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Abstract: The sensitivity of wheat crop to environmental variations 

frequently results in significant genotype (G) x environment (E) 

interaction (GEI). We compared statistical methods to analyze 

adaptability and stability of wheat genotypes in value for cultivation 

and use (VCU) trials. We used yield performance data of 22 wheat 

genotypes evaluated in three locations (Guarapuava, Cascavel, and 

Abelardo Luz) in 2012 and 2013. Each trial consisted of a complete 

randomized block design with three replications. The GEI was 

evaluated using methodologies based on mixed models, analysis 

of variance, linear regression, multivariate, and nonparametric 

analysis. The Spearman’s rank correlation coefficient was used to 

verify similarities in the genotype selection process by different 
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methodologies. The Annicchiarico, Lin and Binns modified  

methodologies, as well as the Harmonic Mean of the Genetic 

Values (HMGV) allowed to identify simultaneously highly stable 

and productive genotypes. The grain yield is not associated with 

Wricke, Eberhart and Russell stability parameters, scores of the first 

principal component of the AMMI1 method, and GGE biplot stability, 

indicating that stable genotypes are not always more productive. 

The data analyzed in this study showed that the AMMI1 and GGE 

biplot methods are equivalent to rank genotypes for stability and 

adaptability.

Key words: Triticum aestivum L., univariate and multivariate methods, 

rank correlation, grain yield, multi-environment trials.
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INTRODUCTION 

Wheat (Triticum aestivum L.) can be grown in a vast 
region of Brazil, being an important crop, especially in 
the South as well as low latitude and high altitude regions. 
These producing regions display wide environmental 
variability. Breeding programs aim at producing highly-
productive genotypes with desirable traits, which results 
from the selection process in different environments 
(years and locations). The same genotype grown in 
different environments often shows significant variation 
regarding productive performance (Condé et al. 2010; 
De Vita et al. 2010). This fluctuation is the result of the 
environmental component and refers to the genotype 
(G) × environment (E) interaction (GEI).

This interaction brings difficulties to the selection 
of wheat cultivars, especially because it changes the 
genotypic performance across environments (Mohamed 
2013) and minimizes the magnitude of the association 
between the phenotypic and genotypic values (Alwala et 
al. 2010), reducing the genetic progress due to selection. 
Therefore, breeding programs need an extensive testing 
network. In this case, breeders test genotypes in multi-
environment trials, alternating favorable and unfavorable 
conditions (Alwala et al. 2010). Moreover, GEI allows 
identifying genotypes adapted to specific environments, 
which may constitute good opportunities.

There are 2 ways to minimize the GEI effects. 
The first is to subdivide heterogeneous regions into 
smaller and more homogeneous sub-regions so that the 
breeding programs can develop specific cultivars for each 
sub-region (Mohammadi et al. 2007; Munaro et al. 
2014). The second strategy is to select genotypes with 
high stability across different environments (Eberhart 
and Russell 1966). In the literature, the different levels 
of association between methodologies to evaluate 
adaptability and stability indicate that more than one 
method should be used for reliable prediction of genotypic 
performance (Silva and Duarte 2006; Roostaei et al. 2014). 
However, the most appropriate methods to evaluate GEI 
can change depending on the data set.

Numerous methods have been proposed for estimating 
adaptability and stability parameters in multi-environment 
trials. These methods use different concepts of parametric 
models, such as univariate (Eberhart and Russell 1966; 
Wricke 1965), multivariate (Zobel et al. 1988; Yan 2001), 

mixed (Resende 2006) and non-parametric (Lin and 
Binns 1988). The ability to explain the sum of squares 
of GEI is, primarily, the factor promoting the differences 
between the existing methods.

Studies comparing the methods to assess wheat 
adaptability and stability parameters are scarce, and there 
is no consensus on the most appropriate procedures to be 
used (Mohammadi et al. 2010; Tadege et al. 2014). There 
is a need to perform studies that compare traditional 
methods and recent statistical models, indicating 
the methodologies that can increase the accuracy of the 
selection process of wheat genotypes, which results in 
greater genetic gain.

To this end, due to the diversity of models for studying 
the GEI and the importance of this phenomenon for 
wheat cultivation, this study aimed at comparing different 
methods to estimate wheat adaptability and stability.

MATERIAL AND METHODS

The data used in the study referred to wheat grain yield 
from experiments conducted in 3 locations: Abelardo 
Luz (SC), Cascavel (PR) and Guarapuava (PR) for 2 
consecutive crop seasons (2012 and 2013). Figure 1 shows 

Figure 1. Map of southern Brazil showing the testing environments 
of wheat genotypes, including geographical position and 
average monthly rainfall during crop growth in the 2-year trial 
(2012 and 2013).
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the environmental data. For purposes of analysis and 
interpretation, each location in each year was considered 
an environment, totaling 6 test environments, named 
as follows: Guarapuava — 2012 (E1) and 2013 (E2); 
Cascavel — 2012 (E3) and 2013 (E4); Abelardo Luz — 
2012 (E5) and 2013 (E6).

Twenty-two genotypes, including wheat lines and 
commercial cultivars (coded G1 to G22), were evaluated 
in Value for Cultivation and Use (VCU) trials, as follows: 
BRS Guamirim (G1); CD 0940 (G2); CD 105 (G3); CD 
114 (G4); CD 117 (G5); CD 119 (G6); CD 120 (G7); 
CD 121 (G8); CD 122 (G9); CD 123 (G10); CD 124 (G11); CD 
12860 (G12); CD 12862 (G13); CD 12864 (G14); 
CD 12880 (G15); CD 12882 (G16); CD 12884 (G17); CD 
1440 (G18); CD 1550 (G19); Fundacep Raízes (G20); 
Mirante (G21); and Quartzo (G22). The experimental 
design was a randomized complete block design with 
3 replications. Each experimental unit consisted of six 
5-m long rows, spaced 0.20 m (1.2 m × 5 m). Sowing 
density was 360 seeds∙m−2 and the employed cultivation 
techniques followed the technical requirements of a wheat 
crop, published annually. Grain yield (GY) estimates, 
in kg∙ha−1, were obtained by converting the grain mass 
harvested per experimental unit to 1 ha, with moisture 
correction to 13%.

For the environments tested, individual and joint 
analyses of variance were performed. The significance of 
G, E and GEI effects was determined by F-test. ANOVA 
assumptions were tested using the Genes software (Cruz 
2013). The homogeneity of residual variance (MSE) was 
verified according to Cruz et al. (2004), in which the ratio 
between the highest and lowest residual mean square 
was less than 7. In addition, the Lilliefors test was used 
to confirm the normal distribution of ANOVA model 
residuals. Selective accuracy was calculated as described 
in Resende and Duarte (2007).

The stability and adaptability of the 22 wheat genotypes 
were tested by the following methods: Wricke (1965) 
(WR), Eberhart and Russell (1966) (E-R), and additive 
main effects and multiplicative interaction — AMMI 
(Zobel et al. 1988). In the AMMI method, the scores of 
the first principal component (IPCA1) of each genotype 
were used as a measure of stability. The magnitude of 
these scores reflects the contribution to the interaction 
(GEI). The lower the score, in absolute IPCA1 values, the 
more stable the genotype. Also, the other methods used 

were: Annicchiarico (1992) (ANN); Lin and Binns (1988) 
modified by Carneiro (1998)3 (L-A/C) (method described 
in Cruz et al. 2004); mixed models — REML/BLUP, 
model 54 (Resende 2006), in which the measurement 
of simultaneous adaptability and stability for each 
genotype was obtained by the Harmonic Mean of Relative 
Performance of Genotypic Values (HMRPGV) and 
stability of genotypes by Harmonic Mean of Genotypic 
Values through environments (HMGV). In this case, 
the environment effect was considered as fixed and the 
genotype effect was considered as random. The GGE biplot 
analysis (Yan et al. 2000) was based on the plot of the 
scores associated with the environments and genotypes. 
The larger the vector projection, perpendicular to the 
straight line of the averages, the lower the genotype 
stability. Genes (Cruz 2013), Selegen (Resende 2006) 
and GGE biplot (Yan 2001) software were used.

The genotypes were ranked in regard to adaptability 
and stability according to the concept and number of 
parameters of each statistical method. The Spearman 
correlation coefficients (rs) (Steel and Torrie 1960) were 
estimated between the ranks of all pairs of adaptability and 
stability statistics and the GY. The Spearman correlations 
were estimated using the average of the ranks of the 
parameters involved with the GY average to determine 
the relationship between the methods. To this end, in the 
WR methodology, the genotypes were initially ranked 
by the GY, in which the genotype with the highest value 
was ranked first, up to the gth genotype. Subsequently, 
the genotypes were ranked according to stability. Finally, the 
average of ranks per genotype was calculated to determine 
the new rank, in which the genotype with the lowest 
value was ranked first, up to the gth genotype. In the ANN 
method, the ranks of the 3 parameters (Ii, Ii(f ) and Ii(d)) 
were averaged. Subsequently, a new rank was determined; 
the genotype with the lowest value was ranked first, up to 
gth genotype. Similarly, the genotypes were ranked using 
the L-B/C method. In the E-R method, the genotypes 
were ranked increasingly using the parameters β ˆ

1i and σ ˆ2 
di; 

the average ranking was calculated and summed to the 
ranking by GY to obtain a new rank, similarly to the other 
methods. These procedures followed the methodology 

3 Carneiro, P. C. S. (1998). Novas metodologias de análise da 

adaptabilidade e estabilidade de comportamento (PhD thesis). 

Viçosa: Universidade Federal de Viçosa.
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proposed by Roostaei et al. (2014) and Domingues et 
al. (2013). The ranking from the HMRPGV parameter 
was used for simultaneous expression of adaptability and 
stability by the methodology of mixed models (Resende 
2006). The ranking of genotypes by the AMMI1 and 
GGE methods was performed from the output file of 
the GGE biplot software, which contains the projection 
values of genotypes on the ordinate and abscissa axes, 
thus ranking the genotypes according to stability and 
productive performance. Subsequently, the ranks were 
averaged, and a new rank was generated, similarly to 
that described by Alwala et al. (2010).

Each pair of correlated variables was plotted in a 
scatter plot. The combination of all graphs resulted 
in correlation figures, where significant associations 
(p < 0.05) were highlighted. The Sigmaplot v.11 software 
was used for this procedure.

RESULTS AND DISCUSSION

The rainfall was different in the 3 sites, in the 2 
years (Figure 1). Guarapuava, Cascavel, and Abelardo 

Luz had average monthly rainfall of 111 and 157 mm; 
97 and 143 mm; 75 and 190 mm; in 2012 and 2013, 
respectively. De Vita et al. (2010) found a correlation 
of 0.82 (p < 0.01) between wheat grain yield (GY) and 
rainfall, indicating that this trait is highly dependent on 
environmental variations. The average monthly rainfall 
was 42% lower in 2012 compared to 2013. In addition, 
altitude is significantly different (760 – 1,120 m) among 
locations, implying sharp temperature differences. 
These factors contributed to environmental variation 
and, consequently, significant (p ≤ 0.05) occurrence of 
genotype × environment interaction (GEI) (Table 1). 
Therefore, it becomes difficult to select superior genotypes 
across environments (Hagos and Abay 2013), requiring 
other specific statistical procedures to assist in the 
genotype selection.

The environmental effect was responsible for most 
of the total sum of squares (SS) of GY (79.3%) after 
subtraction of SS due to blocks and error, corroborating 
other studies (De Vita et al. 2010; Hagos and Abay 2013; 
Roostaei et al. 2014). The effects of genotypes (8.8%) 
and GEI (13.0%) represented a minor portion of the 
SS (G + E + GEI). De Vita et al. (2010) reported that 

Analysis per environment

Environment
MS

CV (%) Mean (kg∙ha−1) F-test r ̂g ˆgBlock Genotype Error

E1 663,647.9 687,795.3 109,884.6 9.4 3,494.8 6.2** 0.91

E2 209,214.6 647,501.0 221,047.8 9.3 5,125.4 2.9** 0.81

E3 58,146.7 472,827.0 32,628.6 4.6 3,901.7 14.5** 0.96

E4 18,369.9 419,903.6 63,509.4 9.7 2,594.9 6.6** 0.92

E5 621,443.5 390,486.5 218,596.2 12.5 3,744.8 1.8* 0.67

E6 80,566.1 264,646.1 165,997.1 10.3 3,936.9 1.6ns 0.61

DF 2 21 42

> MS / < MS ratio = 6.77

Joint analysis

DF MS F-test % SS CV (%) Mean (kg∙ha−1) r ̂g ˆg

Blocks/environment 12 275,231.4

9.67 3,799.8 0.84

G 21 1,165,200.4 3.4** 8.81

E 5 44,013,812.1 159.9** 79.3

GEI 105 343,591.8 2.5** 13.0

Erro 252 135,277.3

Table 1. Statistical tests for the effects of genotypes, environment and their interaction by parametric analysis (ANOVA) for 22 wheat genotypes 
in 6 environments.

1Total sum of squares (SS), in percentage, remaining after removal of the sum of squares due to blocks and error; **,*Significant at 1 and 5% by F-test; nsNon-significant. 
MS = Mean square; CV (%) = Coefficient of variation; r ̂g ˆg = Genotype selective accuracy; E1 = Guarapuava — 2012; E2 = Guarapuava — 2013; E3 = Cascavel — 2012; 
E4 = Cascavel — 2013; E5 = Abelardo Luz — 2012; E6 = Abelardo Luz — 2013; DF = Degrees of freedom; G = Genotype; E = Environment;  GEI = Genotype × environment 
interaction. 
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selection for more productive genotypes over the years 
contributed to the improvement of phenotypic stability in 
modern genotypes of Triticum durum L. This fact results 
in decreasing GEI and, consequently, a trend towards 
constant performance among environments and crop 
seasons. However, no matter how small, the GEI cannot 
be disregarded (Condé et al. 2010). The GEI observed in 
the present study justifies the need to conduct trials in 
all 3 crop sites. Also, we obtained a good experimental 
precision, confirmed by the low coefficient of variation 
(9.67%) and high selective accuracy of genotype (r ˆg ̂g= 0.84). 
The magnitude of selective accuracy also shows that, in these 
environments, the experiments were able to discriminate the 
genotypes, contributing to the largest SS of this effect.

The productive performances of the tested genotypes, 
as well as the ranking assigned by the methods used to 
evaluate the phenotypic stability, are shown in Table 2. 
From the data presented in this table, we calculated the 
Spearman correlation coefficients between all statistic 
pairs. The study of statistic correlations is of great 
importance to define what statistical methods should be 
used to identify the promising genotypes (Scapim et al. 
2010; Domingues et al. 2013). Significant and high 
magnitude correlation coefficients indicate similarity 
in the ranking of genotypes. It is observed that, of the 
66 presented associations, significance occurred in 55% 
of the time (Figure 2). The use of statistics with a high 
degree of association generates redundant information 

G GY 
(kg∙ha−1) Rank ωi Ii Ii(f) Ii(d) σ ˆ2 

di Pi Pi(f) Pi(d) HMGV IPCA1 GGE

G1 3,559 b¹ 20 14 20 18 20 12 18 13 20 21 6 8

G2 4,245 a 1 21 15 9 3 17 1 9 1 1 21 21

G3 3,767 b 12 15 13 11 13 14 13 19 7 12 18 18

G4 3,606 b 18 17 19 21 18 18 19 22 14 17 16 17

G5 3,599 b 19 16 18 22 15 16 15 18 13 18 15 13

G6 3,721 b 13 13 16 20 11 15 12 11 10 13 8 1

G7 3,453 b 21 1 14 17 12 8 21 21 19 20 11 11

G8 3,627 b 16 8 12 10 17 3 14 15 15 15 10 10

G9 3,921 a 10 6 5 8 7 2 9 10 9 9 1 3

G10 3,200 c 22 19 22 15 22 21 22 16 22 22 22 22

G11 3,857 a 11 18 17 5 19 20 10 5 17 11 17 15

G12 3,636 b 14 9 11 16 9 6 16 20 12 14 4 7

G13 4,015 a 6 4 4 1 8 9 6 6 6 6 2 4

G14 4,088 a 2 22 10 19 5 19 2 1 5 5 12 16

G15 3,981 a 8 10 7 3 16 13 7 2 11 10 13 12

G16 3,630 b 15 20 21 14 21 22 20 12 21 19 20 20

G17 3,939 a 9 11 6 13 1 4 11 14 4 7 14 14

G18 4,036 a 4 7 3 2 6 1 5 4 8 4 9 9

G19 3,985 a 7 12 8 4 14 11 8 3 16 8 19 19

G20 3,617 b 17 5 9 12 10 5 17 17 18 16 5 5

G21 3,559 b 5 2 2 7 4 10 3 7 3 3 3 2

G22 4,245 a 3 3 1 6 2 7 4 8 2 2 7 6

Table 2. Ranking of 22 wheat genotypes evaluated in 6 environments, consisted of 3 locations (Guarapuava, Cascavel, and Abelardo Luz), 
during 2 years of tests (2012 and 2013), regarding grain yield, adaptability, and stability given by each statistical method.

¹Means followed by the same letter do not differ by the Scott-Knott test (p = 0.05). G = Genotype; GY = Grain yield; Parameters to evaluate adaptability and stability: 
ωi = Ecovalence (Wricke 1965);  Ii, Ii(f) and Ii(d) = Annicchiarico (1992) at α = 0.05; σ ˆ2 

di = Eberhart and Russell (1966); Pi, Pi(f) and Pi(d) = Lin and Binns (1988) modified by 
Carneiro (1998); HMGV = Stability by mixed models (REML/BLUP); IPCA1 = First principal component of the AMMI1 analysis; GGE = Stability by GGE biplot analy-
sis; i, (f), and (d) = performance in general, favorable, and unfavorable environments, respectively. 
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and does not help in the selection process. On the other 
hand, using statistics that complement each other can 
increase the confidence in the ranking and selection of 
cultivars. A significant association was observed between 
the GY and the statistics from the methodology ANN, 
L-B/C and stability for mixed models (HMGV). This 
result indicated that these methods allow identifying 
more stable and high yield genotypes. In contrast, GY 
was not associated with ωi; σ ˆ2 

di; IPCA1 and with stability 
analysis by GGE biplot, indicating that stable genotypes 
are not necessarily more productive, a fact also reported 
by Franceschi et al. (2010). Flores et al. (1998) reported 
that methodologies which measure genotype performance, 
by integrating GY and stability, are strongly associated 
with GY.

The static concept of stability refers to the constancy of 
genotype performance across environments, unresponsive 
to environmental enhancement, whereas the dynamic 
concept refers to the GY response of the genotype parallel 
to the average genotypes tested in each environment 
(Annicchiarico 2002). Figure 2 shows that it is possible 

to establish 2 statistics groups for the stability evaluation. 
Group 1 has the ANN, L-B/C and HMGV statistics and, 
because these statistics are associated with GY, they are 
related to the dynamic concept of stability. On the other 
hand, group 2 has the ωi;σ ̂2 

di, IPCA1 and GGE biplot 
statistics, which, in turn, are related to the concept of static 
stability. However, contrary to the report of Mohammadi 
et al. (2010), some parameters were associated between 
the 2 groups. It is important to highlight the association 
of statistics of the ANN method with all other statistics, 
ranged from rs = 0.48* to rs = 0.77**.

An association was found between the statistics ωi of 
the WR method with the IPCA1 (rs = 0.74**) and the 
E-R regression deviation (rs = 0.74**). Tadege et al. 
(2014) reported an association of 0.98** between the 
WR method and E-R regression deviation. Mohammadi 
et al. (2010) reported the association between these 3 
methods, with high repeatability between trial groups. 
This scenario occurred because these parameters indicate 
stability regardless of the average yield. Genotypes that 
demonstrate this kind of stability do not necessarily 

Figure 2. Spearman correlation coefficients between the ranks of 22 wheat genotypes obtained for grain yield (GY) and the stability 
statistics.

ωi = Wricke (1965)

Ii, Ii(f) e Ii(d) = Annicchiarico (1992) at α = 0.05

σ 2di = Eberhart and Russell (1966)

Pi, Pi(f) e Pi(d)  = Lin and Binns (1988) modified by Carneiro (1998)

HMVG = Stability by mixed models (REML/BLUP)

IPCA1 = First principal component of the AMMI1 analysis

Stability obtained by the GGE

i, (f) and (d) = Performance in general, favorable, and
                            unfavorable environments, respectively

*,** Significant at 5 and 1%, respectively

Significant correlations are highlighted
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respond to environment improvement, which is not 
preferable from the agricultural viewpoint. Also, the 
AMMI1 analysis and the E-R method provided similar 
results when identifying stable genotypes (rs = 0.60**), 
corroborating Mendes de Paula et al. (2014).

The mixed model method (HMGV) showed association 
with GY and with the 3 parameters of ANN and L-B/C. 
This methodology is advantageous because the results 
are on the same measurement scale of the evaluated trait 
(Rodovalho et al. 2015) and can be efficiently used to 
estimate the stability and adaptability of unbalanced data, 
characteristic of wheat trials in multi-environment. In 
addition, the 3 methods were associated with each other 
(rs ≥ 0.62**), generating redundant information, which 
corroborates Condé et al. (2010). Mendes de Paula et al. 
(2014) investigated sugarcane and observed agreement 
between the ANN, L-B and mixed model methodologies, 
reporting a preference for the latter. Likewise, Smith 
and Duarte (2006) suggested the possible use of these 
methods in combination with E-R to add information. 
In fact, the possibility of working with unbalanced 
data is important, particularly for VCU trials. In these 
tests, not all genotypes are sown everywhere where 
assessment is taking place, resulting in an unbalanced 
condition.

The statistics of Pi L-B/C, and HMGV were highly 
associated with GY, as reported in other studies (Pourdad 
2011). Mohammadi et al. (2010) also reported that the Pi 
index was one of the best methods for ranking genotypes 
in GEI trials since it is associated with GY and the 
dynamic concept of stability. Sabaghnia et al. (2006) also 
reinforced the preference for non-parametric methods, 
arguing about the ease of use and interpretation.

The presence of a significant and high magnitude 
association between stability statistics indicates similar 
ranking of genotypes. Consequently, only one statistic 
may be sufficient to select stable genotypes for breeding 
programs (Sabaghnia et al. 2006). However, while 
high magnitude association can occur, it is essential 
to observe the best genotypes in each method, as these 
might not be the same. For example, although there is 
association (rs = 0.96**) between Pi and HMGV (Figure 2), 
these statistics do not share the second rank of the 
most stable genotype (Table 2). The existence of an 
association between methods does not guarantee the 
general agreement regarding the best genotypes (Silva 

and Duarte 2006). This confirms the need to use more 
than one tool when evaluating adaptability and stability.

The stability and adaptability analysis with graphic appeal 
have recently become popular in plant breeding (Figure 3). 
The analysis which-won-where (Figure 3a) is a unique feature 
of the GGE biplot, in which the partitioning of the genotype 
in the sectors indicates the presence of significant GEI (Alwala 

Figure 3. GGE biplot graphs showing the scores of genotypes 
and environments, regarding best genotypes (a), as well as 
adaptability and stability (b). AMMI1 Biplot shows the scores of 
the first principal component (IPCA1) and average performing 
genotypes and environments (c). G1 to G22 refer to the genotypes, 
and E1 to E6 refer to environments. PC1 and PC2 = First and 
second principal components, respectively.
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et al. 2010). The graphical analysis mean versus stability 
using the GGE biplot (Figure 3b) allows identifying the 
magnitude of the stability of each genotype by the projection 
vector length (Yan and Tinker 2006), where a longer 
projection, regardless of the direction, represents a greater 
tendency of GEI. The smaller this vector, the more stable the 
genotype. In the AMMI1 analysis, the abscissa represents 
the average effect of genotype and environment while the 
ordinate infers the stability (IPCA1 scores) (Figure 3c). 
The results show that the axis of the first principal component 
of the interaction (IPCA1) explained more than 90% of the 
data variability, justifying the choice for the AMMI1 model.

When the statistical methods used are not associated 
with GY, the selection of genotypes must come from the 
joint evaluation of the stability parameters and productive 
performance of each genotype. Therefore, Figure 4 shows the 
Spearman correlation coefficients between the 7 methodologies 
to study GEI; however, in this case, only 1 ranking was 
obtained between each method by integrating the GY 
effect. All methods were associated with each other, and the 
correlation magnitudes ranged from rs = 0.50* to rs = 0.96**. 
A strong association was observed between the AMMI and 
GGE biplot (rs = 0.94**), which indicates relative redundancy 
of information regarding the ranking of the genotypes by 
stability and GY, corroborating Roostaei et al. 2014. The use 
of GGE biplot analysis only has been questioned, and the 
use of mixed models is indicated (Yang et al. 2009).

The correlation coefficient of rs = 0.96** was obtained from 
the HMRPGV and L-B/C association. Mendes de Paula et al. 
(2014) reported high association between these methods, as 

well as between HMRPGV and ANN, noting that HMRPGV 
is suitable for selection aiming at sowing in environments 
with different GEI patterns. Likewise, Rodovalho et al. (2015) 
reported a strong association between these methodologies 
and underlined the advantage of the HMRPGV method 
because it presents the results in the measurement units of 
the trait. Thus, the indication based on mixed model method 
is justified because it is based on statistical models that allow 
greater accuracy in predicting the genotypic values.

Agronomists and breeders usually prefer genotypes 
with high productive potential that respond to favorable 
environments and improvement of the environment by using 
inputs. In this sense, the identification of genotypes that 
meet this concept is important. Of the tested methodologies, 
E-R was able to estimate the response of the genotypes to 
environmental improvement using regression coefficients and 
may be used as a complement to other methods. However, 
because it is not associated with GY (Alwala et al. 2010), the 
simultaneous use of another method is highly recommended. 
Silva and Duarte (2006) indicated the combined use of E-R 
and AMMI, aiming at complementary information. Alwala 
et al. (2010) reported the superiority of GGE biplot analysis 
over E-R. Moreover, easy interpretation methods such as 
the GGE biplot simplify the selection process when a large 
number of genotypes is examined.

Often the occurrence of complex type GEI leads to 
uncertainty in the selection of a genotype; in this case, graphical 
inference techniques about adaptability and stability can provide 
accurate and easy-to-understand information. The identification 
of stable and highly productive genotypes between different 

ωi = Wricke (1965)

Ann = Annicchiarico (1992) at α = 0.05

E-R = Eberhart and Russell (1966)

L-B = Lin and Binns (1988)
            modified by Carneiro (1998)

HMRPVG = Harmônic mean of relative
 performance of genotypic values by
                         mixed models (REML/BLUP)

First principal component of the AMMI1 (Zobel et al. 1988)
and GGE analysis for means and stability obtained from the
evaluation of 22 wheat genotypes evaluated in 6 environments, 
consisted of 3 locations (Guarapuava, Cascavel, and Abelardo Luz), 
during 2 years of tests (2012 and 2013).

0.95**
Ann

Ann

E-R

E-R

L-B

L-B

HMRPGV

HMRPGV

AMMI1

AMMI1

GGE

ωi

0.78** 0.78**

0.78** 0.68**0.69**

0.84** 0.68** 0.96**0.74**

0.85** 0.73** 0.78**0.85**

0.78** 0.73** 0.77**

0.78**

0.94**0.73**0.77**

Figure 4. Spearman correlation coefficients between the average ranks of methodologies to interpret the interactions genotype × environment, 
focusing on yield and stability.
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environments remains a constant challenge for breeders of 
various crop species around the world. In addition, studies 
about GEI and their bases focusing on the stable parental 
selection are essential, as well as on determining environments 
where it is possible to intensify the selection pressure.

CONCLUSION

The selection of wheat genotypes regarding grain yield 
depends on the method employed to analyze adaptability 

and stability and on the dataset (sample of genotypes 
and environments).

The methodologies of Annicchiarico (1992), Lin and 
Binns (1988) modified by Carneiro (1998) and stability 
estimated by the harmonic mean of genotypic values 
using mixed models allow to identify the more stable 
and productive genotypes, at the same time.

The ranking of genotypes regarding stability and 
adaptability using the AMMI and GGE biplot showed 
a trend towards redundancy between the methods 
(rs = 0.94**).
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