
ABSTRACT: The study aimed to propose critical levels (CL) and sufficiency ranges of phosphorus (P) in leaves and soil, and rates of 

maximum technical (MTE) and economic (MEE) efficiency, to maximize marketable bulb yield in garlic (Allium sativum) cultivars grown in 

a subtropical climate. Field experiments were conducted for two seasons on clay soils in southern Brazil. The cultivars ‘Chonan’, ‘Ito’, and 

‘Roxo Caxiense’ were subjected to the application of P rates (0, 50, 100, 250, and 500 kg P2O5·ha-1·yr-1). Garlic yield, soil P concentrations 

(Mehlich-1), and total P in leaves were determined. The CL in relation to total yield garlic yield were 3.5, 4.5, and 3.4 g P·kg-1 in leaves and 

18, 28, and 14 mg P·dm-3 in soil, for ‘Chonan’, ‘Ito’, and ‘Roxo Caxiense’, respectively. The CL in relation to marketable garlic yield were 4.0, 

3.5, and 3.6 g P·kg-1 in leaves and 22, 26, and 13 mg P·dm-3 in soil, for the respective cultivars. The MTE rates were 397 and 336 kg P2O5·ha-1, 

and the MEE rates were 353 and 297 kg P2O5·ha-1, for total and marketable garlic bulb yield. Based on our results, we recommend that garlic 

growers use when possible the individual nutritional reference values for specific garlic cultivars. 
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INTRODUCTION

Garlic (Allium sativum) is grown on approximately 1.63 million hectares worldwide, in traditional producing countries 
such as China and India (FAOSTAT 2021). In Latin America, Brazil is the second largest garlic producer with 12.2 thousand 
hectares cultivated, where 155.7 thousand tons of bulbs are produced annually (IBGE 2020). However, Brazil is still the 
world’s second largest importer of garlic; the first one is Indonesia (FAOSTAT 2021). This importation arises because 
production in Brazil does not fulfill its demand, and this deficit in production can be attributed to various factors, including 
the acidity and inherently low fertility of the soils in Brazil and other Latin American countries (Carneiro et al. 2016, Sebnie 
et al. 2018). In addition, in subtropical climate zones, critical issues and challenges such as climate conditions (Joshi et al. 
2023), water availability (Rodríguez et al. 2023), and soil nutrient deficiency (Althaus et al. 2018) negatively affect crops 
yield and quality (El-Metwally et al. 2022, Shaaban et al. 2023). Therefore, these soils do not adequately supply the plants 
need for phosphorus (P). Thus, to increase the availability of P to garlic plants, phosphate fertilization is necessary (Cunha 
et al. 2016, Santos et al. 2017).

P availability and uptake are dramatically influence by edaphic conditions, such as soil pH (Barrow and Debnath 2015, 
Penn and Camberato 2019), mineral composition (Li et al. 2021), altitude, and temperature (Oliveira et al. 2020). Therefore, 
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in addition to artificial P supply, several tactics should be done to enhance P use efficiency and utilization (Saudy et al. 
2020, Shaaban et al. 2023).

 In garlic cropping system, P can be applied on soils and incorporated at depth, normally 0–20-cm layer (Santos  
et al. 2017, Oliveira Neto et al. 2020). However, in highly weathered soils, such as clayey soils, much of the applied P is 
rapidly adsorbed (Almeida et al. 2018, Boitt et al. 2018), especially, on functional groups of inorganic reactive soil particles, 
such as 2:1, 1:1 clay minerals, hydroxides, oxides, and oxyhydroxides of iron (Fe), aluminum (Al), and manganese (Mn) 
(Alovisi et al. 2020, Oliveira et al. 2020). Thus, a small portion of the applied P will be made available to garlic plants to 
contribute to growth and yield (Shen et al. 2011). However, virus-free garlic cultivars may possess different mechanisms/
strategies for nutrient uptake, transport and accumulation, which may generate higher bulb yield (Marodin et al. 2019). 
Also, garlic cultivars may possess distinct yields and, consequently, different demands for nutrients, as P (Resende et al. 
2013, Sebnie et al. 2018). 

Thus, it is necessary to propose the critical levels (CL) and sufficiency ranges (SR) of nutrients in garlic cultivars, to 
initially establish the real demand of P application (Cunha et al. 2016, Lima Neto et al. 2020). CL and SR can be established 
from soil and tissue analysis results, which are related to variables of interest, such as marketable bulb yield (Cunha et al. 
2016), or quality variables, such as bulb diameter classes (Triharyanto et al. 2021). To develop the CL and SR estimation 
models, the yield variables are converted into relative yield (%) considering each cultivar, fertility ranges and harvest. 
The models are developed using plateau regression to quantify the relationship between the dependent variables (total 
and marketable yield) with the concentration of nutrients in the soil and leaves (Stefanello et al. 2023). The critical 
concentration is assumed to be the point at which the fitted line reaches the plateau, demonstrating no further increase 
in yield as the nutrient concentration increases. The analysis will be carried out, assuming a 90% confidence interval, 
to determine the threshold concentrations (SR) and the highest density of nutrient occurrence (CL). Also, maximum 
technical efficiency (MTE) and maximum economic efficiency (MEE) rates of P may be proposed to obtain maximum 
total and marketable bulb yield, according to what is most profitable to the farmer. These propositions can be carried 
out at regional level, but also at cultivar level (Wu et al. 2016, Bessa et al. 2020), contributing to the rationalization of 
the use of phosphate fertilizers.

CL and SR in leaves and soils, and MTE and MEE rates of nutrients, could be determined from advanced mathematical 
models, such as those obtained using techniques involving machine learning and Bayesian modeling. This approach has been 
used to provide technical support in developing criteria for decision making on the real need for fertilizer in recommendation 
systems (Kyveryga et al. 2013). However, studies addressing the joint employment of these techniques in the estimation of 
CL and SR of nutrients in soils and leaves are still scarce in the world (Ciampitti et al. 2021), especially based on good sets 
of experiments conducted in various locations.

Choosing the appropriate crop cultivar is a significant practice to be adapted to different harsh conditions (Saudy  
et al. 2020, Shahin et al. 2023). Due to the variation in cultivars potential to exploit soil, the nutrient use efficiency differed 
(Noureldin et al. 2013, Chen et al. 2023). The definition of CL, SR and rates of MTE and MEE may contribute to increasing 
the yield and quality of garlic. However, it will enable farmers to choose materials more efficient in the use of P, without 
reducing yield. Also, it encourages the sustainable use of phosphate fertilizers, which have finite reserves (Vaccari et al. 2019). 
The sum of these strategies will favor the increase of P utilization efficiency and decrease the potential for soil and wastewater 
contamination by excess P (Baker et al. 2015, Fan et al. 2021). The study aimed to propose CL and SR of P in leaves and soil, 
and rates of MTE and MEE, to maximize marketable bulb yield in different garlic cultivars grown in subtropical climate. 

MATERIAL AND METHODS

Experimental setup

There were 12 trials in 2015 and six trials in 2016 conducted in Fraiburgo, Frei Rogério, and Curitibanos cities, Santa 
Catarina state, south of Brazil (Fig. 1). The soils were clayey and classified as Ultisols (Soil Survey Staff 2014). The landscape 
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was moderately flat to slightly undulated. Edaphic, climatic, and managerial data was collected in Fraiburgo, Santa Catarina, 
Brazil (27°04’50.4”S, 50°54’16.4”W, elevation 1,041 m). 

Figure 1. The geographic location of the Fraiburgo, Frei Rogério, and Curitibanos municipalities, Santa Catarina state, south of Brazil, where 
field experiments with phosphate fertilization and garlic cultivars were conducted.

The region’s climate was classified as Cfb according to the Köppen’s system, which is temperate and humid with mild 
summers (Alvares et al. 2013). The crops were sprinkler-irrigated at need. Climatic data observed during the field experiments 
were collected by automated meteorological stations (Hahn et al. 2024).

The plots consisted of three double-line planting beds, 5 m in length (Hahn et al. 2020). The seeds were obtained from 
virus-free meristem culture of the cultivar noble groups ‘Chonan’, and ‘Ito’, and the ‘Roxo Caxiense’ was the conventional 
cultivar (Table 1), which has the greatest potential for yield improvement in Brazil. Those late cultivars have purple bulbs 
and require long days for bulb formation (Resende et al. 2013, Hahn et al. 2022). Seed cloves were vernalized at 2–5 °C 
for 20–30 days before planting. Planting density was 45 seed cloves·m-2. Preceding crops were maize (Zea mays), soybean 
(Glycine max), common bean (Phaseolus vulgaris), or fallow. The other cultural practices were those recommended in the 
marketable fields of the region. 

The experimental design used in every experiment was completely randomized blocks with three replications. The 
experimental stands received five P rates (0, 50, 100, 250, and 500 kg P2O5·ha-1·yr-1) using triple superphosphate (TSP) 
as the P source (42% P2O5). In all treatments, the rate of 300 kg N·ha-1: 1/3 was applied top-dressed at planting; 1/3 top-
dressed 30 days after planting; and 1/3 was top-dressed at bulb initiation (approximately 95 days after planting, when plants 
differentiated into bulbs). The equal rate of 400 kg K2O·ha-1 and 100 kg N·ha-1 was applied broadcast before planting. The 
respectively NPK rates were applied in the total area, and the soil was turned by rotary tiller in the 0–20-cm layer. Plantation 
dates across sites and years varied between June 1st and July 26th. The harvesting dates varied between November 3th and 
December 8th, with 144 average cycle days (Table 1).
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Table 1. Field location, garlic cultivar, planting date, cycle, and physical and chemical soil attributes before experiment start and fertilizer 
application in Southern Brazil. 

Soil City Garlic cultivar Planting 
date

Cycle Clay OM pH in 
water

P K Ca Mg CEC V P 
availability 

classes*days ----- % ----- mg·dm-3 ---- cmolc·dm-3 ---- %

1 Curitibanos Ito 07/03/2015 174 63 2.9 5.9 17.2 207.4 7.4 2.5 13.9 75.0 High

2 Fraiburgo Chonan 07/14/2015 119 60 4.5 6.0 49.7 518.4 9.2 2.2 15.5 74.4 Very high

3 Curitibanos Roxo Caxiense 07/23/2015 132 62 3.3 6.1 14.2 315.4 6.0 3.3 13.6 83.1 Medium

4 Curitibanos Ito 07/26/2015 135 41 3.4 6.1 12.8 132.0 9.1 4.4 16.7 67.8 Low

5 Fraiburgo Ito 06/01/2015 155 62 4.3 5.7 11.5 116.6 6.9 2.0 13.6 75.1 Medium

6 Fraiburgo Ito 06/29/2015 142 59 4.0 6.7 34.9 108.0 12.7 1.1 16.0 87.8 High

7 Fraiburgo Chonan 06/02/2015 154 58 4.9 5.4 13.3 237.6 6.1 2.0 15.6 85.6 Low

8 Fraiburgo Chonan 06/28/2015 162 61 3.6 6.3 19.0 298.1 8.5 2.3 13.5 84.2 High

9 Frei Rogério Chonan 06/20/2015 143 63 3.9 5.8 11.5 138.2 6.1 2.6 13.9 80.7 Medium

10 Fraiburgo Ito 07/01/2015 145 58 4.1 5.9 17.4 261.0 8.2 3.4 19.3 67.8 Medium

11 Fraiburgo Ito 06/01/2015 155 60 4.7 6.2 5.7 250.6 7.8 3.0 14.5 84.6 Low

12 Frei Rogério Ito 06/20/2015 139 66 3.1 6.5 17.0 173.9 6.5 3.3 12.8 82.4 High

1 Curitibanos Ito 07/05/2016 141 63 nd nd 23.7 nd nd nd nd nd High

3 Curitibanos Roxo Caxiense 07/22/2016 133 62 nd nd 12.3 nd nd nd nd nd Medium

4 Curitibanos Ito 07/27/2016 126 41 nd nd 7.9 nd nd nd nd nd Low

8 Fraiburgo Chonan 06/02/2016 154 61 nd nd 9.3 nd nd nd nd nd Low

9 Frei Rogério Chonan 06/15/2016 156 63 nd nd 4.4 nd nd nd nd nd Very low

12 Frei Rogério Ito 06/14/2016 149 66 nd nd 18.2 nd nd nd nd nd High

OM: organic matter; pH in water (1:1); P and K were extracted by Mehlich-1; Ca and Mg were extracted by KCl 1 M; CEC: cation exchange capacity at pH 7  
(Ca2+ + Mg2+ + K+ + (H+Al)); V%: Ca-Mg-K saturation; nd: not determined; the seeds of Ito and Chonan garlic cultivars were obtained from virus-free meristem 
culture; *according to CQFS-RS/SC (2004).

Tissue analysis

Ten complete young leaves (fourth fully expanded) were collected in each plot at the beginning of clove differentiation 
(Hahn et al. 2020). The leaves were washed with distilled water, dried at 65 ± 5 °C in an oven with forced air circulation 
until reaching constant weight. Afterwards, the leaves were ground in a Willey-type mill (Tecnal, R-TE-650/1, Brazil) and 
passed through a 1-mm mesh sieve. A part of the leaf tissues was submitted to nitro perchloric digestion to determine the 
concentration of other nutrients (Embrapa 2009). The P concentration was determined at 882 nm in a ultraviolet–visible 
spectrophotometer (Bell Photonics, 1,105, Brazil) (Murphy and Riley 1962). 

Soil analysis

The initial soil characterization before fertilizer application and garlic planting is presented in Table 1. Eight soil samples 
per plot were collected in the 0–20-cm surface layer 15 to 20 days after fertilizer rates application and garlic planting. Also, 
at the harvest time soil was again analyzed. The soils were air-dried and ground to 2-mm mesh before conducting physical-
chemical analysis. The clay content was determined by the densimeter method (Donagema et al. 2011). The pH was determined 
in water (1:1 soil-to-water volumetric ratio). The available P and K were extracted by Mehlich-1, and exchangeable Ca 
and Mg were extracted by KCl 1 mol·L-1 (Tedesco et al. 1995). The available P in the soil was determined at 882 nm in a 
ultraviolet–visible spectrophotometer (Bell Photonics, 1,105, Brasil) (Murphy and Riley 1962). The exchangeable K, Ca and 
Mg in the soil was determined in an atomic absorption spectrophotometer (PerkinElmer, AA200, Norwalk, United States of 
America). Cation exchange capacity was determined as the sum of exchangeable cations and total acidity (SMP buffer pH)  
(Tedesco et al. 1995). The organic carbon content of the soil was determined by wet oxidation in a sulphochromic solution–
K2Cr2O7 + H2SO4 (Walkley and Black 1934), followed by multiplication of the 1.724 constant to obtain soil organic matter 
content (Silva et al. 2009). 
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Garlic yield and bulb classification

The bulbs were collected in uniform 1-m-long rows made of three double plant lines per plot (Hahn et al. 2020).  
The bulbs were weighed after 40 days of natural drying. Marketable bulbs were classified according to its diameter at #2 (< 32 mm ∅),  
#3 (32–37 mm ∅), #4 (37–42 mm ∅), #5 (42–47 mm ∅), #6 (47–56 mm ∅), and #7 (> 56 mm ∅), according to Luengo et al. (1999). 
Bulbs showing secondary growth or damage were considered non-marketable. The average of the two years of evaluation were 
used to calculate yield and garlic classes. For annual yield, the average bulb yield of all cultivars for the respective crops was used.

Statistical analysis and critical levels and sufficiency ranges estimation of nutrients

The total yield data were submitted to a conditional inference regression analysis to highlight which of the factors (cultivar and  
P rate) had greater importance in conditioning the differences on total yield. Subsequently, the response variables (total 
and marketable yield) were submitted to analysis of variance (ANOVA). The factors ‘cultivar’ and ‘rates of P’, as well as their 
interaction, were considered fixed effect, and the effects of blocks were nested in crops (random effect). The normality of 
the residuals was tested by means of the Shapiro-Wilk’s test and, as they did not meet the normality assumption, they were 
compared by the Friedman’s test, with error probability of 5% (p < 0.05). The data were also subjected to Pearson’s correlation. 
All analyses were performed in the R statistical environment (R Core Team 2021), using the packages “agricolae” (Mendiburu 
2021) and “Rmisc” (Hope 2013), for descriptive statistical analysis, and “ggplot2” (Wickham et al. 2021), for graphing.

For the development of models to estimate CL and SR, the total and marketable bulb yield was converted into relative yield (%) 
considering cultivars, crop seasons, and experiments. The models were developed through regression with plateau to quantify the 
relationship between the dependent variables (yield), with the concentration of P in the soil at planting (after P application) and 
leaves at the beginning of clove differentiation. Hierarchical Bayesian analysis was used to fit the regression models. In this step, 
a Monte Carlo simulation with Markov chains (Gelman and Hill 2007) was performed using the Gibbs sampling algorithm with 
20,000 random drawings after a heating period of 10,000 interactions. The sampling step was performed according to a normal 
distribution based on the a posteriori distribution of nutrient concentrations. The modeling was implemented using the ‘rjags’ 
package (Plummer 2016) in the R statistical environment (R Core Team 2021). The critical concentration was assumed to be the 
point at which the fitted line reaches the plateau, showing no further increase in yield as the P concentration increases. Finally, a 
frequency density analysis, assuming a 90% confidence interval, was performed to determine the SRs, and the highest CL density.

Maximum technical efficiency and maximum economic efficiency 

The regressions for fitting the MTE and MEE of the variables of interest were performed using Eq. 1:

      y = a±b1x ± b2x
2                                           (1)

Equation 2 was used for the estimation of the MTE:

                                                   (2)

Equation 3 was used for the estimation of the MEE:

         (3)

where: t: the value of the input (TSP); w: the marketable value of the product (garlic).
The average price of TSP in the years 2015 and 2016 was US$ 1.13·kg-1 of P2O5 (Conab 2021b). The average price of a 

kilogram of marketable grade garlic in the years 2016 and 2017 was US$ 2.79·kg-1 (Conab 2021a). The value used for the 
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non-marketable class was 10% of the total value of the marketable class. Thus, for calculation purposes the average price of 
the kilogram of garlic in the years 2016 and 2017 of US$ 1.99·kg-1 was used, considering the average value received by the 
total yield (marketable class + non-marketable class). 

RESULTS

Garlic yield and bulb classification

The cultivar factor showed the greatest effect on total garlic yield (54%), in relation to P rates, in the 2015 and 2016 crop 
seasons (Fig. 2). The cultivar ‘Roxo Caxiense’ showed the highest yield. The ‘Roxo Caxiense’ cultivar showed subtle effect 
of P rates (7%), in which the highest marketable yields were observed at rates of 100, 250 and 500 kg P2O5·ha-1 (Fig. 2).

Node 2 (n = 30)

Roxo Caxiense

Roxo Caxiense

Cultivar
p < 0.001

Dose P
p = 0.006
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Figure 2. Conditional inference trees for total garlic yield in field experiments in the South of Brazil as affected by garlic cultivar (Cultivars) 
and phosphate fertilization (P rates). The number of the node indicates the sequence of the split with respective split significance (p) in the 
circle. Boxplots show data distribution in each terminal node. The number of observations (n) is shown. Boxplots represent the interquartile 
range (first and third quartiles), while vertical lines extending from the boxes indicate the upper and lower limits of the data. The line within 
the boxplot is the median (second quartile, 50 percentile). White dots represent outliers.

Total yield did not differ statistically (p < 0.05) among garlic cultivars (Fig. 3a), but yield differed statistically among crop 
seasons (Hahn et al. 2024). Marketable and non-marketable yields differed statistically among garlic cultivars (Figs. 3b and 3c).  
The cultivar ‘Roxo Caxiense’ showed the highest marketable yield compared to the cultivars ‘Chonan’ and ‘Ito’ at 1.4 and 
1.7 time more, respectively (Fig. 3b). The cultivar ‘Ito’ showed the highest non-marketable yield and ‘Roxo Caxiense’ the 

https://creativecommons.org/licenses/by/4.0/deed.en


7

Phosphorus rates in garlic field experiments

Bragantia, Campinas, 83, e20240039, 2024

lowest (Fig. 3c). This fluctuation of marketable and non-marketable yield of the cultivars was evident between the harvests 
(Hahn et al. 2024). In the 2016 crop season, the marketable yield was higher compared to the 2015 and, consequently, the 
non-marketable yield was lower (Hahn et al. 2024).
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Figure 3. Garlic production evaluation according to different cultivars. (a) Total garlic yield, (b) marketable yield, (c) non-marketable yield, 
(d) non-marketable grade, and (e, f, g, h and i) garlic bulbs classification 3 to 7 of garlic cultivars subjected to phosphate fertilization in field 
experiments in the South of Brazil. Boxplots represent the interquartile range (first and third quartiles), while vertical lines extending from 
the boxes indicate the upper and lower limits of the data. The line within the boxplot is the median (second quartile, 50 percentile). Circle 
inside the boxes represent the mean. Gray dots represent outliers.

Cultivars showed differences between bulb classifications for all classes, except for class 5 (Fig. 3g). The cultivar ‘Ito’ 
showed the highest proportions in classes 3, 6 and 7 compared to the other cultivars (Figs. 3e, 3h and 3i). The cultivar ‘Roxo 
Caxiense’ showed the highest proportions in classes 3 and 4 (Figs. 3e and 3f), and the lowest in classes 6 and 7 (Figs. 3h and 3i). 

Phosphorus in leaves and soil

P concentrations in leaves did not differ statistically (p < 0.05) between cultivars (Fig. 4a). The average P concentration 
in the leaves of the three cultivars was 5.2 g P·kg-1. However, the highest contents of available P extracted by Mehlich-1 
were observed in soils cultivated with the ‘Roxo Caxiense’ cultivar (Fig. 4b). The lowest available P contents were observed 
in soils cultivated with the ‘Ito’ and ‘Chonan’ cultivars, respectively, in 1.1 and 1.2 time related to ‘Roxo Caxiense’ (Fig. 4b). 
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Critical levels and sufficiency ranges of leaves phosphorus

The CL of P in leaves in relation to total yield were 3.5, 4.5 and 3.4 g P·kg-1, respectively, for ‘Chonan’, ‘Ito’ and ‘Roxo 
Caxiense’ cultivars (Fig. 5a). The SR obtained in relation to total yield varied from 3 to 5.5 g P·kg-1. The CL of P in leaves 
in relation to marketable yield were 4, 3.5 and 3.6 g P·kg-1 for ‘Chonan’, ‘Ito’ and ‘Roxo Caxiense’ cultivars (Fig. 5b). The SR 
obtained in relation to marketable yield varied from 3 to 4.8 g P·kg-1. 
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Figure 5. Critical levels (CL) and sufficiency ranges (SR) of phosphorus (P) in leaves concerning (a) total and (b) marketable yield of the 
garlic cultivars subjected to phosphate fertilization in field experiments in the South of Brazil.
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Critical levels and sufficiency ranges of soil phosphorus

The CL of P in soil in relation to total yield were 23, 28, and 14 mg P·dm-3, respectively, for ‘Chonan’, ‘Ito’ and ‘Roxo 
Caxiense’ cultivars (Fig. 6a). The SR obtained in relation to total yield varied from 10 to 35 mg P·dm-3. The CL of P in soil 
in relation to marketable yield were 22, 26 and 13 mg P·dm-3, respectively, for ‘Chonan’, ‘Ito’ and ‘Roxo Caxiense’ cultivars 
(Fig. 6b). The SR obtained in relation to total yield varied from 13 to 30 mg P·dm-3. 
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Figure 6. Critical levels (CL) and sufficiency ranges (SR) of phosphorus (P) in the soil concerning (a) total and (b) marketable yield of the 
garlic cultivars subjected to phosphate fertilization in field experiments in the South of Brazil.

Maximum technical efficiency and maximum economic efficiency 

The MTE and MEE in relation to total garlic yield were obtained from the application of 397 and 353 kg P2O5·ha-1, 
respectively (Fig. 7a). For marketable yield, the rates were 336 and 297 kg P2O5·ha-1, for MTE and MEE (Fig. 7a). The 
difference in total and marketable yields, between the rates of MTE and MEE, were 44 and 37 P2O5·ha-1 (Figs. 7a and 7b).  
The MEE rates represented 89 and 88% of MTE rates for total and marketable yield. This reduction in fertilizer application 
causes the decrease of only 15 and 11 kg·ha-1 of total and marketable garlic yields, respectively. 

DISCUSSION

The cultivar factor showed greater influence on the yield variable compared to the P rate factor (Fig. 2). This may have 
happened because garlic cultivars may have different kinetic parameters, as Km, Cmin, Vmax and influx of nutrient uptake, in 
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this case P (Pinto et al. 2021, Wang et al. 2021). Thus, some garlic cultivars can maintain adequate yield even in soils with 
lower P availability, thus becoming more efficient (Sirisena and Suriyagoda 2018, Wang et al. 2018). 
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Figure 7. Rates of maximum technical efficiency and maximum economic efficiency for (a) total and (b) marketable garlic yield of the garlic 
cultivars subjected to phosphate fertilization in field experiments in the South of Brazil. Red dots represent the mean. Vertical lines represent 
the standard error of the mean.

Plants such as garlic cultivars have different specific mechanisms to increase solubility and, consequently, nutrient 
availability to absorption (Kulmann et al. 2020, Lambers et al. 2015). This can happen because of exudation of organic 
acids and pH modification in the rhizospheric soil (Sun et al. 2020, Vives-Peris et al. 2020). These strategies may increase 
solubilization of more recalcitrant P forms (Rahman et al. 2021), favoring the approximation of phosphate ions to the outer 
surface of roots, enhancing plant P uptake (Sun et al. 2020, Vives-Peris et al. 2020). Thus, in some cases, both applied P 
rates and available soil contents may be less important than the cultivar chosen.

The marketable yield was distinct among cultivars (Fig. 3b). This is the most important variable for garlic producers, as it 
represents the classes that are economically profitable. The total garlic yield did not differ statistically between the virus-free 
cultivars (‘Ito’ and ‘Chonan’) and the conventional one (‘Roxo Caxiense’) (Fig. 3a), representing the potential that is possible 
to achieve improving the nutritional management. The highest values in the non-marketable bulb class were observed in 
the cultivar ‘Ito’. On the other hand, the lowest value was verified in the cultivar ‘Roxo Caxiense’. Furthermore, we pointed 
out that the cultivar ‘Roxo Caxiense’ is planted late. Garlic in late plantings hardly overgrows in the study region, because 
of the shortening of the production cycle (Table 1) and because the period of plant differentiation into bubbles does not 
coincide with late frosts, which explains the high marketable yield (Lucini 2004). However, the ‘Roxo Caxiense’ cultivar is 
not cultivated on a large scale in the region of this study, because the purple color of the bulbils is not as intense as ‘Ito’ and 
‘Chonan’ cultivars. Thus, this garlic is not as desired by consumers.

Most likely unfavorable weather conditions in 2015 explain the lower production of marketable garlic (4,309 kg·ha-1) 
and higher production of non-marketable garlic (5,017 kg·ha-1), compared to the 2016 crop season (9,881 and 729 kg·ha-1, 
respectively) (Hahn et al. 2024). In 2015, negative temperatures occurred on September 12th and 13th (-1 °C), coinciding 
with the phase of differentiation of garlic, and high rainfall precipitation from half to the end of the production cycle of 
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garlic (months from September to November), in which the accumulated monthly rainfall was 233, 353, and 237 mm, and 
the number of days of the months with rainfall was 18, 21, and 16, respectively (Hahn et al. 2024). As adverse weather 
conditions decreased marketable bulb yield and favored the appearance of the plant disturbance false-branching or super-
sprouting, in addition to a high incidence of bacteriosis (Wu et al. 2016). These two conditions deteriorate the quality of 
garlic, and therefore the product is classified as non-marketable garlic. 

The CL and SR of P in garlic leaves were determined individually for the three cultivars evaluated (Fig. 5). However, 
the average of P leaf content did not differ between these cultivars (Fig. 4a). It can be explained because plants absorb P in 
concentrations above physiological demands not reflecting in increasing yield. In this case, the P absorbed and diagnosed 
by leaf analysis were derived from fertilization and contributed to the increase in bulb yield (Nemadodzi et al. 2017, Fouda, 
2020), being possible to identify the cultivar with higher P use efficiency (‘Roxo Caxiense’). Also, the CL proposed in the 
present study are lower than the CL considered as adequate by Cunha et al. (2016) 5.2 g P·kg-1, in tropical climate soil of 
Brazil. There are propositions of different reference values of P in garlic leaves in the literature, which may be associated 
with distinct factors such as climate, soil type and cultivars (Tyler et al. 1988, Castellanos et al. 2001). However, the use 
of regionalized values obtained in our study may contribute to greater accuracy of interpretations and recommendations. 
Also, the use of the most efficient garlic cultivar and adequate nutrition minimize the excess of P in soil useless to the plant 
(Saudy et al. 2020).

The different CL may also have occurred due to the mathematical modeling applied, adjustment coefficients chosen, or 
even the sum of these factors (Yu and Moyeed 2001, Liang et al. 2021). In any case, the proposed CL indicates how far human 
intervention of fertilization will enable returns in garlic bulb yield. In this case, garlic crops with P concentration above 
of SR have low probability of positive yield return with phosphate fertilizer application. We did not observe a correlation 
between P in the soil and P in the garlic leaves either (Hahn et al. 2024), which corroborates to the reduction of excess of 
soil P. Moreover, with calibrated CL the probability of nutritional imbalance is lower, resulting in a lower fertilization rate 
and reduction in production costs (Sucunza et al. 2018). Thus, in addition to benefits for the garlic production chain, there 
will be less potential for surface water contamination adjacent to garlic-grown areas (Fischer et al. 2018, Fan et al. 2021), 
especially in areas that have higher clay content and slope (Grando et al. 2021). 

The CL and SR to garlic cultivars in the soil were identified (Fig. 6). This proposition reinforces the relationship between 
soil P content and garlic yield (Diriba-Shiferaw et al. 2013, Santos et al. 2017), which is not always observed in crops with 
incipient root system development, case of garlic (Lawande et al. 2009). Thus, to increase garlic bulb yield, it is necessary 
to raise the soil P content and achieve at minimum the SR (Mehlich-1). However, at contents higher than this CL, the 
probability of yield increment is very low (Fouda 2020, Wang et al. 2022). The soil P CL obtained in the present study 
for ‘Roxo Caxiense’ cultivar is very close to the 15 mg P·dm-3 proposed by the regional fertilizer recommendation system 
(CQFS-RS/SC 2016), for crops such as garlic (Allium sativum), beet (Beta vulgaris), carrot (Daucus carota), potato (Solanum 
tuberosum), and cut rose (Rosa spp.), grown in soils with clay contents above 60%. However, the nutritional requirement 
for ‘Chonan’ and ‘Ito’ cultivars were higher than the regional fertilizer recommendation system, in 1.5 and 1.7 time. Thus, 
with our results, it is possible to increase the nutritional recommendation system and garlic quality. 

The MEE rates were obtained for total and marketable yield (Fig. 7) and provided savings of 11 and 12% in fertilizer 
compared to the MTE rates, respectively, although they also provided increases of 9 and 11% in yield over the control. 
The MTE rate for maintenance fertilization according to the regional recommendation is 300 kg P2O5·ha-1 (CQFS-RS/SC 
2016), when P contents are classified as high (clay content > 60%) (CQFS-RS/SC 2016). This value is lower than the MTE 
rate observed in the present study, which was 397 kg P2O5·ha-1. Thus, possibly the currently recommended MTE rate of 
phosphate fertilizer is being underestimated, which may be limiting the potential garlic yield (Assefa et al. 2015, Diriba-
Shiferaw et al. 2013). However, we emphasize that an alternative is to use MEE, as yield gains tend to be low. Despite we are 
showing MTE and MEE rates of P fertilizer, we reinforce the importance of soil analysis annually to adequate phosphate 
rates and P levels in the soil.

With our results, the garlic recommendation system could be updated to subtropical region of Brazil. Also, it was able 
to identify that different cultivars demand physiologically distinct values of CL an SR. With that, it is important to make 
studies to improve the nutrition status for nutrients, species, regions, and climatic conditions.
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CONCLUSION

The CL of P in relation to total and marketable yield in leaves and soil, for ‘Chonan’, ‘Ito’, and ‘Roxo Caxiense’, were 
proposed to garlic cultivated in a subtropical climate. The CL in relation to total yield garlic yield were 3.5, 4.5, and  
3.4 g P·kg-1 in leaves and 18, 28, and 14 mg P·dm-3 in soil, for ‘Chonan’, ‘Ito’, and ‘Roxo Caxiense’, respectively. The CL in 
relation to marketable garlic yield were 4, 3.5, and 3.6 g P·kg-1 in leaves and 22, 26, and 13 mg P·dm-3 in soil, for the respective 
cultivars. Also, the MTE rates were 397 and 336 kg P2O5·ha-1, and the MEE rates were 353 and 297 kg P2O5·ha-1, respectively, 
for total and marketable garlic bulb yield. 

The results from this study could help garlic growers decide on the best nutritional management, once up time that 
the P reference values are proposed for individual garlic cultivars improving the efficiency of the recommendations 
that are scarce in the literature. In addition, the soil P levels need to be constantly monitored to not achieve and cause 
environmental problems. However, future research is needed to improve garlic fertilization including additional macro 
and micronutrients.
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