant in a sodium alginate 
/ carboxymethylcellulose matrix indicated that the incorporation of cinnamon EO increased the thickness, water vapor 
permeability, oxygen permeability, and elongation at break of the films and significantly reduced the moisture content and 
tensile strength, exhibiting excellent antimicrobial activity against E. coli and S. aureus. These films showed good results 
when applied as coatings to preserve bananas (Han et al. 2018).

The incorporation of cinnamon EO and corn oil to sodium starch octenylsuccinate was evaluated for the manufacture 
of biodegradable films. The combination of cinnamon EO and corn oil revealed films that, despite presenting decreased 
tensile strength, showed increased elongation, water vapor permeability, and oxygen permeability, beyond activity against 
the bacteria E. coli, S. aureus, and Bacillus subtilis (Sun et al. 2020).

Cinnamon EO nanoemulsions were included in the formulation of pullulan-based films. The results showed lower 
permeability to water vapor and greater elongation, due to the hydrophobic and plasticizing effects of cinnamon EO. 
Although the losses of cinnamon EO during drying and storage, the use of this EO showed significant antibacterial activity 
(Chu et al. 2020). Cinnamon EO and cellulose nanofibers were incorporated to seaweed biopolymers, which significantly 
improved the morphology, and the mechanical and hydrophobic properties of the films. The films also exhibited good 
inhibition potential against S. aureus and E. coli bacteria (Oyekanmi et al. 2021).

On the other hand, clove, and oregano EOs did not show antimicrobial activity when incorporated to the polymer matrix 
of Nile tilapia (Oreochromis niloticus) protein isolate-based films, indicating that, despite the recognized antimicrobial 
activity of these compounds, changes in their own structure may during the formation of the polymer matrix structure 
of the films, reflecting in a loss of this capacity (Scudeler et al. 2020). In another work, the incorporation of clove EO into 
hybrid surubim (Pseudoplatystoma reticulatum × Pseudoplatystoma corruscans) protein-based films did not show good 
antimicrobial inhibition conditions, because the percentage of clove EO was considerably low (Silva, R. S. et al. 2020).
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Ginger (Zingiber officinale) EO was added to fish sarcoplasmic protein and chitosan-based films to evaluate its effect 
on the physical, mechanical, antioxidant, and thermal properties of the films. Results showed that light transmittance, 
elongation, water vapor permeability, and water solubility showed positive results due to the addition of ginger EO to the 
other compounds in the film, and that the antioxidant and antimicrobial activities of the films were concentration dependent. 
The application of these films as packages showed significant results in the extending the shelf life of dourado (Salminus 
maxillosus) fish fillets (Cai, L. et al. 2020).

Garlic (Allium sativum) and thyme (Thymus vulgaris) EOs were utilized to produce zein-based films, which presented 
inhibitory activity against all bacteria tested and effectiveness as plasticizers, lower solubility, and water absorption (Pereira 
et al. 2019). However, garlic EO has its application limited due to its intense odor. In this sense, garlic EO is recommended 
to be utilized encapsulated (Emadzadeh et al. 2021).

Black pepper (Piper nigrum L.) EO was loaded in a nanoemulsion together with Cloisite Na+ to reinforce the properties 
of gelatin films, promoting an increase in the thermal stability and in the porosity of the gelatin matrix. Thus, it presents 
potential for application in food packaging (Saranti et al. 2021).

Shiso (or perilla) (Perilla frutescens) EO was utilized as an additive in the manufacture of chitosan and nisin-based films 
to extend the shelf life of strawberries. The use of shiso EO in the films showed good antioxidant and antibacterial activity 
against S. aureus, E. coli, Salmonella enteritidis, and Pseudomonas tolaasii. The data obtained showed significant mechanical 
and optical properties. Its application on strawberries delayed their decomposition during storage (Wang et al. 2021).

The combination of cinnamon EO and perilla EO was evaluated as antimicrobial agents in the production of edible films 
from Pickering emulsions, using collagen as emulsifier. The edible film showed increased mechanical properties, water vapor 
permeability, thermal stability, hydrophobicity, and antioxidant activity of the film when incorporated of both cinnamon 
and perilla EOs. The films were utilized for the conservation of cooled fish fillet, demonstrating effectiveness in controlling 
quality changes in fish fillets during eight days under refrigerated storage (Zhao et al. 2022).

Turmeric EO and anthocyanin extracts were added to a chitosan matrix reinforced with chitin alpha-nanocrystals to 
develop smart pH-sensitive films. The addition of turmeric EO in this matrix improved the mechanical strength and the 
hydrophobicity properties and reduced the water solubility and the moisture content. Interestingly, the films also showed 
near-total blockage against ultraviolet and visible light at wavelengths below 550 nm, indicating a potential smart application 
for food packaging (Fernández-Marín et al. 2022).

Tea tree (Melaleuca alternifolia) EO was included in the formulation of chitosan-based films with two different solvents 
(lactic acid and malic acid) and related to the obtaining of easily removable films with good ultraviolet barrier property, 
higher antioxidant activity, and elongation at break when associated with malic acid (Cazón et al. 2021).

Coatings containing essential oils

Peppermint (Mentha × piperita) EO was incorporated into chitosan-based coatings to inhibit fungi growth during papaya 
(Carica papaya L.) storage in refrigerators. Peppermint EO also decreased opacity and solubility properties, in addition to 
improving the light barrier and protection against oxidative processes (Braga et al. 2020).

Thyme and oregano EOs incorporated into an alginate-based coating preserved the microbiological quality of minimally 
processed papaya. On the other hand, the treatment that contained only alginate did not demonstrate efficacy against 
microbial activity (Tabassum and Khan 2020).

The use of cinnamon and oregano EO incorporated in sodium alginate, potato starch, chitosan, and zein was effective 
in delaying the germination of russet potato and purple sweet potato at room temperature (Emragi et al. 2022). The 
combination of pectin with lemon EO and reuterin was efficient in preserving strawberries against fungal spoilage during 
storage at refrigerated conditions (Hernández-Carrillo et al. 2021).

The coating obtained by starch added of citronella EO to preserve post-harvest papaya revealed that citronella EO, despite 
preventing the growth of filamentous fungi and yeasts, did not act as a good antimicrobial agent. Moreover, the mass loss 
was considerable (Aquino et al. 2021a). It is worth mentioning that citronella EO is not indicated to human consumption 
(Table 1).
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Cassava starch-based coatings added of glycerol and clove EO were applied to minimally processed “Formosa” papaya, 
which efficiently maintained the sensory quality and delayed the microbial growth, increasing the shelf life of the product 
(Holsbach et al. 2019).

Eucalyptus (Eucalyptus staigeriana), rosemary-pepper (Lippia sidoides) and cataia (Pimenta pseudocaryophyllus) EOs were 
associated to a carboxymethylcellulose coating for papaya and had evaluated their activity against the fungus Colletotrichum 
gloeosporioides. Rosemary-pepper EO was the best antifungal agent according to the in-vitro tests, with the predominance 
of thymol in its composition, while the in-vivo tests showed that rosemary-pepper EO contributed to reduction of the 
anthracnose disease, delaying the rotting of the fruit, and increasing the shelf life from five to nine days (Zillo et al. 2018).

Basil (Ocimum basilicum) EO together with glycerol and starch was analyzed as coatings on cherry tomato (Solanum 
lycopersicum var. cerasiforme). The addition of basil EO proved to be efficient to inhibit the growth of mesophilic aerobic 
microorganisms and filamentous fungi, also improving the physical characteristics of the fruits (Aquino et al. 2021b).

Lemon (Citrus limon) EO was evaluated as anti-browning and antioxidant additive in an aloe (Aloe vera) based-gel 
coating to improve the postharvest quality of Fuji apples (Malus pumila var. Red Delicious × Ralls Janet). The results showed 
better characteristics in terms of soluble solids content, titratable acidity, and pH, in relation to the reduction in senescence 
processes. The analysis of minerals, vitamin, and other essential elements showed that the treatments did not change the 
intrinsic characteristics of the treated samples, maintaining them constant during the storage (Farina et al. 2020).

Star anise (Illicium verum) EO, polylysine, and nisin were evaluated as coating on meat. The shelf life was extended 
from eight to 16 days due to inhibition of bacterial growth during storage. The results of the sensorial analysis suggested 
good retention of color, odor, and global acceptance of the samples by the application of the star anise EO (Liu et al. 2020).

Cinnamon EO was included in the formulation of chitosan-based coatings applied to minimally processed pineapple 
(Ananas comosus). The combination of these two compounds showed satisfactory delay in the appearance of yeasts and 
molds, and reduced loss of weight and consistency, extending the shelf life of the fruits (Basaglia et al. 2021).

Thyme EO was tested together with chitosan emulsions in the production of coatings for Karish cheese, showing 
antimicrobial activity for four weeks by decreasing the concentration of aerobic and psychrotrophic bacteria, yeasts, and 
molds (Al-Moghazy et al. 2021).

Oregano EO was utilized in the production of chitosan-based coatings for the conservation of refrigerated sururu (Mytella 
charruana), presenting antimicrobial activity, minimizing protein deterioration, and increasing shelf life (Oliveira et al. 2019).

Nanoencapsulated materials containing essential oils (emulsions for films and coatings)

The advancement of nanotechnology has trigger out the development of strategies for the nanoencapsulation of EOs 
from nanoemulsions. It has become a promising alternative, as the low solubility in the aqueous phase, the high volatility, 
and the low long-term stability are limiting factors for their use as natural preservatives in replacement of the chemical 
preservatives traditionally used (Lenetha 2022).

Hydroxypropyl methylcellulose-based films incorporated with oregano EO nanoemulsions showed higher elongation 
at break in relation to the control films, but lower tensile strength and Young’s modulus. The films showed higher opacity 
and lower ultraviolet and water vapor transmittance, indicating that the incorporation of oregano EO resulted in improved 
barrier properties. Regarding their antibacterial activity, the composite films were effective against all bacterial strains 
tested, particularly against Salmonella typhimurium. The antioxidant analysis showed values higher than the values of the 
control films (Lee et al. 2019).

Nanoemulsions of cardamom (Elettaria cardamomum), Chinese pepper (Litsea cubeba), cinnamon, and Tahiti lemon 
(Citrus aurantifolia) EOs were developed as partial substitutes of chemical preservatives for the control of Clostridium 
sporogenes in mortadella. The EOs showed antimicrobial activity both in isolated and nanoemulsified forms. In addition, they 
were able to decrease lipid oxidation in relation to the control, acting as good antioxidant agents (Pinelli et al. 2019, 2021).

Nanoencapsulated ajowan (Trachyspermum ammi) EO in edible alginate-based coatings was very effective in controlling 
the growth of the food-borne pathogen Listeria monocytogenes in turkey (Meleagris gallopavo domesticus) fillets, especially 
in the nanoencapsulation form (Kazemeini et al. 2021). The bacterial count in the uncoated samples increased from 6.35 to 
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8.71 log CFU/g on day 12, while it decreased in all other treatments. The lowest number of counted bacteria was observed 
for the samples coated with 3% alginate containing 1% ajowan EO as nanoemulsion (5.13 log CFU/g), which represented a 
reduction rate averaging 1.99 logs in the counts of L. monocytogenes compared to the control treatment (uncoated sample).

The electrospraying method was utilized for the development of an oregano EO loaded-chitosan nanoparticle delivery 
systems with antifungal efficacy against Alternaria alternata (Yilmaz et al. 2019). This technique has facilitated the applicability 
of the EOs as antimicrobials to control their release with prolonged preservative effect in cosmetic, pharmaceutical, and 
food applications for adjustable dosage forms.

The efficacy of chitosan, alginate-chitosan, chitosan-guar gum, xanthan-chitosan, and pectin-chitosan for the synthesis 
of pH-responsive biopolymeric nanocapsules for rosemary, clove, and thyme EOs was evaluated. All EOs studied showed 
low inhibitory activity against Saccharomyces cerevisiae, but they presented antibacterial properties against S. aureus and 
E. coli when nanoencapsulated in chitosan-guar gum (Skalickova et al. 2020).

Cinnamon, rosemary, and oregano EOs nanoencapsulated in oil-water nanoemulsions prepared by high-frequency 
ultrasound were applied to fresh celery inoculated with E. coli and L. monocytogenes. The nanoemulsions of OEs compared 
to non-encapsulated OEs were more effective against the bacteria, requiring less than 50% of the OEs to reduce the bacterial 
population. In addition, the oregano EO showed greater inhibition against these bacteria among the EOs evaluated (Dávila-
Rodríguez et al. 2019).

Cinnamon EO nanoencapsulated in hydroxypropyl-β-cyclodextrin adjunct nanoemulsions was evaluated against  
E. coli and S. aureus, and it was demonstrated that the addition of hydroxypropyl-β-cyclodextrin contributed to the increase 
in the antimicrobial activity of cinnamon EO nanoemulsions (Hou et al. 2021).

A nanoemulsion of fennel (Foeniculum vulgare) EO, cinnamic aldehyde, glycerin, and chitosan utilized to coat pork 
patties had an inhibitory effect on E. coli and S. aureus, maintaining the moisture, flavor, and texture of the samples, and 
extending the shelf life from six to ten days (Sun et al. 2021).

Tea tree EO was nanoencapsulated in gliadin particles with gum arabic, controlling Salmonella typhimurium contamination 
on the surface of meat products for five days, beyond improving tensile strength and elongation at break of nanofibers (Cai 
et al. 2021).

Garlic EO and nanoencapsulated garlic EO added to chitosan and whey protein were utilized in vacuum-packed 
refrigerated sausages for 50 days, retarding the growth of the main spoilage bacterial groups with the maintenance of the 
lipid stability (Esmaeili et al. 2020).

Ylang ylang (Cananga odorata) EO and ylang ylang nanoencapsulated in chitosan nanopolymer were compared in terms 
of effectiveness against the fungi Aspergillus flavus, aflatoxin B1 contamination, and lipid peroxidation. The best result was 
obtained with the nanoencapsulated material that showed antioxidant activity and completely inhibited the fungal growth 
and the production of the aflatoxin (Upadhyay et al. 2021).

Thyme EO was evaluated in nanoencapsulated and bulk forms to compare their antioxidant and antibacterial activities. It was 
observed a decrease in the antioxidant activity and in the ability to inhibit the bleaching of β-carotene after the nanoencapsulation. 
However, both free and nanoencapsulated thyme EO can be used as safe food preservatives (Jemaa et al. 2018).

Poly(lactic acid) nanocapsules containing lemongrass (Cymbopogon citratus) EO were evaluated in the control of the 
fruit rot in post-harvest apples, presenting good in-vitro activity against Colletotrichum acutatum and C. gloeosporioides. 
The in-vivo assay showed that apples treated with encapsulated EO had three times less rot lesions than those treated with 
non-encapsulated EO (Antonioli et al. 2020).

Cumin (Cuminum cyminum) EO nanoencapsulated with chitosan was investigated as an alternative to the growth-
promoting antibiotic in broiler diets (Amiri et al. 2020). Later, the effect was potentiated by using garlic EO nanoencapsulated 
with chitosan with a significantly improved antibacterial and antioxidant activity, especially if compared with free garlic 
acid EO (Amiri et al. 2021).

The combination of carvacrol, bergamot (Citrus bergamia), and grapefruit (Citrus × paradisi) EOs was nanoencapsulated 
in β-cyclodextrins to ice storage seabream (Sparus aurata) fish. The data obtained showed antimicrobial and antioxidant 
properties of the combined OEs. The shelf life of the fish stored at 2°C was extended up to four days. The sensory attributes 
were also improved during storage (Navarro-Segura et al. 2019).
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Bio-based films, coatings, and nanoencapsulation with EOs can exhibit various characteristics such as biodegradability, 
biocompatibility, and even edibility, depending on the formulation and production processes employed. This versatility 
triggers out new application opportunities, bolstering the potential for their utilization and positively impacting sustainability 
efforts (Kumar et al. 2020, Moalla et al. 2021).

Among all characteristics, the thickness of films is a crucial factor that influences their mechanical, barrier, and migration 
properties. It is evidenced by the enhanced performance of the more uniform polymeric materials (Ferreira et al. 2022). 
Furthermore, the properties of EOs play a significant role in the production of films, coatings, and nanoencapsulated 
products (Fig. 1). The specific characteristics of EOs can vary based on their chemical composition and matrix components. 
However, most of the works do not yield substantial information explaining how EO properties are affected, even when 
considering different film thickness attributes.

CONCLUSION

There is a wide possibility for using EOs as natural additives in the development of films, coatings and nanoencapsulated 
materials. These EOs act not only as an antioxidant, antibacterial, and antifungal agents; they can also improve tensile strength, 
elongation, water vapor permeability, oxygen permeability in films, for example. Clove, cinnamon, and oregano EOs are among 
the most studied additives in the production of films, coatings, and nanoencapsulated materials. Comparisons between free 
and nanoencapsulated EOs have revealed the nanoencapsulation technique as a beneficial strategy to improve the stability 
of the EOs and, therefore, their efficiency as antimicrobial agents. This contrasts with the low solubility in water, and the 
high susceptibility to oxidation and volatilization of the free EOs. The utilization of all these EOs has resulted in excellent 
natural additives of interest to produce biodegradable and ecological packaging for food safety and quality maintenance.
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